Polynomial Shape from Shading

Ady Ecker and Allan Jepson University of Toronto

Shape from shading (SFS)

Single 2D image

3D surface

Standard Lambertian SFS

$$
\begin{aligned}
& \mathbf{N}=\left(\begin{array}{c}
-p \\
-q \\
1
\end{array}\right) \\
& =\frac{d z}{d x}, q=\frac{d z}{d y}
\end{aligned} \quad<\begin{aligned}
& \mathbf{L}=(a, b, c) \\
& \|\mathbf{L}\|=1 \\
& I=\frac{\mathbf{L} \cdot \mathbf{N}}{\|\mathbf{N}\|}=\frac{-a p-b q+c}{\sqrt{1+p^{2}+q^{2}}}
\end{aligned}
$$

Polynomial form

$$
\begin{aligned}
& \mathbf{N}=\left(\begin{array}{c}
-p \\
-q \\
1
\end{array}\right) \\
& p=\frac{d z}{d x}, q=\frac{d z}{d y}
\end{aligned} \quad \begin{aligned}
& \mathbb{L}=(a, b, c) \\
& \|\mathbf{L}\|=1
\end{aligned} \quad \begin{aligned}
& I=\frac{\mathbf{L} \cdot \mathbf{N}}{\|\mathbf{N}\|}=\frac{-a p-b q+c}{\sqrt{1+p^{2}+q^{2}}}
\end{aligned}
$$

$$
\left(1+p^{2}+q^{2}\right) I^{2}-(-a p-b q+c)^{2}=0
$$

$$
-a p-b q+c \geq 0
$$

Outline

- Advantages of the polynomial form
- Small systems are solvable
- Exact line search
- Semidefinite programming (SDP) relaxation
- Shading ambiguities
- Visualization of ambiguous solutions

SFS of a polyhedron

$$
\begin{aligned}
& -p_{i}=\frac{y_{i} z_{i+1}-y_{i+1} z_{i}}{x_{i} y_{i+1}-x_{i+1} y_{i}} \\
& -q_{i}=\frac{x_{i+1} z_{i}-x_{i} z_{i+1}}{x_{i} y_{i+1}-x_{i+1} y_{i}}
\end{aligned}
$$

- A small polynomial system in the unknowns z_{1}, \ldots, z_{6} around a vertex
- All solutions to generic systems can be found by polynomial solvers (e.g. HOM4PS-2.0)

SFS of a polyhedron

Synthetic input

Computed solutions

- Unfortunately, the method is sensitive to noise

SFS on a grid

$$
\begin{aligned}
p_{i j} & =z_{i+1, j}-z_{i j}, q_{i j}=z_{i, j+1}-z_{i j} \\
r_{i j} & =\left(1+p^{2}+q^{2}\right) I^{2}-(-a p-b q+c)^{2} \\
& =\mathbf{z}^{T} \mathbf{A}_{i j} \mathbf{z}+\mathbf{e}_{i j}^{T} \mathbf{z}+h_{i j}
\end{aligned}
$$

minimize $\|\mathbf{r}\|^{2}+\lambda($ smoothness term $)$

Conjugate gradient with exact line search

$r_{i j}=\mathbf{z}^{T} \mathbf{A}_{i j} \mathbf{z}+\mathbf{e}_{i j}^{T} \mathbf{z}+h_{i j}$
minimize $\|\mathbf{r}\|^{2}+\lambda($ smoothness term $)$

- Use line search on $\mathbf{z}=\mathbf{z}_{0}+\alpha \mathbf{d}$
- Results in a quartic minimization in α
- Can be solved in closed form

Conjugate gradient with exact line search

$r_{i j}=\mathbf{z}^{T} \mathbf{A}_{i j} \mathbf{z}+\mathbf{e}_{i j}^{T} \mathbf{z}+h_{i j}$
minimize $\|\mathbf{r}\|^{2}+\lambda($ smoothness term $)$

- Use line search on $\mathbf{z}=\mathbf{z}_{0}+\alpha \mathbf{d}$
- Results in a quartic minimization in α
- Can be solved in closed form

Conjugate gradient with exact line search

$r_{i j}=\mathbf{z}^{T} \mathbf{A}_{i j} \mathbf{z}+\mathbf{e}_{i j}^{T} \mathbf{z}+h_{i j}$
minimize $\|\mathbf{r}\|^{2}+\lambda($ smoothness term $)$

- Use line search on $\mathbf{z}=\mathbf{z}_{0}+\alpha \mathbf{d}$
- Results in a quartic minimization in α
- Can be solved in closed form

Conjugate gradient with exact line search

$r_{i j}=\mathbf{z}^{T} \mathbf{A}_{i j} \mathbf{z}+\mathbf{e}_{i j}^{T} \mathbf{z}+h_{i j}$
minimize $\|\mathbf{r}\|^{2}+\lambda($ smoothness term $)$

- Use line search on $\mathbf{z}=\mathbf{z}_{0}+\alpha \mathbf{d}$
- Results in a quartic minimization in α
- Can be solved in closed form

Conjugate gradient with exact line search

$r_{i j}=\mathbf{z}^{T} \mathbf{A}_{i j} \mathbf{z}+\mathbf{e}_{i j}^{T} \mathbf{z}+h_{i j}$
minimize $\|\mathbf{r}\|^{2}+\lambda($ smoothness term $)$

- Use line search on $\mathbf{z}=\mathbf{z}_{0}+\alpha \mathbf{d}$
- Results in a quartic minimization in α
- Can be solved in closed form

