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Abstract—We introduce new transforms for efficient com-
pression of image blocks with directional preferences. Each
transform, which is an orthogonal basis for a specific direction, is
constructed from an eigen-decomposition of a discrete directional
Laplacian system matrix. The method is a natural extension
of the DCT, expressing the Laplacian in Cartesian coordinates
rotated to some predetermined angles. Symmetry properties of
the transforms over square domains lead to efficient computation
and compact storage of the directional transforms. A version of
the directional transforms was implemented within the beyond
HEVC software and demonstrated significant improvement for
intra block coding.

Index Terms—video coding, directional bases, Laplace equa-
tions, discrete cosine transforms.

I. INTRODUCTION

THE two-dimensional discrete cosine transform (2D-DCT)
is the most widely used unitary transform in image and

video coding standards, such as JPEG, MPEG-2, MPEG-4,
AVC/H.264, and HEVC/H.265. The DCT is an orthogonal
and separable basis set of cosine functions, used to represent
image information of rectangular blocks by spatial frequency
coefficients. Generally, the energy of smooth signals, as in typ-
ical images, is concentrated in the low frequency coefficients.
Efficient compression is obtained when most of the energy is
concentrated in a small number of quantized coefficients.

The 1D-DCT, discovered in 1974 [1] [2], was derived as
an approximation to the eigenvectors of the covariance matrix
of a class of stationary Markovian signals. These eigenvectors
are an approximation to an optimal Karhunen-Loeve basis for
compressing this class of signals. Thus, the analytical 1D-DCT
vectors are close to optimal. It is well known that each one of
the eight types of 1D-DCT is an orthogonal basis for a discrete
interval. Strang [3] derived the 1D-DCT basis in a different
way, by showing that each DCT type contains the eigenvectors
of a second difference symmetric matrix. The eigenvectors are
determined by the Boundary Conditions (BC) at each endpoint
of the interval (Dirichlet or Neumann), whether the BC is
applied at a grid point or at the middle between two adjacent
grid points, and whether the eigenfunctions have an even or
odd extensions around that point. Continuity at the interval
boundaries made DCT-II more attractive and the transform
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of choice in image and video coding standards. In practice,
the 2D-DCT coefficients are computed by fast and efficient
schemes applied separably along the vertical and horizontal
directions.

Instead of applying the DCT directly to image blocks,
modern encoding frameworks, such as HEVC, apply the
DCT to residual blocks. The residual blocks are obtained by
subtracting prediction blocks from the original image blocks.
The purpose of prediction blocks is to exploit information that
was already transmitted. Prediction blocks can be generated
either from other frames (inter-prediction) or other blocks in
the same frame (intra-prediction).

The angular intra-prediction mechanism of HEVC [4] repli-
cates boundary pixels along straight lines. Directional patterns
may still remain in the residual blocks, as shown in Fig. 1,
for several reasons. First, angular prediction might not remove
all the directional structures in the original image blocks,
even after increasing the number of intra-prediction angular
directions to 33 in the HEVC standard [5] and 65 directions
in proposals for beyond HEVC [6]. Second, whenever there are
discontinuities along the edges of a predicted block, angular
prediction might actually insert directional stripes that did not
exist in the original block.

The 2D-DCT is a separable basis, and deals relatively well
with horizontal or vertical patterns. On the other hand, oriented
patterns are typically characterized by high frequencies in one
direction and low frequencies in the orthogonal direction. Dis-
continuities along the horizontal and vertical axes may increase
the number of non-zero coefficients at high frequencies due to
Gibbs phenomenon. As a result, the representation of oriented
residual blocks by DCT might be inefficient.

To address this shortcoming, several attempts were made
in the last decade [7]–[23] to develop directional transforms,
i.e. transforms that are better tuned to particular orientations.
Three categories of directional transforms for image coding
have been overviewed in [7]: (i) reorganization of pixels [8],
[9]; (ii) lifting [10], [11]; and (iii) data-dependent directional
transforms [12].

In reorganization based approaches [8], block’s pixels are
reorganized according to a selected direction. Conventional
1D transforms of variable lengths are applied. The coefficients
produced by the directional transforms are rearranged and a
second pass of 1D transforms is applied to the coefficients.
These methods are suboptimal since the transformation is
not orthogonal in 2D, and the 2D relationships between the
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Fig. 1: Left: Reconstructed part from the BasketballDrill sequence by standard HEVC decoder. The intra-prediction quadtree is
overlaid on the image. Right: The residual image, after subtraction of the intra-prediction. Note that strong directional structures
remain in the residual even after angular prediction. The standard DCT is efficient at representing smooth blocks, or blocks
with horizontal or vertical structures, but is less efficient at representing directional structures.

original pixels are distorted.
Lifting-based methods [10], [11] also apply 1D transforms,

but they use 2D image interpolations. Similarly to pixel
reorganization methods, they have inefficiencies associated
with the fact that oriented lines at the center and the corners
of a square block are of different lengths.

