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Abstract—Deep Q learning (DQN) has enabled robot agents
to accomplish vision based tasks that seemed out of reach.
Despite recent success stories, there are still several sources
of computational complexity that challenge the performance of
DQN. We place the focus on vision manipulation tasks, where the
correct action selection is often predicated on a small number
of pixels. We observe that in some of these tasks DQN does
not converge to the optimal Q function, and their values do not
separate well optimal and suboptimal actions. In consequence,
the policies obtained with DQN tend to be brittle and manifest
a low success rate, especially in long horizon tasks. In this
work we show the benefits of Reward Machines (RMs) for Deep
Q learning (DQRM) in vision based robot manipulation tasks.
Reward machines decompose the task at an abstract level, inform
the agent about their current stage along task completion, and
guide them via dense rewards. We show that RMs help DQN
learn the optimal Q values in each abstract state. Their policies
are more robust, manifest higher success rate, and are learned
with fewer training steps compared with DQN. The benefits of
RMs are more evident in long-horizon tasks, where we show that
DQRM is able to learn good-quality policies with six times times
fewer training steps than DQN, even when this is equipped with
dense reward shaping.

I. INTRODUCTION

Deep reinforcement learning (RL), and in particular DQN,
has succeeded across different domains (e.g, Atari games from
pixels [1], board games [2], and robot control from pixels [3]).
In this work we evidence a limitation of standard DQN in the
context of vision based robotic manipulation tasks expressed
in a necessity of having to solve two related subproblems: 1)
learning useful latent state features, and 2) learning a policy
that is conditioned on such features. DQN solves the two
subproblems at once, while we show value in decoupling
them. Intuitively, some of these latent features describe state
properties at an abstract level and may be indicative of the
current stage of a task. This collection of features defines an
abstract state, a notion that can be exploited to decompose
long-horizon tasks into simpler subtasks. Abstract states are
an additional supervision signal that complement commonly-
used reward signals in RL. Our main insight in this paper is
in revealing how crucial an explicit notion of abstract states
can really be. Even in some very simple tasks, DQN fails to
learn good-quality policies unless abstract states are provided.
This phenomenon occurs even when the information encoded
in abstract states is already available within state observations.

We address the subproblems above (developing useful state
features & learning a policy conditioned on such features) with
a hybrid approach to RL, where the agent has access to a set
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Fig. 1: Reward machines can be leveraged to produce useful policy features,
define tasks, and create reward functions. a) Reward machines are used to
compute the current abstract state id from a set of feature detectors. This
abstract state id can be directly input into a policy as an extra source of
information. b) Tasks are accomplished by moving from a starting abstract
state id to a goal abstract state id, and multiple paths can exist. ¢) The reward
machine can smooth out a sparse task reward by densifying the reward signal
as the policy transitions between abstract states. The agent is rewarded for
moving towards the goal abstract state and penalized for moving away.

of feature detectors. These features enable the agent to track
it’s current abstract state, and policies need be conditioned
on fewer latent features of the low-level state and are easier
to learn. Then, we construct dense reward functions that
facilitate learning sub-policies conditioned on abstract states.
Our approach makes use of reward machines, a mathematical
structure that provides a principled mechanism to drive the
agent along different abstract states, and equips them with
a dense reward structure that guides exploration toward task
completion. We show how to construct a reward machine from
demonstrations, in a way that centers Q-Values around zero—
which is beneficial to deep learning methods. We refer to this
approach of augmenting a DQN with a reward machine as
DQRM.

Our experiments evidence the limits of standard DQN,
which was unable to learn good-quality policies even in very
simple vision-based robotics tasks. Reward machines help
overcome such limitations by providing supervision signals
from abstract states and reward shaping. Abstract states alone



can be effectively exploited by DQN to improve on sample
efficiency and policy quality, but it is in the combination
of using abstract states and rewards together that DQRM
manifests a substantially improved performance.