Result

SDP relaxation

$$
\begin{aligned}
& p=z_{3}-z_{1}, \quad q=z_{2}-z_{1} \\
& r=\left(1+p^{2}+q^{2}\right) I^{2}-(-a p-b q+c)^{2}
\end{aligned}
$$

$$
\text { ideally } r=0
$$

SDP relaxation

$p=z_{3}-z_{1}, \quad q=z_{2}-z_{1}$
$r=\left(1+p^{2}+q^{2}\right) I^{2}-(-a p-b q+c)^{2}$
ideally $r=0$

Each element of M represents a product between

SDP relaxation

$p=z_{3}-z_{1}, \quad q=z_{2}-z_{1}$
$r=\left(1+p^{2}+q^{2}\right) I^{2}-(-a p-b q+c)^{2}$
ideally $r=0$

Each element of M represents a product between the corresponding monimials

Some entries are equal

SDP relaxation

$p=z_{3}-z_{1}, \quad q=z_{2}-z_{1}$
$r=\left(1+p^{2}+q^{2}\right) I^{2}-(-a p-b q+c)^{2}$
ideally $r=0$

M should be

$$
\begin{array}{llllllllll}
1 & z_{1} & z_{2} & z_{3} & z_{1}^{2} & z_{1} z_{2} & z_{1} z_{3} & z_{2}^{2} & z_{2} z_{3} & z_{3}^{2}
\end{array}
$$

symmetric positive- z_{2} semidefinite
$\mathbf{M} \succcurlyeq 0$
z_{3}
z_{1}^{2}
$z_{1} z_{2}$
$z_{1} z_{3}$
z_{2}^{2}
$z_{2} z_{3}$
$z_{3}^{2}$$\quad \mathbf{M}_{k l}$

SDP relaxation

$p=z_{3}-z_{1}, \quad q=z_{2}-z_{1}$
$r=\left(1+p^{2}+q^{2}\right) I^{2}-(-a p-b q+c)^{2}$
ideally $r=0$

Write the quadratic ${ }^{1}$ constraints as linear ${ }^{z_{2}}$ combinations of elements of \mathbf{M}

$$
1 \begin{array}{lllllllll}
z_{1} & z_{2} & z_{3} & z_{1}^{2} & z_{1} z_{2} & z_{1} z_{3} & z_{2}^{2} & z_{2} z_{3} & z_{3}^{2}
\end{array}
$$

$$
-\varepsilon \leq \mathbf{U} \bullet \mathbf{M} \leq \varepsilon \begin{aligned}
& z_{1} z_{3} \\
& z_{2}^{2} \\
& \\
& z_{2} z_{3} \\
& \\
& z_{3}^{2}
\end{aligned}
$$

SDP relaxation

minimize $\sum \operatorname{trace}\left(\mathbf{M}_{i j}\right)+G \cdot \varepsilon$ s.t.
$\mathbf{M}_{i j} \succcurlyeq 0+$ linear equality and inequality constraints on $\mathbf{M}_{i j}$

SDP relaxation

minimize $\sum \operatorname{trace}\left(\mathbf{M}_{i j}\right)+G \cdot \varepsilon$ s.t. $\mathbf{M}_{i j} \succcurlyeq 0+$ linear equality and inequality constraints on $\mathbf{M}_{i j}$

Solution extraction: 1

$$
1 \begin{array}{lllllllll}
& z_{1} & z_{2} & z_{3} & z_{1}^{2} & z_{1} z_{2} & z_{1} z_{3} & z_{2}^{2} & z_{2} z_{3}
\end{array} z_{3}^{2}
$$

Advantages of SDP relaxations

- Don't rely on an initial guess, boundary conditions or singular points
- Convex optimization
- Easy to integrate different types of constraints

Results

iterative (48×64)

SDP
(18×24)

Results

iterative (48×64)

Results

iterative (48×64)

Results

iterative (48×64)

SDP - room for improvements

- Relaxation is not tight
- Slow, applicable to very small images
- Regularization terms
- Solution extraction scheme

Shading ambiguities

- Known to exist in the continuous case
- For the discrete case, we show that the implicit function theorem implies the existence of a manifold of solutions (subject to conditions)

Visualizing SFS ambiguities

$$
\left\|\mathbf{r}\left(\mathbf{z}_{0}+\mathbf{v}\right)\right\|^{2} \approx\|\mathbf{r} \underbrace{\left(\mathbf{z}_{0}\right)}_{0}\|^{2}+\underset{0}{2 \mathbf{r}^{T} \mathbf{J} \mathbf{v}}+\mathbf{v}^{T} \mathbf{J}^{T} \mathbf{J} \mathbf{v}
$$

$\mathbf{J}=\left[\frac{d \mathbf{r}}{d \mathbf{z}}\left(\mathbf{z}_{0}\right)\right]$ is the Jacobian of \mathbf{r} at \mathbf{z}_{0}
On the extended grid J is $M N \times(M+1)(N+1)$, with at least $M+N+1$ null vectors

References

B. K. P. Horn and M. J. Brooks, editors. Shape from Shading. 1989
F. Kahl and D. Henrion. Globally optimal estimates for geometric reconstruction problems. 2007
R. Kozera. Uniqueness in shape from shading revisited. 1997
J.B. Lasserre. Convergent SDPrelaxations in polynomial optimization with sparsity. 2006
Z.-Q. Luo and S. Zhang. A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraints. 2010
J. N. M. Mevissen, M. Kojima and N. Takayama. Solving partial differential equations via sparse SDP relaxations. 2008
M. Penna. A shape from shading analysis for a single perspective image of a polyhedron. 1989
L. Qi, Z. Wan, and Y.-F. Yang. Global minimization of normal quartic polynomials based on global descent directions. 2005
A. J. Sommese and C. W. Wampler. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. 2005