Data-dependent transforms are based on training data in
the spirit of the Karhunen-Loeve transform (KLT). In [12],
mode-dependent directional transforms (MDDT) are derived
from KLT using prediction residuals from training video data.
Signal Dependent Transform (SDT) is used for various block
sizes [13].

The directional transforms we will develop in this paper
fit in a recent trend where the codec can use additional
transforms that complement the DCT. From a sparse cod-
ing perspective, the multiple bases are essentially an over-
complete dictionary [24]. Obviously, larger dictionaries can
lead to sparser representations. On the other hand, over-
complete representations require signaling which basis to use.
Both the signaling overhead and the search time can be saved
if the transform can be linked to the intra-prediction mode. The
DCT/DST mode-dependent combination [14] and the Explicit
Multiple Transform (EMT) methods [15] use this approach.
EMT uses selected transforms from the DCT/DST families
(DST-VII, DCT-VIII, DST-I, and DCT-V) in addition to the
current DCT-II transform in HEVC. Similarly, Dvir et al. [23]
used the standard DCT in a framework where quadtree blocks
can be split diagonally. This can deal better with directional
cuts between regions, but not with general directional patterns.

Another recent approach uses a secondary transform ap-
plied to the coefficients of the conventional 2D-DCT/DST.
Among the secondary transforms are the Rotational Transform
(ROT) [16], which uses Givens rotation matrices, and the mode
dependent non-separable secondary transform (MDNSST)
[17], which is applied to the lower frequencies 4×4 and 8×8
groups of transform coefficients. A similar idea that rotates
pairs of 2D-DCT vectors with the same eigenvalues in their
2D subspace was suggested in [21]. While these transforms are
orthogonal, the rotations occur in a high-dimensional space.

The resulting basis vectors do not necessarily suit to represent
rotations in the image plane.

Selesnick and Guleryuz [20] introduced two methods for
generating directional orthogonal bases. Their first method
is based on enforcing diagonal structure on a lower-
dimentionality system matrix, and a completion to a basis.
Their second method takes the eigen-basis of a system matrix
that is constructed from oriented first-derivative terms. This
differs from the DCT which is based on second-derivative
terms.

In this paper we introduce a new scheme for the generation
of directional transforms, which are orthogonal in 2D and
form a complete basis set for each direction. These transforms
may be used for efficient representation of image blocks with
directional content. The scheme is demonstrated and evaluated
using the beyond HEVC codec.

The paper is organized as follows. In Section II, we
introduce the continuous and discrete directional Laplacian
operator. In Section III, we present the discrete directional
Laplacian eigen-basis for the N×N square. The computation
of transform coefficients (forward transform) for a given image
block and the reconstruction by the inverse transform are
described in Section IV. Implementation details are discussed
in Section V. The efficiency of the proposed representation
is demonstrated in Section VI through evaluation on the
Common Test Conditions (CTC) sequences [25]. Finally,
conclusions are given in Section VII.

II. THE DIRECTIONAL LAPLACIAN OPERATOR

A. The continuous directional Laplacian

The two-dimensional continuous Laplacian operator is de-
fined by

∆f = ∇2f =

(
∂2

∂x2
+

∂2

∂y2

)
f . (1)

The Laplacian in (1) can be written as a decomposition of
parallel and perpendicular parts in relation to any angle θ:

∆f = ∇2f = ∇2
‖f +∇2

⊥f . (2)
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Fig. 2: Rotated coordinates system. The point p = (x, y) has
coordinates (x′, y′) in the rotated system.

In the rest of the paper, we will refer to ∇2
‖f as the directional

Laplacian.
For completeness of the presentation we provide below the

derivation from Broadhead [26], who used it for anisotropic
filtering. Let (x, y) be the Cartesian coordinates of a point with
respect to a first coordinate system and (x′, y′) the Cartesian
coordinates of that point with respect to a second coordinates
system that is rotated by an angle θ, as shown in Fig. 2.
Accordingly, (x, y) and (x′, y′) are related to each other as:(

x
y

)
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

](
x′

y′

)
. (3)

To express the Laplacian in the rotated coordinates (x′, y′),
we write the first derivative for x′

∂f

∂x′
=
∂f

∂x

∂x

∂x′
+
∂f

∂y

∂y

∂x′
=
∂f

∂x
cos(θ) +

∂f

∂y
sin(θ) . (4)

Then, the second derivative for x′ is calculated by applying (4)
a second time:
∂2f

∂x′2
=

(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y

)(
cos(θ)

∂f

∂x
+ sin(θ)

∂f

∂y

)
= cos2(θ)

∂2f

∂x2
+ 2 cos(θ) sin(θ)

∂2f

∂x∂y
+ sin2(θ)

∂2f

∂y2
.

