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Abstract—We present an extension for HEVC intra-frame
coding with trapezoidal splits and orthogonal transforms. A block
can be split into two 180-degrees rotationally-symmetric (C2)
trapezoidal parts, each coded separately using standard DCT
implementation. We also introduce part-to-part prediction from
a diagonal edge. The optimal trapezoidal split of a quad tree
block is selected in a rate-distortion sense. We achieved 0.8%
reduction in BD-rate over HEVC in standard test conditions for
intra coding.

I. INTRODUCTION

State-of-the-art video compression standards, such as
HEVC [1], use square or rectangular blocks as coding tree
units. This design allows for hierarchical quadtree partitioning
structure that can adapt to the content of the image, and it
combines well with 2D separable transforms such as 2D-
DCT [2]. However, axis-aligned splits may be suboptimal for
representing all natural images. For example, object occlusion
may create image blocks where a diagonal edge separates two
regions with very different content. In such cases, it could
be more efficient to represent the two parts with two sets
of transform coefficients, and it could be more efficient to
perform intra-prediction along the diagonal edge.

Diagonal splits create trapezoid-like shapes for which the
2D-DCT cannot be applied. In [3], a transform in the spirit
of Shape Adaptive DCT (SA-DCT [4]) was developed to
represent trapezoidal blocks. The idea is to perform two passes
of 1D-DCT, along diagonals and rows. However, the basis
vectors in this transform, as in SA-DCT, are not orthogonal in
2D, hence it is less efficient compared to orthogonal transforms
such as the 2D-DCT.

A new orthogonal transform for trapezoidal shapes was
developed in [5] where the authors suggested to use a seg-
mentation algorithm to decompose images to trapezoidal,
rectangular and triangular blocks, according to the shapes
of objects. That approach achieved better compression than
JPEG.

In this paper, following the idea in [5], we suggest an
alternative option to encode a rectangular block [6] [7] [8]. We
select the best split, among a predefined set of splits, to encode
a given rectangular block by two 180-degree rotationally-
symmetric parts. Since this transform is based on rotational
symmetry of order 2, from here on we will abbreviate this
transform as ”C2”.
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A
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B

(a)

I0,0 I0,1 I0,2 I3,0

I1,0 I1,1 I2,1 I2,0

I2,0 I2,1 I1,1 I1,0

I3,0 I0,2 I0,1 I0,0

(b)

c0,0 0 c0,2 0

0 c1,1 0 c1,3

c2,0 0 c2,2 0

0 c3,1 0 c3,3

(c)

Fig. 1: The C2 transform. (a) A square is split to two
rotationally-symmetric trapezoidal parts. (b) To perform the
C2 transform of part A, 2D mirroring is preformed by rotating
part A and overlaying it on part B. (c) The C2 transform is
the DCT transform of the entire square (b). Note that half of
the coefficients are always 0. The C2 transform of part B is
computed similarly.

We present a complete integration of the C2 transform
into the workflow of the HEVC standard. Our focus is on
compressing intra-frames or still images. We integrated the
C2 transfrom into the systematic search phase of HEVC. In
the modified search, a block of a quad tree is tested also for
an alternative coding as two C2 parts.

We also adapted the intra-prediction to allow part-to-part
prediction from diagonal edges as opposed to the horizontal
and vertical edges in standrad HEVC. RDOQ [9] and coef-
ficients scanning mechanisms were also adapted to the C2
transform.

Our work is along a recent active research line on multiple
transforms [10]. In contrast to previous work, our transform
uses the standard DCT and can be implemented efficiently
with existing DCT algorithms.
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Fig. 2: A system to encode/decode rectangular blocks using C2 transform.

Fig. 3: The predefined subset of C2 cuts for 8⇥8 blocks. Each
cut is obtained by shifting its endpoints clock-wise one pixel.
For an N⇥N block, there are 2N�2 such cuts.

II. THE C2 TRANSFORM

The C2 transform is an orthogonal DCT expansion of
trapezoidal blocks, as explained in Fig. 1. The transform is
applied to trapezoidal shapes whose 180

� rotation about the
center point of the block equals their complement shape in the
block (square or rectangle). A full encoding/decoding scheme
for rectangular blocks using C2 transform is shown in Fig. 2.

In the rest of the paper, we will refer to the rotationally-
symmetric staircase line between the parts as a ”cut”. Note that
the number of such possible cuts can be quite large. Therefore,
in this work, for an N⇥N block we consider only a subset
of 2N�2 cuts, as shown in Fig. 3 for an 8⇥8 block.

