Polynomial Shape from Shading

Ady Ecker and Allan Jepson University of Toronto

Shape from shading (SFS)

Standard Lambertian SFS

Polynomial form

(1 + p² + q²)I² - (-ap - bq + c)² = 0 $-ap - bq + c \ge 0$

Outline

- Advantages of the polynomial form
 - Small systems are solvable
 - Exact line search
 - Semidefinite programming (SDP) relaxation
- Shading ambiguities

- Visualization of ambiguous solutions

SFS of a polyhedron

- A small polynomial system in the unknowns $z_1, ..., z_6$ around a vertex
- All solutions to generic systems can be found by polynomial solvers (e.g. HOM4PS-2.0)

SFS of a polyhedron

• Unfortunately, the method is sensitive to noise

SFS on a grid

 $p_{ij} = z_{i+1,j} - z_{ij}, \ q_{ij} = z_{i,j+1} - z_{ij}$ $r_{ij} = (1 + p^2 + q^2)I^2 - (-ap - bq + c)^2$ $= \mathbf{z}^T \mathbf{A}_{ij} \mathbf{z} + \mathbf{e}_{ij}^T \mathbf{z} + h_{ij}$

minimize $\|\mathbf{r}\|^2 + \lambda$ (smoothness term)

- Use line search on $\mathbf{z} = \mathbf{z}_0 + \alpha \mathbf{d}$
- Results in a quartic minimization in α
- Can be solved in closed form

- Use line search on $\mathbf{z} = \mathbf{z}_0 + \alpha \mathbf{d}$
- Results in a quartic minimization in α
- Can be solved in closed form

- Use line search on $\mathbf{z} = \mathbf{z}_0 + \alpha \mathbf{d}$
- Results in a quartic minimization in α
- Can be solved in closed form

- Use line search on $\mathbf{z} = \mathbf{z}_0 + \alpha \mathbf{d}$
- Results in a quartic minimization in α
- Can be solved in closed form

- Use line search on $\mathbf{z} = \mathbf{z}_0 + \alpha \mathbf{d}$
- Results in a quartic minimization in α
- Can be solved in closed form

input image and surface

output image and surface

$$p = z_3 - z_1, \ q = z_2 - z_1$$

$$r = (1 + p^2 + q^2)I^2 - (-ap - bq + c)^2$$

ideally $r = 0$

Each element of **M** represents a product between the corresponding monimials

 \mathbf{M}_{kl} are the new variables

 $p = z_3 - z_1$, $q = z_2 - z_1$ $r = (1 + p^{2} + q^{2})I^{\overline{2}} - (-ap - bq + c)^{2}$ ideally r = 01 z_1 z_2 z_3 z_1^2 $z_1 z_2$ $(z_1 z_3)$ z_2^2 $(z_2 z_3)$ z_3^2 1 Z_1 Z_2 Z_3 z_1^2 Z_1Z_2 $\mathbf{M}_{\boldsymbol{\nu}}$ Z_1Z_3 Z_{2}^{2} Z_2Z_3 Z_{3}^{2}

 z_{3}^{2}

Each element of M represents a product between the corresponding monimials

Some entries are equal

$$p = z_{3} - z_{1}, \quad q = z_{2} - z_{1}$$

$$r = (1 + p^{2} + q^{2})I^{2} - (-ap - bq + c)^{2}$$
ideally $r = 0$

$$1 \quad z_{1} \quad z_{2} \quad z_{3} \quad z_{1}^{2} \quad z_{1}z_{2} \quad z_{1}z_{3} \quad z_{2}^{2} \quad z_{2}z_{3} \quad z_{3}^{2}$$

$$1 \quad z_{1} \quad z_{2} \quad z_{3} \quad z_{1}^{2} \quad z_{1}z_{2} \quad z_{1}z_{3} \quad z_{2}^{2} \quad z_{2}z_{3} \quad z_{3}^{2}$$

$$1 \quad z_{1} \quad z_{2} \quad z_{3} \quad z_{1}^{2} \quad z_{1}z_{2} \quad z_{1}z_{3} \quad z_{2}^{2} \quad z_{2}z_{3} \quad z_{3}^{2}$$

$$1 \quad z_{1} \quad z_{2} \quad z_{3} \quad z_{1}^{2} \quad z_{1}z_{2} \quad z_{1}z_{3} \quad z_{2}^{2} \quad z_{2}z_{3} \quad z_{3}^{2}$$

$$1 \quad z_{1} \quad z_{2} \quad z_{3} \quad z_{1}^{2} \quad z_{1}z_{2} \quad z_{1}z_{3} \quad z_{2}^{2} \quad z_{2}z_{3} \quad z_{3}^{2}$$

$$1 \quad z_{1} \quad z_{2} \quad z_{1}z_{3} \quad z_{2}^{2} \quad z_{2}z_{3} \quad z_{3}^{2}$$