(5)

Similarly, the first and second derivatives for y′ are given by:

∂f

∂y′
=
∂f

∂x

∂x

∂y′
+
∂f

∂y

∂y

∂y′
=
−∂f
∂x

sin(θ) +
∂f

∂y
cos(θ) . (6)

∂2f

∂y′2
=

=

(
− sin(θ)

∂

∂x
+ cos(θ)

∂

∂y

)(
− sin(θ)

∂f

∂x
+ cos(θ)

∂f

∂y

)
= sin2(θ)

∂2f

∂x2
− 2 cos(θ) sin(θ)

∂2f

∂x∂y
+ cos2(θ)

∂2f

∂y2
.

(7)

Referring to x′ and y′ as the parallel and perpendicular
directions, the parallel and the perpendicular parts of the
Laplacian are given in (5) and (7), respectively:

∇2
‖f =

∂2f

∂x′2
, (8)

∇2
⊥f =

∂2f

∂y′2
. (9)

Note that the identity in (2) is obtained by summing (5) and (7)
for any angle θ:

∇2
‖f +∇2

⊥f =
∂2f

∂x′2
+
∂2f

∂y′2
=
∂2f

∂x2
+
∂2f

∂y2
= ∇2f = ∆f .

(10)
Although we focus mainly on the two-dimensional case, it is

instructional to derive the directional Laplacian more generally
in any number of dimensions. Let R be an n-dimensional
orthogonal matrix that aligns the first coordinate with some
desired direction in the coordinates transformation

x′ = Rx . (11)

For example, in two dimensions R =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.

The Hessian matrix operator H =
[

∂2f
∂xi∂xj

]
i,j=1,...,n

in the

rotated coordinates system is

H′ = RHRT . (12)

Formula (12) is just a change of basis formula for the linear
operator H [27]. The directional Laplacian in the direction of
the first rotated coordinate is

∂2f

∂x′1
2 = Rrow1HRT

row1 , (13)

where Rrow1 is the first row of R. For example, in two
dimensions Rrow1 = [cos(θ) sin(θ)] and (13) agrees with (5).

B. The discrete directional Laplacian
In this section we present our discrete approximation to

the continuous directional Laplacian operators (5) and (7). We
apply the finite difference method [28] for a regularly sampled
image block.

Denote xi = ih, yj = jh, f(i, j) = f(xi, yj), where i, j =
0, 1, 2, . . . , N − 1, h = 1/N , and N is the block size. Using
the central difference and the Taylor series expansion about
the point (xi, yj) for its neighboring points, we get:

∂2f

∂x∂y

∣∣∣∣
i,j

=
1

4h2
(f(i+ 1, j + 1)− f(i+ 1, j − 1)

− f(i− 1, j + 1) + f(i− 1, j − 1)) +O(h2) ,

∂2f

∂x2

∣∣∣∣
i,j

=
1

h2
(f(i+ 1, j)− 2f(i, j) + f(i− 1, j)) +O(h2) ,

∂2f

∂y2

∣∣∣∣
i,j

=
1

h2
(f(i, j + 1)− 2f(i, j) + f(i, j − 1)) +O(h2) .

(14)

In the formula above, O(h2) stands for error terms of order
h2 or higher which are neglected.

The expression for the parallel Laplacian is obtained by
substituting (14) in (5):

∇2
‖f =

1

4h2
[
− 8f(i, j)

+ 4 cos2(θ)(f(i− 1, j) + f(i+ 1, j))

+ 4 sin2(θ)(f(i, j − 1) + f(i, j + 1))

+ sin(2θ)(f(i+ 1, j + 1)− f(i+ 1, j − 1)

− f(i− 1, j + 1) + f(i− 1, j − 1))
]
.

(15)
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The stencil for the parallel component of the Laplacian can
be written in matrix form:

∇2
‖ =

1

4h2

− sin(2θ) 4 sin2(θ) sin(2θ)
4 cos2(θ) −8 4 cos2(θ)
sin(2θ) 4 sin2(θ) − sin(2θ)

 . (16)

The stencil for the perpendicular component can be derived
similarly:

∇2
⊥ =

1

4h2

 sin(2θ) 4 cos2(θ) − sin(2θ)
4 sin2(θ) −8 4 sin2(θ)
− sin(2θ) 4 cos2(θ) sin(2θ)

 . (17)

The standard five-point stencil for the Laplacian [28] is ob-
tained by summing (16) and (17), in accordance with (2):

∇2
‖ +∇2

⊥ = ∇2
5 =

1

h2

0 1 0
1 −4 1
0 1 0

 . (18)

Some examples are given below for special rotation angles:
(i) for θ = 0 we get the discrete 1D Laplacian (second
derivative) operator:

∇2
‖ =

1

h2

0 0 0
1 −2 1
0 0 0

 , ∇2
⊥ =

1

h2

0 1 0
0 −2 0
0 1 0

 (19)

(ii) for θ = π/4:

∇2
‖ =

1

4h2

−1 2 1
2 −8 2
1 2 −1

 ,∇2
⊥ =

1

4h2

 1 2 −1
2 −8 2
−1 2 1

 .