The C2 transform is obtained by rotating 180

� each part
about the center of the block and performing the 2D-DCT. It
was proven in [5] that the DCT of a rotationally-symmetric
image has zeros in positions (i, j) where i + j is odd.
Furthermore, the restriction of the DCT basis functions with
even i+j to the domain of part A forms an orthogonal basis for
that part [5]. In order to get an orthonormal basis we multiply
the basis functions by

p
2.

Since the C2 transform is derived from 2D-DCT, it has

several appealing properties. First, it is an orthogonal trans-
form. Second, it admits a computationally fast transform with
existing algorithms. Third, it is a separable transform, a useful
property to represent axis-aligned structures that are common
in images.

In the appendix we derive some mathematical properties of
the C2 transform that were not explained in [5].

III. IMPLEMENTATION

In this section we describe in more detail our integration of
the C2 transform into the HM-13 test model [11]. We applied
the C2 transform only to luma blocks. N⇥N leaf blocks in
the quadtree structure, where N=4, 8, 16, may be coded either
by the standard DCT or by the C2 transform. The choice is
signaled in the bitstream with a new C2Flag. For 4⇥4 blocks
we examine only 2 possible cuts, parallel and orthogonal to the
intra-prediction direction, since for 4⇥4 blocks the overhead
in signaling the cut index is significant. For 8⇥8 and 16⇥16

blocks, the search for C2 cuts is over a fixed set of 14 and
30 (2N�2) possible cuts of the block, respectively. The cut
index is coded with a single bit to signal whether the cut
is closer to the intra-prediction direction or the orthogonal
direction, and the difference from that reference direction is
coded by truncated unary and exp-Golomb [12]. Our coding
implementation uses additional contexts. For example, there
are contexts for the coded block flags (CBF) for parts A and
B. The contexts of the C2Flag and CBF are neighborhood-
dependent. Different sets of contexts are used depending on
the existence of C2 transforms in neighboring prediction units
(PU). The best encoding in rate-distortion sense is selected.

In addition to the transform, we made several adaptations
to other parts of the codec.

A. Intra-Prediction Directions Selection

In the standard flow of HEVC, a subset of k directions
out of 35, where k depends on the block size, is chosen for
evaluation in each Prediction Unit (PU). For each prediction



direction out of the 35, the residual is formed by subtracting
the prediction in that direction from the image. The cost of
the block in HEVC is estimated as:

costHEVC(prediction direction) =

� · cost(prediction direction,MPM) + SATD ,

(1)

where the first term is an estimation of coding cost of the
prediction mode with respect to the Most Probable Mode
(MPM), and SATD is the sum of absolute difference values of
the Hadamard transform, used to estimate the cost of the DCT.
The lowest k values are maintained for further examination.

Since the HEVC candidate prediction directions selected for
DCT are sub-optimal for the C2 transform, we create another
list, with k prediction directions, and merge it with the list of
k directions selected by the HEVC standard. The idea here is
to pick prediction directions s.t. at least one of the parts (A
or B) of the residual is as smooth as possible. We measure
smoothness simply by checking the maximal derivative of the
residual in absolute value over all possible cuts.

costC2(prediction direction) =

min

all C2 cuts

✓
� · cost(prediction direction,MPM)+

min

⇣
max

part A

�
|dx|, |dy|

�
,max

part B

�
|dx|, |dy|

�⌘◆
.

(2)

The procedure above is applied unless the maximal absolute
derivative in the residual block is smaller than some threshold.
In such case the entire residual block is smooth, and no C2
cuts are examined to save computations. Our experience with
this procedure is that it is more effective than simply enlarging
the candidates list with the HEVC’s procedure.

We turned off the HHI_RQT_INTRA_SPEEDUP flag in
our experiments both in the reference and C2 test code. This
turns off an optional speed optimization that does not pick the
best prediction directions for C2, so we can demonstrate the
potential of C2 without optimization shortcuts.

B. Intra-Prediction from Part to Part

Angular prediction [13] is a key contributor to the success of
HEVC. The goal of angular prediction is to carry information
from blocks already coded to the next block to be coded.
Unlike [3], our implementation performs prediction between
parts with a diagonal edge. After the first part is reconstructed,
we back-project the pixels along the cut onto the block
boundary, and re-use the standard angular prediction for the
second part, as illustrated in Fig. 4. Both parts (A and B)
share a single prediction direction. The prediction direction
determines which part (A or B) is predicted first, and whether
the projection is from the top or left boundary.