The main contributions of this work are 1) A novel DQRM
implementation specific to vision based robotic manipulation
tasks. 2) An investigation of a surprising failure of vanilla
DQN on vision based robotics tasks (difficulty inferring an
appropriate next action when it is indicated by a small number
of pixels) and demonstrate how DQRM handles this failure
case. 3) A seres of blations on a variety of vision based robot
manipulation tasks.

II. RELATED WORK

Task Decomposition in RL reduces tasks into subtasks that
an agent can efficiently learn independently and in parallel—
[4]. Hierarchical RL (HRL) is one such framework that
decomposes planning and control into high-level and low-
level policies. Recent options-based methods [5] learn options
from reference data [6], [7] through interactions with the
environment [8], [9]. Designing good options still requires
manual engineering, and is hard to scale with task complexity.

State Abstractions are used to reduce the search space in
MDPs, by aggregating states that share certain properties. A
number of techniques exist to compute MDP abstractions [10],
[11]—e.g., bi-simulations [12]—, with trade-offs between state
compression and RL performance [13]. In this work, we are
not concerned with planning in the abstract state. Rather, we
augment state observations with abstract states as a useful extra
supervision signal for deep RL.

Reward Machine (RM) decompose tasks into finite-state
machines that encode reward functions for MDPs [14]. An
RM is characterized by a set of internal abstract states forming
a graph, which the agent navigates through different modes
of operation. Abstract state transitions indicate different sub-
policies, each associated with an individual reward function.
The graph structure of RMs can be exploited toward more
sample-efficient RL [14]-[16]. The abstract states of an RM
do not need to directly correlated with the progression of
one specific task. This property makes them practical for real
robots, where various simple hardware signals can be used
as features—e.g., end effector states, gripper opening, suction
flow readings, proximity sensor readings, joint encoders, etc.

RL for Vision-Based Manipulation policies that map
pixels to actions have shown promise for of tasks including
grasping [3], [17]-[20], stacking [21], pushing [22], tossing
[23], and even a Rubik’s cube [24]. Many of these vision-
based RL systems leverage handcrafted features beyond pure
rgb observations. For example, the gripper height and status
[3], a hash of the current state [25], and a CNN prediction
of the current pose and state of the cube [24]. Beyond
just incorporating additional features into the observation,
we demonstrate RMs as a principled and effective means
to leverage additional state features to improve the learning
efficiency of RL for manipulation tasks.

III. BACKGROUND

Consider a Markov decision process (MDP): at any given
state s; € S at time ¢, the agent (robot) chooses and executes
an action a; € A according to a policy 7(s¢), then transitions
to a new state s;y1 according to a transition probability
Pr(s;,a;) and receives a reward r(s;,at,si+1) € R. The
goal of our reinforcement learning (RL) problem is to find an
optimal policy 7* that maximizes the expected ~-discounted
sum of future rewards E.Xv'r (s, at, S¢41)-

In this work, we investigate off-policy deep Q-learning [1]
to train a greedy policy m(s;) that chooses actions by maximiz-
ing a parameterized Q-function arg max, 4 Qo(s¢, a) which
measures the expected reward of taking action a in state si,
where 6 denotes the weights of a neural network (architecture
described in Sec. V). Formally, at each training iteration ¢, our
learning objective is to minimize:

L; =Qo,(5t,at) — yil

Y = 1(st; ae, se41) +7Qo, (St41, argeriax Qo, (8t+1, at+1))
a
where transitions (s, as, r¢, S¢+1) are uniformly sampled from
a replay buffer. Our exploration strategy is e-greedy, with € =
0.1. Our MDPs include a set of terminating goal states g €
G C S for which Q(g,a) = 0.