(20)

III. THE DIRECTIONAL LAPLACIAN EIGENFUNCTIONS

After defining the directional Laplacian operator, in this sec-
tion we develop directional orthogonal bases for square blocks.
Each basis is made of the eigenfunctions of an eigen-problem
generated by applying the directional Laplacian operator for
some angle θ at each point in the square.

System matrix specification. The eigen-problem we con-
struct is of the form Av=λv. v is an N2×1 vector represent-
ing an N×N block of pixels in a column-major order. The
N2×N2 system matrix A is constructed such that its k-th row
applies the discrete directional Laplacian operator (16) at the
k-th pixel in our column-major order.

Boundary specification. The Laplacian stencil (16) cannot
be applied directly at boundary pixels of the square domain.
There are many possible ways to define boundary conditions
for the directional Laplacian operator, and each will result in a
different basis of eigenfunctions. It is beyond the scope of this
work to examine the effect of different boundary conditions.
We implemented one of the simplest rules possible: we keep
all the coefficients inside the support of the image, except the
central one, and adjust the central coefficient so that the sum
of the stencil is 0. For example, the stencils for the top row
and top-left corner of the block are:

∇2
‖top

=
1

4h2

[
4 cos2(θ) −4− 4 cos2(θ) 4 cos2(θ)
sin(2θ) 4 sin2(θ) − sin(2θ)

]
∇2
‖top-left

=
1

4h2

[
−4 + sin(2θ) 4 cos2(θ)

4 sin2(θ) − sin(2θ)

]
.

(21)

The stencils for the other boundary lines and corners are
derived similarly.

As an example, the system matrix for a 4×4 block with
θ = π/4 is

−3 2 0 0 2 −1 0 0 0 0 0 0 0 0 0 0
2 −6 2 0 1 2 −1 0 0 0 0 0 0 0 0 0
0 2 −6 2 0 1 2 −1 0 0 0 0 0 0 0 0
0 0 2 −5 0 0 1 2 0 0 0 0 0 0 0 0
2 1 0 0 −6 2 0 0 2 −1 0 0 0 0 0 0

−1 2 1 0 2 −8 2 0 1 2 −1 0 0 0 0 0
0 −1 2 1 0 2 −8 2 0 1 2 −1 0 0 0 0
0 0 −1 2 0 0 2 −6 0 0 1 2 0 0 0 0
0 0 0 0 2 1 0 0 −6 2 0 0 2 −1 0 0
0 0 0 0 −1 2 1 0 2 −8 2 0 1 2 −1 0
0 0 0 0 0 −1 2 1 0 2 −8 2 0 1 2 −1
0 0 0 0 0 0 −1 2 0 0 2 −6 0 0 1 2
0 0 0 0 0 0 0 0 2 1 0 0 −5 2 0 0
0 0 0 0 0 0 0 0 −1 2 1 0 2 −6 2 0
0 0 0 0 0 0 0 0 0 −1 2 1 0 2 −6 2
0 0 0 0 0 0 0 0 0 0 −1 2 0 0 2 −3



.

(22)

Transform specification. The 2D orthogonal directional ba-
sis for the domain is generated by computing the eigenvalues
λk and eigenvectors vk of the system matrix A, which is
symmetric and real

Ak = λkvk , k = 1, 2, . . . , N2 . (23)

The eigenvectors of A form an orthogonal basis of the image
over the square block:

VVT = VTV = IN2×N2 (24)

Here, vk is the k-th column of the matrix V, and I is the
N2×N2 identity matrix. The eigen-decomposition of A is
done offline by numerical software and stored for use in the
transform phase.

The eigenvectors are sorted according to the order of the
absolute values of the eigenvalues, with the first (smallest)
eigenvalue corresponding to the lowest spatial ”frequency”

0 = |λ1| < |λ2| ≤ |λ3| ≤ · · · ≤ |λN2 | . (25)

The resulting eigenfunctions are illustrated in Fig. 3 and
Fig. 4. Note how the directional Laplacian operator induces
directional 2D bases with directional preferences.

IV. FORWARD AND INVERSE TRANSFORMS

In this section the forward transformation and the inverse
transformation (reconstruction) are described.

A. Forward directional transform

Given the samples of the image block, an N2×1 vector p is
constructed from the image samples using the same column-
major scanning order used to generate the system matrix A.

The k-th transform coefficient, ck, is obtained as an inner
product of the corresponding eigenvector vk and the vector of
the image samples p:

ck = vTp . (26)
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Fig. 3: Left: The 64 eigen-basis for 8×8 blocks and θ=π/4. The basis functions are ordered according to the magnitude of
the eigenvalues, from the top-left corner by rows. The first vector is a constant (DC). 0.5 was added to the functions for
visualization. Note that each eigenfunction v is either symmetric, vk(i, j) = vk(N−j,N−i), or anti-symmetric, vk(i, j) =
−vk(N−j,N−i). Right: Contour plots of the eigenfunctions. This plot highlights the orientations of the basis functions and
their symmetric or anti-symmetric hills and valleys.