C. Coefficients Packing and Scanning

In HEVC the transform coefficients are scanned into a vec-
tor. In C2 transform, only coefficients c

i,j

with even i+ j are
nonzero. To avoid transmitting zeros, we pack the coefficients
by moving c

i,j

to position c
i,bj/2c. The coefficients scanning

orders follow the standard, except that we skip the fixed zero

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Encoding of a C2 block with prediction from part
to part. (a) The left boundary is projected onto the top
boundary. (b) Angular prediction to part A. (c) Part A after C2
transform, quantization, inverse quantization and inverse C2
transform. (d) Cut boundary pixels are back-projected onto
the top boundary. (e) Angular projection to part B. (f) Part
B after C2 transform, quantization, inverse quantization and
inverse C2 transform.

coefficients (in 4⇥4 blocks) and fixed zero coding-groups (in
8⇥8 and 16⇥16 blocks).

IV. RESULTS

We evaluated our system on the entire standard Common
Test Conditions (CTC) benchmark [14]. The results are shown
in Table I. The average BD-rate [15] reduction over HEVC is
0.8%. Note especially the reduction of 4.3% in Class F that
contains screen content images with sharp edges.

Fig. 5 shows a section of the Transform Unit (TU) tree
for the first frame of the CTC sequence ”BasketballDrill”,
produced by our system. The magenta lines show TUs with
C2 transform and their C2 cuts. In this frame 12.7% of the
pixels were coded by the C2 transform.

We did not optimize the running time beyond skipping
the C2 transform for very smooth blocks. The running time
can be reduced in several ways. For example, C2 transforms
of consecutive cuts can be computed by updating, since the
difference in the C2 transform of the next cut depends only on
about N pixels that enter or leave part A. Also, the running
time can be greatly reduced by not evaluating all C2 cuts,
especially for the larger block sizes.

V. CONCLUSION

In this paper we investigated the integration of the C2
transform into HEVC. We presented several contributions.
First, the method can encode a quad tree block as two
180-degree rotationally-symmetric (C2) trapezoids. Second,



Fig. 5: A TU quadtree. In red: the coded quadtree structure.
In magenta: C2 cuts for coded C2 blocks. Often C2 splits
blocks into smooth and detailed parts.

All Intra Main Y U V

Class A -0.3% 0.1% -0.1%
Class B -0.5% 0.5% 0.4%
Class C -1.3% 0.4% 0.4%
Class D -1.4% 0.2% 0.2%
Class E -0.5% 0.3% 0.3%

Overall -0.8% 0.3% 0.3%

Class F -4.3% -2.0% -2.0%

Enc Time[%] 530%
Dec Time[%] 97%

TABLE I: HEVC vs. HEVC+C2 on CTC benchmark.

it utilizes existing optimized DCT implementations (no need
for additional transform hardware). Third, a block is encoded
more efficiently when the rate-distortion optimization function
selects the best C2 cut among a predefined set of block parti-
tions. Fourth, we introduced part-to-part intra prediction from
a diagonal edge (C2 cut) in addition to the intra prediction
of HEVC from the vertical and horizontal edges. Fifth, in
the appendix we presented a mathematical analysis describing
the connections between the C2 coefficients of trapezoidal
blocks and the DCT coefficients of their bounding square
block. We also presented several implementation adaptations
and performed the HEVC CTC evaluation.

While enlarging the set of the C2 cuts contribute to the
coding gain, we found that the overhead of signaling the
cut index can be significant. We address this issue by using
neighborhood-adaptive contexts and restricting the number
of cuts for 4⇥4 blocks. Overall we obtained 0.8% average
reduction in BD-rate over standard HEVC.

VI. APPENDIX: THE CONNECTION BETWEEN
DCT AND C2 COEFFICIENTS

In this appendix we derive mathematical properties of the
C2 transform that explain how C2 coefficients relate to DCT
coefficients. We use the following notation: Let P be some
N⇥N patch, P

A

and P
B

are the C2 parts of P defined
by some cut. p,pA ,pB are vectorizations of the pixels of
P,P

A

,P
B

by a column-wise scanning order, v
even

, v
odd

are
N⇥N/2 coefficient vectors of the DCT transform of P that
correspond to DCT bases functions b

i,j

with i + j even or
odd, where i, j = 0, . . . , N�1. cA , cB are N⇥N/2 vectors
of the C2 coefficients of P

A

and P
B

.