A Reward Machine (RM) is a decision process with a set of
abstract states U: at a given uy; € U, the RM receives a truth
assignment oy (a set of propositions that hold true in s;, which
can be expressed as a binary vector), then moves to the next
abstract state u; 11 = 6(uy, o) according to the state-transition
function 9, and outputs a reward function. In this paper, we
only consider reward functions of the type p(us, ui11)

When paired with an MDP, the RM uses a labeling function
L: S — 247 to map from states to truth assignments o; =
L(st). At a given RM state u,, if the agent executes action
a; to transition from state s; to sy;; in the MDP, then the
RM transitions to state w41 = d(us, F(S¢+1)), and the agent
receives a reward (8¢, at, S¢1) where r = p(ug, ugi1).

Note that the RM may exhibit a different graph structure
than the MDP, depending on the labeling function and truth
assignments—multiple MDP states s can map to a single
RM state u, or the agent can transition to s in different RM
states. As shown in Deep Q-learning with RMs (DQRM) [14],
these redundancies can be exploited to improve the sample
efficiency of off-policy Q-learning. Specifically, DQRM learns
one subpolicy per state in the RM, where each RM transition is
a simpler subtask. Transitions sampled from the replay buffer
are then redistributed across subpolicies trained in parallel.
This form of task decomposition is guaranteed to converge
to optimal policies, and has been shown to learn faster and
achieve better performance than the Hierarchical RL options
framework [5]. The benefits of DQRMs are most apparent for
non-Markovian tasks. In this work, we show that RMs can
also be useful for task decomposition in Markovian tasks, and
that they have additional benefits beyond task decomposition.



IV. REWARD MACHINES FROM DEMONSTRATIONS

We address the problem of constructing RMs for an MDP
with goal states, and present a method to construct RMs from
demonstrations that encourage a DQRM agent to achieve such
goals. Our method complements recent work, which construct
RMs by hand or from a high-level logical specification of
the intended behavior of the agent [14], [15]. Demonstrations
are sequences of states s, S1, ..., S, that show how a certain
task—e.g., stacking a tower of blocks—can be completed,
ending in one of the goal states. Demonstrations can be often
acquired with a minimal technical knowledge, compared to
constructing RMs by hand or designing logical specifications.

We construct an RM in two stages. First, we construct
an abstract planning graph by mapping demonstrations into
sequences of abstract states. In a second stage, we equip such
graph with a reward function to obtain a RM. We introduce the
necessary concepts below. The first thing we need is a set of
feature detectors, that map state observations s into the subset
of propositions ¢ € 247 that hold in s. Each proposition
in AP represents a boolean state property—e.g., whether the
end effector is holding an object. We presume those features
detectors are given. With them, we define the labeling function
L that we need to communicate with the RM. In the following,
we say that o = L(s) is the abstraction of state s in AP by L.
We further presume that the set of features are rich enough to
discriminate between goal and non-goal states—i.e., goal and
non-goal states must be mapped into different abstract states.

Stage 1: Constructing an abstract planning graph.
The abstract demonstration associated to a demonstration
S0,51,---,5n 18 a sequence o0g,071,...,0,, Where o; is the
abstraction of s; into AP by L, for each i € {1,...,n}.
A set of demonstrations defines the abstract planning graph
(V, E). The set of nodes, V, is the set of abstract states o
that appear in the abstract demonstrations. The set of directed
edges, F, connect o with ¢’ if, and only if, o and ¢’ are
two consecutive abstract states in some abstract demonstration.
This construction presumes that the task is Markovian. In
the general case, our methods could be used in conjunction
with existing methods that construct graph-like structures that
capture non-Markovian behavior (e.g., [26], [27]).