Fig. 4: Left: The 64 eigen-basis for 8×8 blocks and θ=π/8. Right: Contour plots of the eigenfunctions.
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In matrix notation the vector of coefficients c is:

c = VTp , (27)

where the matrix V is an orthonormal directional transforma-
tion from the image domain to the spectral domain.

Since the eigenvectors are sorted, for a directional image
block p we expect ‖Ap‖/‖p‖ to be relatively small, because
it is the application of the directional Laplacian operator to
a directional pattern. Since the first eigenvectors of A span
the subspace of small ‖Au‖/‖u‖, it is expected that the first
coefficients in (27) would be relatively large and the last ones
relatively small. After coefficients quantization, many of the
last coefficients are expected to become zero. Codecs like
HEVC use this property for efficient encoding of the transform
coefficients, e.g. by signaling the last significant coefficient
and signaling coefficient groups of all zero coefficients [29].

B. Inverse directional transform

The inverse transform produces the reconstructed vector
prec, defined as a linear combination of the eigenvectors vk
weighted by the coefficients:

prec =

N2∑
k=1

ckvk = Vc (28)

In matrix notation the reconstructed vector is obtained by the
inverse transformation matrix V applied to the coefficients
vector c. Note that by using (27) and (24), the reconstruction
is exact, since VVT = I:

prec = Vc = VVTp = p . (29)

V. IMPLEMENTATION

A. Implementation in the beyond HEVC codec

After describing the directional Laplacian orthogonal trans-
forms, in this section we describe our implementation. We
evaluated the effectiveness of the transform using the HM-
16.6-KTA-2.0 (referred here as KTA-2.0) [30], with its associ-
ated Common Test Conditions (CTC) video sequences. KTA-
2.0 is an intermediate research version set by ITU-T VCEG
towards a new standard beyond HEVC [6].

We implemented the directional Laplacian transform (ab-
breviated “DirLap”) as an additional transform candidate for
KTA-2.0’s EMT method [15] in the Transform Unit (TU) of
intra blocks. DirLap was evaluated for all blocks up to 32×32
pixels, except blocks with DC or planar intra-prediction, be-
cause these blocks have smaller chances to contain directional
structures. Similarly to the three EMT transform candidates,
DirLap is tested in a rate-distortion sense.

In principle, the encoder can test the encoding of each block
with multiple directional transforms, for a range of angles θ,
and select the best transform. This approach is computationally
very expensive, and adds the overhead of signaling which
transform was selected. Our implementation avoids this by
relying on HEVC’s angular intra-prediction [4]. For each
block, we test at most one directional transform, according
to the selected intra-prediction angle. Hence, there is no need
to send a special signal for the direction of the transform.

The set of transform matrices (for each intra-prediction
direction) are stored both at the encoder and decoder sides,
so there is no need to send the transform matrices with the
encoded bitsteam. The transform matrices are integer matrices,
obtained by rounding each matrix component to 14 bits (in-
cluding a sign bit). This representation was chosen to achieve
small rounding errors in transforms of size 32×32 for 8-bits
videos. For hardware designs, the number of representation
bits could be further reduced for smaller block sizes. For our
software implementation, it was more convenient to use these
14 significant bits numbers inside 16 bits numbers.

The encoder computes the transform coefficients for the
forward DirLap from the residual samples using (27). Both
the encoder and the decoder apply the inverse transform (28)
to compute the reconstructed samples from the quantized
coefficients. On both sides, the same column-major scanning
order is used to convert between N2×1 vectors and N×N
blocks of pixels.

Coefficient scaling, quantization and scanning: The stan-
dard coefficient scaling and quantization scheme used by the
HEVC [31] is also applied in the DirLap case. The same
scaling factors are used for the quantized coefficients to fit
within 16 bits for 8-bits videos. However, the scanning order
of the DirLap coefficients is according to increasing magnitude
of the eigenvalues.

Signaling contexts: HEVC uses Context-Adaptive Binary
Arithmetic Coding (CABAC) to adapt the encoding of cer-
tain bits to their varying probabilities in the video stream.
We added several such contexts to adapt to the occurrence
probabilities of the directional transforms. A new context flag
(EmtDirFlag) is added to the bit-stream for signaling whether
DirLap or another one of KTA-2.0’s three EMT transforms
is used. The flag is included in the bit-stream only when
DirLap is a possible transform candidate, i.e. neither planar
nor DC intra-prediction modes were chosen. As the occurrence
probabilities of DirLap and EMT may be different, we added a
separate context (EmtCuFlagSCModel) to EmtCuFlag, which
signals in KTA-2.0 at the Coding Unit (CU) level whether
EMT is used for Transform Units (TU) of the current CU.
Similarly, we added a separate context (EmtTuIdxSCMode)
to EmtTuIdx, which signals at the TU level which transform
index of the three EMT transform candidates is used. In
addition, separate contexts are added for coefficients coding
(SigCoeffGroupSCModel, SigSCModel, LastX, LastY, and
OneSCModel).