$$M_{kl}$$

 Z_{2}^{2}

 Z_{3}^{2}

1 M should be Z_1 symmetric positive- Z_2 Z_3 semidefinite z_{1}^{2} $\mathbf{M} \geq \mathbf{0}$

 $p = z_3 - z_1$, $q = z_2 - z_1$ $r = (1 + p^{2} + q^{2})I^{\overline{2}} - (-ap - bq + c)^{2}$ ideally r = 01 z_1 z_2 z_3 z_1^2 z_1z_2 z_1z_3 z_2^2 z_2z_3 z_3^2 $Z_1 Z_2$ \mathbf{M}_{kl} Z_1Z_3 Z_2Z_3

1

 Z_{2}^{2}

 Z_{3}^{2}

 Z_2Z_3

 $p = z_3 - z_1, \ q = z_2 - z_1$ $r = (1 + p^2 + q^2)I^2 - (-ap - bq + c)^2$ ideally r = 0

1 z_1 z_2 z_3 z_1^2 z_1z_2 z_1z_3 z_2^2 z_2z_3 z_3^2

Write the quadratic z_1 constraints as linear z_2 combinations of z_3 z_1^2 elements of M z_1z_2 $-\varepsilon \leq \mathbf{U} \bullet \mathbf{M} \leq \varepsilon$ z_1z_3

 $\begin{array}{l} minimize \ \sum \mathrm{trace} \big(\mathbf{M}_{ij} \big) + G \cdot \varepsilon \quad \mathrm{s.t.} \\ \mathbf{M}_{ij} \geqslant 0 \ + \ linear \ equality \ and \\ inequality \ constraints \ on \ \mathbf{M}_{ij} \end{array}$

 $\begin{array}{l} minimize \ \sum trace(\mathbf{M}_{ij}) + G \cdot \varepsilon \quad \text{s.t.} \\ \mathbf{M}_{ij} \ge 0 \ + \ linear \ equality \ and \\ inequality \ constraints \ on \ \mathbf{M}_{ij} \end{array}$

Solution extraction:

1 z_1 z_2 z_3 z_1^2 $z_1 z_2$ $z_1 z_3$ z_2^2 $z_2 z_3$ z_3^2 Z_1 Z_2 Z_3 z_{1}^{2} $Z_1 Z_2$ Z_1Z_3 z_{2}^{2} Z_2Z_3 Z_{3}^{2}

Advantages of SDP relaxations

- Don't rely on an initial guess, boundary conditions or singular points
- Convex optimization
- Easy to integrate different types of constraints

SDP (18×24)

iterative (48×64)

SDP (18×24)

iterative (48×64)

SDP (18×24)

iterative

(48×64)

SDP (18×24)

iterative

(48×64)

SDP – room for improvements

- Relaxation is not tight
- Slow, applicable to very small images
- Regularization terms
- Solution extraction scheme

Shading ambiguities

- Known to exist in the continuous case
- For the discrete case, we show that the implicit function theorem implies the existence of a manifold of solutions (subject to conditions)

Visualizing SFS ambiguities

$$\|\mathbf{r}(\mathbf{z}_0 + \mathbf{v})\|^2 \approx \|\mathbf{r}(\mathbf{z}_0)\|^2 + 2\mathbf{r}^T \mathbf{J} \mathbf{v} + \mathbf{v}^T \mathbf{J}^T \mathbf{J} \mathbf{v}$$

 $\mathbf{J} = \begin{bmatrix} \frac{d\mathbf{r}}{d\mathbf{z}}(\mathbf{z}_0) \end{bmatrix}$ is the Jacobian of \mathbf{r} at \mathbf{z}_0

On the extended grid J is $MN \times (M + 1) (N + 1)$, with at least M + N + 1 null vectors

What shape is this?

References

B. K. P. Horn and M. J. Brooks, editors. *Shape from Shading*. 1989

F. Kahl and D. Henrion. *Globally optimal estimates for geometric reconstruction problems*. 2007

R. Kozera. Uniqueness in shape from shading revisited. 1997

J.B. Lasserre. *Convergent SDPrelaxations in polynomial optimization with sparsity*. 2006

Z.-Q. Luo and S. Zhang. A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraints. 2010 J. N. M. Mevissen, M. Kojima and N. Takayama. *Solving partial differential equations via sparse SDP relaxations*. 2008

M. Penna. A shape from shading analysis for a single perspective image of a polyhedron. 1989

L. Qi, Z. Wan, and Y.-F. Yang. *Global minimization of normal quartic polynomials based on global descent directions*. 2005

A. J. Sommese and C. W. Wampler. *The Numerical Solution of Systems of Polynomials Arising in Engineering and Science*. 2005