Stage 2: Constructing a RM. The planning graph gives
us almost all the ingredients to construct a RM with elements
(U, ug, %, 6, p). Intuitively, the dynamics of the RM are an
abstraction the MDP through L. The states in the RM are
in one-to-one correspondence with the elements returned by
the labeling function L. That is, each RM state u, € U is in
correspondence with an abstract state o € 24, For simplicity,
we confuse RM states and observations and write u, = o. The
initial state of the RM is the abstraction of the initial state sg
of the MDP, i.e., ug = L(sp). Recall that the dynamics of a
RM updates their state along with the new state observation,
u’ = §(u, L(s')). Therefore, the input alphabet in our RM is
the set of values that L can take, i.e., 24 and the transition
function maps observations into abstract states in a trivial way:
d(tg,0") = ugs. It remains to define the RM reward function

p(u, u') that enforces the agent to reach goal states. There are
many ways of designing such a reward function. A naive way
of doing it is with a function p*P*"*®(u,u') = 1g4q (') that
evaluates to 1 if v/ is a goal, and zero otherwise. This is not a
good idea, because rewards may be very sparse. The challenge
becomes designing a non-sparse reward function that guides
the RL agent. We note that via potential-based reward shaping,
we obtain a family of denser reward functions that induce the
same behavior as the naive reward function p*P*"*¢, which are:

p(u,u') = yPot(u") — Pot(u), where u' = §(u, L(s)).

Here, Pot : U — R can be any potential function that takes
bounded values and that satisfies the following two conditions:
(1) the potentials in goal states are constant; and (ii) the
potentials in goal states are positive.

A. Potentials for Zero-Valued Q Function

In our work we use the potential function Pot*(u) :=
vd“t(“) that evaluates to 1 in goal states, and vanishes ex-
ponentially with their distance to the goal—here, dist(u) is
the minimal distance from u to a goal state in the abstract
planning graph, and +y is the discount factor of the MDP.

Pot* (U) — ,Ydist(u)
p*(u,u') := yPot* (u") — Pot*(u)

The RM reward function p;, has a good property: it takes
negative values when the agent is “moving away from the
goal” in the RM graph, slightly less negative values when
the agent “loops” into RM states, and evaluates to exactly
zero when the agent is “moving closer to the goal”. If we
further presume that the agent can transition deterministically
between different RM states with only one single action at a
time (which is true in our experimental setup), then the optimal
value function becomes:

V*(s) = max Q*(s,a) =0

We observe that doing RL in an MDP whose optimal Q
values are zero can be advantageous, especially to deep RL.
Bringing target Q values within a range around O benefits
training very large DQNs, as it reduces the Internal Covariate
Shift from gradient descent optimization [28], [29]. This leads
to more stable training since smooth L1 loss gradients are
thereby less likely to excessively perturb convolutional net-
work weights [30]. Whereas the same potential-based reward
function had been used in [31] and [15], their good properties
were not identified and exploited before.

V. DQRMS FOR VISION-BASED MANIPULATION

In this work, we study DQRMs in the context of vision-
based robotic pick-and-place tasks using a URS robot arm
equipped with a Robotiq 2F-85 parallel-jaw gripper. Our en-
vironment is simulated in PyBullet, with fixed RGB-D camera
generating top-down views of a 1 x 0.5m? planar workspace.
Our MDP is partially observable, where the input to our
policies are visual observations of the workspace in the form of



RGB images o; = R329%160x3 With respect to the actions, we
consider a discrete-time planar parameterization of pick-and-
place, where each pixel coordinate (u,v) of the observation
o, corresponds to a picking or placing action executed at that
location via camera-to-robot calibration (where depth is used
to compute the z height of the target location).

We model our discrete Q-function as a deep Q network that
takes as input o; and outputs a dense pixel-wise prediction
of Q values for all actions. This is made fast by using fully
convolutional networks (FCNs) [32]—equivalent to standard
DQNs sampled over all possible actions, but with the benefit
of (i) fast parallelization from highly optimized convolu-
tional operations, and (ii) inductive biases from translational
equivariance [33]. Specifically, our DQN is implemented as
two independent feed-forward 43-layer Residual Networks
(ResNets) [34] — one that outputs a dense pixel-wise prediction
of Q values for picking, and the other for placing. During
training (with Huber loss, see Sec. III), we pass gradients
only through the single pixel and ResNet from which the
value prediction of the executed action was computed. All
other pixels backpropagate with O loss. This architecture has
previously been shown to improve learning efficiency for
vision-based DQNs [21], [35], [36].