B. Memory requirements reduction

Unlike the DCT, the directional Laplacian is non-separable,
because the directional Laplacian operator contains cross
derivatives for angles other than 0◦ or 90◦. Therefore, a naive
implementation needs to store full transform matrices of size
N2×N2 for N = 4, 8, 16, 32. In KTA-2.0 [6], there are 65
angular intra-prediction directions (numbered d=2, . . . , 66).
This implies that the memory requirement of a naive imple-
mentation is significant. However, the memory requirement
can be significantly reduced to a manageable size by exploiting
the following properties:
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TABLE I: Each intra-prediction mode has a symmetric mode
in the range 2, . . . , 18. We re-use each transform matrix for
this range four times. Mode 18 is horizontal and requires 1D
transform, hence only 16 full transforms need to be stored.

Prediction mode Symmetry Symmetric mode
d = 2, . . . , 18 Original d
d = 19, . . . , 34 Reflection along the horizontal axis 36−d
d = 35, . . . , 50 90◦ rotation d−32
d = 51, . . . , 66 Reflection along the diagonal axis 68−d

1) 1D transform: For the horizontal (d=18) and vertical
(d=50) directions, the transform matrix is built from
1D transforms, applied to each one of the N columns
or N rows. The matrix for d=50 is a rotated version of
the matrix for d=18. Therefore, only N eigenvectors of
size N are stored.

2) Angular symmetries: Each directional transform matrix
can be used to generate the transforms for 3 additional
directions. We can apply a basic symmetry of the square
to the transform matrix, e.g. a reflection along the
horizontal axis, a 90◦ rotation, or a reflection along the
diagonal axis (transpose). The transformed matrix can
then multiply a vectorized image block. Essentially, this
is equivalent to a change in the scanning order of the
pixels in the block being vectorized before multiplying
by the original transform matrix. Hence, only a subset
of 16 out of the 65 matrices needs to be stored for each
block size, as shown in Table I and Fig. 5.

3) Symmetric and anti-symmetric eigenvectors: An eigen-
vector of a directional transform matrix, seen as a
square, is either symmetric, vk(i, j) = vk(N−j,N−i),
or anti-symmetric, vk(i, j) = −vk(N−j,N−i), as
shown in Fig. 3. The symmetry here is with respect
to 180◦ rotation around the center of the N×N block,
i, j = 0, 1, . . . , N − 1. Since one-half (N×N/2) of the
eigenvectors are symmetric, and the other half is anti-
symmetric, only the first one-half entries in the scanning
order of each eigenvector needs to be stored. These
properties were verified for all directions and all sizes
of the integer transform matrices. In addition, 1 bit per
eigenvector is stored to indicate whether it is symmetric
or anti-symmetric.

4) The DC eigenvector: The first eigenvector is a constant
function. Only one value needs to be stored for this
eigenvector.

5) Large blocks: Transforms of large blocks are se-
lected mostly for smooth, low-frequency, blocks. high-
frequency blocks are often split by the quad-tree search
mechanism. To save memory and computation time, we
use only the first 256 vectors for 32×32 blocks.

By employing the properties above, less than 1/8 of the
original memory requirement is needed. Table II summarizes
the total memory requirement for the 16 transform matrices,
from which the transforms of all 65 directions can be gener-
ated.

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

(a)

4 8 12 16
3 7 11 15
2 6 10 14
1 5 9 13

(b)

4 3 2 1
8 7 6 5

12 11 10 9
16 15 14 13

(c)

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

(d)

Fig. 5: To save memory, transformation matrices are re-used
by four symmetric prediction directions. We illustrate above
the four matrices that can be generated from a single matrix for
a 4×4 block. (a) matrix elements in column-major order. (b)
position of the elements after horizontal reflection. (c) position
after a 90◦ rotation. (d) position after reflection along the
diagonal. In the implementation, these four matrices are never
generated. The block that multiplies a matrix is vectorized
according to the desired scanning order. Similar operations
take place for the inverse transform.

TABLE II: Memory requirements for the 16 transform ma-
trices stored by DirLap. All 65 directional transforms can be
generated on-the-fly from 16 transform matrices. If only 256
eigenvectors are stored for 32×32 blocks, the total memory is
5,172 KB.

Block size 256 eigenvectors All eigenvectors
4 4 KB 4 KB
8 64 KB 64 KB

16 1,022 KB 1,022 KB
32 4,082 KB 16,370 KB

Total 5,172 KB 17,460 KB

C. Running time reduction

The computation of the directional transforms is more
expensive than the DCT. Unlike the DCT, our directional
transform is not separable and we don’t have an FFT-type im-
plementation for it. Still, the running time can be significantly
reduced.