Observation 1.

v
even

= (cA + cB )/

p
2 (3)

Proof. Consider any single DCT basis vector b
ij

, where i+ j

is even. Denote by b
ijA

and b
ijB

the components of b
ij

on
the domain of the pixels of P

A

and P
B

. The corresponding
DCT coefficient is bt

ij

·p = (bt

ijA

·pA +bt

ijB

·pB )/

p
2. Thep

2 factor arises because the bt

ijA

and bt

ijB

needs to be scaled
compared to bt

ij

to become unit norm basis functions for P
A

and P
B

[5]. However, bt

ijA

·pA and bt

ijB

·pB are exactly the
C2 coefficient for P

A

and P
B

.

Observation 1 relates the even DCT coefficients of an
N⇥N patch to the C2 coefficients of parts A and B in case
there is no prediction between these parts. In that case, it
is possible to speed up the computation of all C2 cuts, by
computing v

even

once, cA for all other cuts, and deriving
cB without a transform. However, in our implementation, we
used prediction from part A to part B. Since this prediction is
a non-linear operation (uses reconstructed samples of part A)
we cannot use this observation to speed up performance.

Observation 2. For any C2 cut s, there exists an orthogonal
matrix M

s

s.t.

cA = (v
even

+M
s

· v
odd

)/

p
2

cB = (v
even

�M
s

· v
odd

)/

p
2

(4)

Proof. Let B
even

be a matrix whose columns are the DCT
basis vectors b

ij

with even i + j, and B
odd

a similar matrix
with odd i + j. A vectorized patch p can be represented as
p = B

even

· v
even

+B
odd

· v
odd

, where v
even

, v
odd

are the
corresponding DCT coefficients. A restriction to the domain
of the pixels of P

A

gives pA = (B
evenA

· v
even

+ B
oddA

·
v
odd

)/

p
2, where B

evenA

and B
oddA

are obtained from B
even

and B
odd

by removing the rows that correspond to pixels of
P

B

, and multiplying by
p
2 to get unit norm basis vectors.

The C2 transform of P
A

is obtained by applying the matrix
Bt

evenA

cA = (Bt

evenA

B
evenA

v
even

+Bt

evenA

B
oddA

v
odd

)/

p
2

= (v
even

+ (Bt

evenA

B
oddA

)v
odd

)/

p
2

= (v
even

+M
s

· v
odd

)/

p
2 ,

M
s

= Bt

evenA

B
oddA

. (5)



Fig. 6: The matrices M
s

for the 14 possible cuts of 8⇥8

patches with same cuts order of Fig. 3. Bright pixels are strong
positive values while dark pixels are strong negative values. In
the first 7 cuts, the energy of an odd coefficient is distributed
mainly into its upper an lower neighbors. In the last 7 cuts,
the energy is distributed mainly to its left and right neighbors.

The columns of M
s

in (5) are nothing but the C2 transform
of the odd-index DCT basis functions. M

s

is orthogonal since

Mt

s

M
s

=Bt

oddA

B
evenA

Bt

evenA

B
oddA

=Bt

oddA

B
oddA

= I .

From observation 1 we get

cB=

p
2v

even

� cA=

p
2v

even

� (v
even

+M
s

· v
odd

)/

p
2

=(v
even

�M
s

· v
odd

)/

p
2 .

Observation 2 implies that the C2 coefficients are generated
by linearly transforming the odd-index DCT coefficients of the
N⇥N patch, and adding to the even-index coefficients. The
C2 transform essentially redistributes the energy of the odd
coefficients over the even coefficients. The matrices M

s

gov-
ern the way by which this redistribution occurs. Fig. 6 displays
the matrices M

s

for N=8. It can be observed that significant
parts of the energy are spread along the main diagonal and two
principle diagonals. These diagonals correspond to spreading
the energy of an odd coefficient to nearby even coefficients
on the same row or the same column of the two-dimensional
ordering of the DCT bases.

With observations 1 and 2 at hand, we can now analyze
an ideal C2 case. Assume a block as shown in Fig. 7 where
after DC prediction the residual of part A is zero and of
part B is arbitrary (not constant). The N⇥N DCT may
have N

2 coefficients, whereas the C2 may have N⇥N/2

coefficients. However, by observation 1, cA = 0, and hence
cB =

p
2v

even

. Therefore, each C2 coefficient in cB is
p
2

larger than the v
even

coefficients. When this overhead is much

part
A

part
B

Fig. 7: An ideal case for C2. The C2 cut separates this block
into a uniform part (A) and a non-uniform part (B).

smaller than the N⇥N/2 coefficients of v
odd

, the C2 encoding
is more efficient than DCT encoding of the N⇥N block.
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