For all tasks, we construct reward machines from demon-
strations with the help of hard-coded feature detectors. On
a real robot, these features can be obtained by handcrafted
heuristics with sensory input, or training CNN’s to detect
the presence or pose of task-specific objects. Given a robot
equipped with RGB-D cameras and simple force sensors, it
is feasible to engineer feature detectors that detect whether
the end effector is holding a block, the color of such block,
and whether a block of certain color is on the table or in the
fixture. The value of state features can be used to solve these
tasks at an abstract level—e.g., if one block is not on their
designated plate, then pick up such block; if the end effector
is holding a block, then place it on their designated plate.
Additional details on the environment setup on our website.'

In our tasks, all goal states abstract to the same RM state.
The reward function p*(u,v’) := yPot*(u') — Pot*(u) is
computed with potentials Pot*(u) := ~%*(%) that vanish
with the goal distance. For example, a state s that has two
blocks placed in their designated plate (and the third block
is on the table) is two steps away from the goal, and has
potential Pot(L(s)) = v2. Moving optimally from this state
(i.e., picking up the remaining block) results in zero-valued
reward. Sub-optimal moves incur a negative reward. Our setup
satisfies the conditions stated in Section IV-A, and therefore
the optimal Q values are zero by construction.

We implemented different versions of DQN in TF-agents
[37]. Abstract states are encoded with extra input channels
appended to the RGB observation, using a one-hot encoding.
Batch training was performed by sampling uniformly from an
experience replay buffer of size 1000, and a buffer of size
1000 filled with demonstrations. For additional details related

Thttps://albercm.github.io/vision-dgrm
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Fig. 2: Ablation tests of different versions of DQN. The abstract
state variables and reward shaping of our DQRM approach provide
guidance and greatly improve the performance of DQN on the two
block stacking task.
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Fig. 3: A) A two block stacking task. B) Top down RGB observation. C)
DQRM takes abstract states as part of the input, and is able to make a clear
distinction on the right high-level action pick (planning) and their low-level
parameters (control). D) DQN(RS) does not take abstract states as part of
the input, and does not clearly discriminate between high-level actions. The
lower performance in DQN(RS) is not due to the lack of capacity of the neural
network, nor to the difficulty of the classification task.

to model architecture, encoding of abstract states, and training
hyper parameters please refer to the project website.

« DQN: Baseline with rewards 1 in goal state transitions.

o DQN(RS): DQN with the RMs dense reward shaping.

o« DQN(AS): DQN with observations augmented with the
RM state (abstract state), and sparse rewards as in DQN.

e DQRM: The combination of DQN(AS) and DQN(RS).

VI. AN INTRIGUING FAILURE OF DQN

Consider a task with two red blocks, where the objective is
to stack one on top of another. The solution is conceptually
simple: picking of one of the blocks, followed by placing it on
top of the remaining one. The quality of the policies learned
with standard DQN is very poor as shown in Figure 2 in part
because rewards are sparse. What is more surprising is that
a version of DQN with dense potential-based reward shaping
(DQN(RS)) is not able to learn good-quality policies either.
The Q value heatmaps for the actions pick and place explain
this phenomenon (Figure 3). With two blocks on the table,
the Q values for pick and place look similar to each other and
take similar values. This means that the agent may execute a
place action whilst the right action to execute is pick.