For a symmetric eigenvector, the elements of the dot
product with the block are of the form vk(i, j) · B(i, j) +
vk(N−j,N−i) · B(N−j,N−i) = vk(i, j) · [B(i, j) +
B(N−j,N−i)]. For an anti-symmetric eigenvector, the ele-
ments are of the form vk(i, j) · B(i, j) + vk(N−j,N−i) ·
B(N−j,N−i) = vk(i, j) · [B(i, j)−B(N−j,N−i)]. Using
the symmetry or anti-symmetry property of each eigenvector
in the transform matrix, a 50% reduction in the number of
multiplications is obtained.

In addition, the KTA-2.0 implementation contains Single
Instruction Multiple Data (SIMD) instructions. In our imple-
mentation of the directional Laplacian transform, we used
SIMD instructions to execute multiplications in parallel. Two
16 bits numbers are multiplied simultaneously utilizing 32 bits
out of the 128 bits used in SIMD. This gives a further reduction
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Fig. 6: Left: Prediction of 16×16 blocks form the BasketballDrill sequence. Right: Residual 16×16 blocks, contrast-enhanced
for visualization. Note again the linear structures remaining after angular intra-prediction.
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Fig. 7: Mean normalized energy error E(k) of DirLap, 2D-
DCT, KLT, vs. the number of coefficients for 16×16 blocks
of the frame in Fig. 6.

of about a factor of 4 in running time, both for the forward
and inverse transforms.

VI. EVALUATION

A. Effectiveness of the Directional Transform Representation

In this section the effectiveness of the representation of the
directional transform is demonstrated and compared to 2D-
DCT without using the complete HEVC framework. This is
only meant to provide some intuition, as coding gains need to
be measured inside a coding scheme.

For this demonstration we used 16×16 residual blocks of
the image after intra-prediction, shown in Fig. 6, for which the
intra-predictor is angular (neither DC nor planar). We applied
both DirLap, 2D-DCT, and the Karhunen-Loeve Transform
(KLT) to the residual blocks. The DirLap transform is in
the direction of the intra-prediction. The KLT was trained
on the blocks of the residual image itself. To measure the
residual error after the addition of each transform coefficient,
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Fig. 8: Percentage of saving in the number of coefficients
using DirLap compared to 2D-DCT for prescribed error levels
in Fig. 7. For instance, 2D-DCT requires about 25% more
coefficients than DirLap for E(k) = 0.2.

we ordered the 2D-DCT coefficients in diagonal up-right scan
order, DirLap’s coefficients in the order of eigenvalues of
the directional system matrices, and KLT’s coefficients in the
order of eigenvalues of the empirical covariance matrix of the
image blocks. Denote by rj(k) the residual error at pixel j
of some image block after the inverse transform with the first
k=1, 2, . . . , 162 coefficients from the coefficients vector c. We
can measure the effectiveness of each representation using a
normalized energy error:

E(k) = 1−
∑N2

j=1 r
2
j (k)∑N2

j=1 r
2
j (N

2)
= 1−

∑k
i=1 c

2
i∑N2

i=1 c
2
i

. (30)

Fig. 7 illustrates the rate of reduction of E(k) as a function
of k for the frame shown in Fig. 6. The wiggles in the 2D-DCT
graph are a result of the diagonal scan, that walks between
coefficients of horizontally-oriented and vertically-oriented
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basis functions. The residual image has some directional bias
that did not average out with the averaging of the blocks.

Clearly, DirLap requires less coefficients than 2D-DCT for
the same representation error, as quantified in Fig. 8. DirLap is
actually more efficient than KLT in the left portion of Fig. 7.
This is possible because DirLap uses multiple transforms, one
for each prediction direction, in contrast to one global KLT in
this comparison.

B. Coding results

We compared the coding performance of our implementa-
tion to the KTA-2.0 reference implementation on the Common
Test Conditions (CTC) sequences [25]. The results are sum-
merized in Table III. The standard Bjøntegaard Delta-Rate
(BD-Rate) metric [32] is used for comparison. The DirLap
results in 0.8%, 0.7%, 0.4% and 0.4% average coding gain
on top of the KTA-2.0 reference, for All Intra (AI), Random
Access (RA), Low Delay B (LDB), and Low Delay P (LDP)
video profiles. Interestingly, for class F (screen content) the
gain due to the introduction of the directional transforms is
higher, between 0.8% and 1.4%.

Relative to the reference code, DirLap’s average encoding
and decoding times are 128% and 110% for AI, 107% and
105% for RA, 106% and 102% for LDB, and 109% and
108% for LDP. At the encoder’s side, most of the increase in
running time may be attributed to the RDOQ process, that each
one of the transform candidates undergoes before selecting the
optimal transform.