Why this is a challenging task to DQN? In this task
the branching factor is large, and only a small fraction of the



State: Two blocks One bloc_k on table,
on table one in hand
Action: Pick Place Pick Place
Optimal max Q-Value 0 -0.147 -0.21 0
DQRM -0.021 | -0.152 | -0.355 | -0.061
DQN(RS) -0.073 | -0.090 | -0.150 | -0.112

TABLE I: Shows the optimal max Q value for the stacking blocks task,
with two red blocks with a discount factor of v = 0.7. In this task, rewards
are reshaped with potentials that vanish exponentially with . For DQRM &
DQN(RS), max Q-values from an episode are listed for both the pick and place
heatmaps which tend to be centered on a block. Notice the DQRM values are
much closer to the optimal Q-values. Also the Q-Values for DQN(RS) for
pick and place actions are often very close, while pick and place action max
Q-values are more distinct for DQRM.

actions are optimal. It appears to be relatively easy to learn
that optimal actions correlate with moving the gripper to the
location of the blocks. However, it is more challenging to learn
a policy that condition actions on the number of blocks in the
observation, which is a latent feature.

Why learning the right Q values is difficult? At the
beginning of training, we have a replay buffer with 1000
demonstrations. When the DQN is randomly initialized, it
begins to execute actions, but will fail most of the time.
Since we are uniformly sampling from our replay buffer, we
mostly sample transitions from the demos, which train both
the pick and place networks to regress to 0 Q-values. Negative
samples accumulate over time (as the DQN rolls out), but
after a few thousand training iterations, our Q network is now
really good at predicting O values on red pixels, negative values
everywhere else. However, once the robot executes a pick, now
it runs into an issue: both pick and place networks still predict
0 values on the remaining red pixels (and negative everywhere
else). So it doesn’t know which action to select (pick or place).
In fact, it is more likely to choose pick again here because the
place network may have training data samples that regress it to
negative values on red pixels when it accidentally executes a
place with an empty gripper. After it executes this failed pick,
it now has a corrective training data point with a negative Q
value. But the number of transitions where it executes two
consecutive picks on red pixels is relatively few in the replay
buffer. So it might get stuck at this local minima. This is in
contrast to DQRMs where we (i) feed in the abstract state ID
as input, and (ii) have target values from the reward shaping,
so that there’s an input inductive bias that can help us learn a
more well behaved pick network and place network.

A closer look into the Q values. The optimal Q values are,
by construction of the shaping rewards, zero-valued. Table I
shows a more detailed analysis of the values of the optimal Q
function, Q*. We distinguish between pick and place actions.
When the table has two blocks, the optimal action is pick,
parametrized with the coordinates surrounding the center mass
of the blocks on the table. All other actions are suboptimal,
and won’t grasp a block. When the table has one block (and
the gripper is holding the other block), the optimal action
is place, parametrized with the coordinates surrounding the
center mass of the block on the table. Other place actions are
suboptimal, and will place the block on the table—therefore
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Fig. 4. Green on Red Stacking.

returning to the initial abstract state. Pick actions are less
suboptimal, because the gripper will keep holding one of the
blocks. We found that the DQRM learned a Q function that
is close to optimal, and separates the Q values of optimal and
sub-optimal actions. In contrast, the maximum Q values of
the pick and place networks in DQN(RS) are more similar to
each other. DQN(RS) still manifests good task success rates,
but the agent sometimes performs the wrong action (e.g., pick
instead of place).

VII. EXPERIMENTS

In general, DQN has to learn a policy that conditions actions
on latent observation features. When meaningful features are
difficult to learn (even if salient to a human observer), the
overall RL process can become challenging. We saw such
phenomenon in Section VI with a simple stacking blocks task.

In our experiments below, we find that DQN(RS) can
improve their performance by making latent features more
salient (the color and geometry of the blocks). Abstract states
in DQRM serve the same purpose: they signal certain state
properties that are correlated with optimal actions.

A. A Deeper Look Into Stacking Blocks

We evaluated our algorithms on three variations of the
stacking blocks task, listed below, in which we varied the
color and geometry of the blocks. We trained each agent for
800 training steps (this is, 32,000 environment interactions).