We measured the percentage of DirLap running time out
of the total encoding time. DirLap’s forward and inverse
transforms are comparable to the most time consuming EMT
transform (DST7). For example, in AI encoding of one frame
of the sequence PartyScene using QP 22, DirLap spends 0.9%
of the encoder’s time in the forward transform, and 0.9%
in the inverse transform, while DST7 takes 0.7% and 1.1%
for forward and inverse transforms, respectively (here the
summation is over all transform sizes, e.g. the 0.7% consists
of 0.3%, 0.3% and 0.1% for DST7 of block sizes 16, 8 and 4).

VII. CONCLUSION

This work introduces new directional transforms which are
orthogonal bases for square blocks. The directional transforms
are applicable for efficient representation of image data with
directional patterns, as may be found in the residual of angular
intra-prediction.

Historically, the 1D-DCT was derived as the eigenvectors
of two different matrices. The first approach, by Ahmed,
Natarajan and Rao [1] [2], approximates the KLT for sta-
tionary Markovian signals whose covariance matrix models
exponential decaying covariance with the distance between
points in 1D. It may be possible to derive 2D directional bases
by modeling the covariance matrix of directional patterns,
though we don’t expect a clean analytical solution as the 1D-
DCT.

The second approach by Strang [3] showed that 1D-DCT
vectors are the eigenvectors of a second difference matrix
that applies the discrete Laplacian operator. We followed

TABLE III: Coding performance of DirLap over HM-16.6-
KTA-2.0 reference for AI, RA, LDB and LDP on the standard
CTC sequences. Empty cells are not required by the CTC
standard. Negative numbers indicates coding gain, and Y
is the channel of interest. Video dimensions are: Class A:
2560×1600, Class B: 1920×1080, Class C: 832×480, Class
D: 416×240, Class E: 1280×720.

Compression profile Videos class Y U V
All Intra Main Class A -0.5% -0.4% -0.5%

Class B -0.8% -0.4% -0.4%
Class C -1.1% -0.4% -0.5%
Class D -0.7% -0.2% -0.1%
Class E -1.0% -0.2% -0.1%
Overall mean -0.8% -0.3% -0.4%
Class F -1.4% -0.7% -0.8%
Encoding Time[%] 128%
Decoding Time[%] 110%

Random Access Main Class A -0.4% 0.3% 0.4%
Class B -0.7% 0.1% -0.2%
Class C -0.9% -0.3% -0.4%
Class D -0.6% 0.2% -0.1%
Class E
Overall mean -0.7% 0.1% -0.1%
Class F -1.4% -0.7% -0.6%
Encoding Time[%] 107%
Decoding Time[%] 105%

Low delay P Main Class A
Class B -0.4% 0.1% 0.0%
Class C -0.4% 0.1% 0.1%
Class D -0.2% -1.0% -0.1%
Class E -0.6% -0.5% -0.8%
Overall mean -0.4% -0.3% -0.2%
Class F -0.9% -0.6% -0.1%
Encoding Time[%] 109%
Decoding Time[%] 108%

Low delay B Main Class A
Class B -0.4% 0.0% 0.0%
Class C -0.4% -0.7% -0.2%
Class D -0.2% -0.2% -0.5%
Class E -0.6% -1.0% 0.1%
Overall mean -0.4% -0.4% -0.1%
Class F -0.8% -0.4% 0.0%
Encoding Time[%] 106%
Decoding Time[%] 102%

this approach to obtain the directional Laplacian basis from
the eigenvectors of the directional Laplacian operator. This
operator is an analog of the 1D Laplacian (or second derivative
operator) in a rotated system of coordinates [26]. We provided
a discretization of the directional Laplacian operator and
examined the resulting eigenvectors.

Although we focused on the 2D case, the scheme could be
generalized to higher dimensions, e.g. to deal with volumetric
data, by discretization of (13) and eigen-decomposition of
the resulting system matrix. Depending on the application,
one could also consider the Laplacian over a linear subspace,
e.g. a slanted plane instead of a 1D direction, by summing a
subset from the diagonal elements of the rotated Hessian (12).
However, a higher dimensional implementation would be
computationally heavy due to larger bases.

In our implementation, both the memory and running time
of a naive implementation of the directional Laplacian trans-
form were significantly reduced. Memory was reduced using
symmetries in the transform directions, and symmetry or anti-
symmetry in the eigenvectors. Running time was reduced using
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symmetry or anti-symmetry of the eigenvectors, as well as
SIMD instructions.

We implemented the directional Laplacian transform as an
additional transform inside KTA-2.0, that already includes
multiple transforms (EMT [15]) and secondary transforms
(ROT [16]) extensions to HEVC. We measured the coding
gain on the CTC sequences [25]. For the all-intra class, an
average BD-gain of 0.8% was achieved on top of KTA-2.0.
To put our gains into perspective, according to Sullivan ( [33]
page 10) most tools in JEM1.0 contribute less than 1%. The
exploding demand for video streaming makes every 1% of
coding gain in video compression economically significant.
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