These artificial variations were done to explore what types
of features our Resnet-based architecture fails to distinguish.
In or prior experiment DQN(RS) did not perform well (Figure
2), perhaps because the number of blocks on the table is
not sufficiently salient to the agent. We wanted to adjust the
environment and see what sorts of features would be more
salient to DQN(RS). Our premise was that color and geometry
could be strong-enough signals to help DQN(RS) achieve good
performance, without the need for abstract states. We ran the
following additional experiments:

o Stack Green on Red (Figure 4): The objective is to stack
the green block on top of the red block.

o Stack Small on Big (Figure 5): The objective is to stack
the small block on top of the big block.
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o Stack Magic Blocks (Figure 6): The objective is to
stack one block on top another. The block color changes
dynamically (magic, since we are in simulation.) based
on whether the gripper is holding a block or not.

In the Stack Green on Red task we see a similar phe-
nomenon as with the two red blocks, although DQN(RS)
is more successful than before. The heatmaps for DQN(RS)
are very similar regardless of the number of blocks in the
observation as shown in the DQN(RS) column of Figure 4.
In contrast, the DQRM heatmaps are clearly different from
each other depending on how many blocks are on the table.
Without abstract states, DQN(RS) struggles in the case of two
similarly sized but different color blocks.

In the Stack Small on Big task, rather than changing block
color, we change the size of one of the blocks as shown
in Figure 5. In this case DQN(RS) is able to learn the task
showing that abstract states are not necessarily needed as input
when the correct action can be predicated on existence of a
uniquely sized object in the scene.

Finally as an extreme example, in Magic Stacking in Figure
6 we leverage the fact that we are in simulation to have the
color of the blocks changed based on the abstract state. Here
DQN(RS) is able to learn as well as DQRM.

What these different variations of the two block stacking
task demonstrate is that there are certain features that are more
salient to our policy, for example the magic blocks or the
large and small blocks. In these cases, a DQN policy with
reward shaping is able to learn to a reasonable degree of
success. There are many other tasks where these features are
less interpretable by a DQN despite being salient to a human
observer (two red blocks, red and green block) in these tasks,
DQRM is hugely beneficial. Often understanding the abstract
state from the raw pixels becomes increasingly difficult as the
horizon of the task increases, and DQRM becomes a clear
winner. We explore this further in the next section.

B. Kitting Challenge Task

We evaluate the performance of DQRM in a longer-horizon
kitting task, where the objective is to place three colored blocks
in designated bins on a fixture (Figure 1). To construct a RM
from demonstrations, we have feature detectors for whether
each block is in hand, in it’s designated bin or on the table.

Observation

Stack Magic
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ami-0.411  qmini-0347
o_min:~0. -
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Fig. 6: Magic block stacking.
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Fig. 7: Ablations on variations of two block stacking and Kkitting tasks.

In our experiments, DQRM greatly outperformed the other
ablations. Figure 7d summarizes our experimental results:
DQRM could learn better-quality policies with fewer batch
training steps, and their success rate was more stable. DQRM
needed only 2,000 batch training steps to converge to a
good-quality policy. In comparison, DQN(RS) needed 10,000
batch training steps to achieve an acceptable success rate,
and DQN(AS) was not able to learn a good-quality policy.
Our results evidence the practicality of RMs, and suggest that
their improved performance emanates from the combination
of abstract states and dense reward shaping.

VIII. CONCLUSION

Using reward machines for deep reinforcement learning
can improve sample efficiency and the quality of the policies
learned. We illustrate the benefits of reward machines in
vision based robotic manipulation tasks, which may justify
the extra cost of having to construct them. In many tasks,
the correct next action is predicated on a small number of
pixels, determining whether an object is in hand or already
placed correctly. We highlight how DQN struggles when this
is the case, even on a very simple two block stacking example.
DQRM outperforms DQN by using the two supervisory sig-
nals of reward shaping and knowledge of current abstract state
coming from the reward machine. These signals complement
each other and can both be used to improve policy performance
as demonstrated with our DQN(RS) and DQN(AS) ablations.
This work opens up exciting opportunities to tackle longer



horizon robotics tasks as demonstrated with our challenging 3
block kitting task.
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