Non-Markovian Rewards Expressed in LTL:
Guiding Search Via Reward Shaping (Extended Version)

Alberto Camacho! Oscar Chen! Scott Sanner? Sheila A. Mcllraith !

Abstract

In many decision-making settings, reward is ac-
quired in response to some complex behaviour
that an agent realizes over time. An assistive
robot receiving reward for ensuring that its pa-
tient takes their medication once daily soon af-
ter eating, is one such example. Reward of this
sort is referred to as non-Markovian because it
is predicated on state history rather than solely
on the current state. Our concern in this pa-
per is with Non-Markovian Decision Processes
and in particular with the specification and effec-
tive exploitation of non-Markovian reward. To
this end, we outline a means of specifying non-
Markovian reward, expressed in Linear Temporal
Logic (LTL) interpreted over finite traces. Cen-
tral to our approach is the transformation of the
reward specification language, here LTLy, into de-
terministic finite state automata. MDP planners
based on heuristic-search and UCT struggle with
non-Markovian rewards which provide little guid-
ance to the relatively myopic lookahead of these
solvers. Here we explore the use of reward shap-
ing to automatically reshape the automata-based
reward. These reshaped, automata-based rewards
can be exploited by off-the-shelf MDP planners to
guide search, while crucially preserving policy op-
timality guarantees. Experiments with augmented
International Probabilistic Planning Competition
domains demonstrate significantly improved per-
formance via the exploitation of our techniques.
The work presented here uses LTL¢ to specify non-
Markovian reward, but our approach will work
for any formal language for which there is a cor-
responding automata representation.

"Department of Computer Science, University of Toronto,
Toronto, Canada “Department of Mechanical Engineering, Uni-
versity of Toronto, Toronto, Canada. Correspondence to: Alberto
Camacho <acamacho@cs.toronto.edu>.

Accepted at the 1st Workshop on Goal Specifications for Reinforce-
ment Learning, FAIM 2018, Stockholm, Sweden, 2018. Copyright
2018 by the author(s).

Preamble

This work illustrates how non-Markovian reward functions
can be translated to an automata representation and how
reward shaping can be used to guide search in sequen-
tial decision-making when reward functions are expressed
via automata. While this paper utilizes Linear Temporal
Logic interpreted over finite traces (LTLy¢) to specify non-
Markovian rewards, subsequently translating the LTL into
automata, our approach is applicable to any formal language
for which there is a corresponding automata representation.
This includes a number of languages that have been used
to express (temporally extended) goals and preferences for
Al automated planning. Examples of such languages in-
clude Past LTL (PLTL) (Bacchus et al., 1996; Sohrabi et al.,
2011); Golog, which provides procedural programming lan-
guage constructs augmented with logical expressions (Baier
et al., 2008; 2007; Fritz et al., 2008; Bienvenu et al., 2011);
LDL¢ (Brafman et al., 2018); and Hierarchical Task Net-
works (HTN) (Fritz et al., 2008). All of these languages
can similarly be used to specify goals for reinforcement
learning. There are merits and shortcomings to each of
these approaches with respect to ease of specification of
rewards. Toro Icarte et al. (2018) recently showed how to
exploit exposed structure for so-called Reward Machines —
automata-based reward functions — to improve the perfor-
mance of tabular and deep reinforcement learning systems.

An extended abstract of this work appeared in the proceed-
ings of the International Symposium on Optimization and
Combinatorial Search (SoCS 2017) and was presented at
RLDM-17 (Camacho et al., 2017b;a) accompanied by a
technical report (Camacho et al., 2017c).

1 Introduction

In Markov Decision Processes agents typically receive pos-
itive or negative reward in response to their current state.
Nevertheless, agents may also realize reward in response to
more complex behaviour that is reflected over a sequence
of states. For example, an autonomous electric vehicle may
acquire reward for always recharging its battery after a trip.
Similarly, a personal robot may acquire reward by opening
the refrigerator, removing a prescribed item, and closing



Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)

the refrigerator immediately thereafter. Such reward is com-
monly referred to as non-Markovian reward because it is
predicated on the state history rather than solely on the
current state. Our concern in this paper is with both the
specification and effective exploitation of non-Markovian
reward in Markov Decision Processes (MDPs). Here we use
Linear Temporal Logic intepreted over finite traces (LTL¢)
to specify non-Markovian rewards. Notwithstanding, our
approach is applicable to other formal languages for which
there exist corresponding automata representations.

Current state-of-the-art MDP planners are based on heuris-
tic search and variants of UCT techniques (Kocsis &
Szepesvari, 2006). UCT policies tend to make greedy and
myopic decisions. As such, these planners struggle with
non-Markovian rewards since there is little guidance for
their relatively myopic lookahead. The impact of this my-
opic guidance can be seen in state-of-the-art MDP planner
PROST (Keller & Eyerich, 2012), a UCT-based planner
that generates high-quality solutions for moderately sized
MDPs, but whose performance suffers in large problems
that require significant lookahead.

In this paper we explore transformation of the reward func-
tion through reward shaping (Ng et al., 1999) as a means of
mitigating for the myopic lookahead of UCT-based meth-
ods. To this end, we propose an approach to solving non-
Markovian Reward Decision Problems (NMRDPs) by trans-
forming our reward-worthy non-Markovian behaviour into
corresponding deterministic finite state automata. The ac-
cepting conditions of these automata signify satisfaction
of the reward-inducing behaviour in a manner that is solv-
able with off-the-shelf MDP planners, crucially preserving
optimality guarantees. Moreover, we use reward shaping
with these automata-based reward encodings in order to
induce non-sparse, myopic-friendly rewards. This helps
guide the accrual of non-Markovian reward. We evaluate
our approach to solving NMRDPs via experimentation with
off-the-shelf state-of-the-art heuristic and UCT-based MDP
planners. Experiments with a set of International Probabilis-
tic Planning Competition (IPPC) domains augmented with
non-Markovian rewards show significantly improved per-
formance using our automata representation together with
reward shaping.

2 Background

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) (Puterman, 1994)
are popular models for decision-theoretic planning prob-
lems (Boutilier et al., 1999). An MDP is a tuple M =
(S, A, P,R,T,~, so), where: S is a finite set of states; A is
a finite set of actions; P, (s, s') is the probability of reach-
ing the state s’ € S after applying action a in state s € S,

R: S x AxS — Ris the reward function (sometimes
R:S x A— R); T € Nis the horizon; v € (0, 1] is the
discount factor; and sy € S is the initial state of the MDP.

Solutions to an MDP are a sequence of step-dependent poli-
cies 11 = (mg,...,mr—1) that map states s € S at step k
(0 < k < T) to actions mx(s) € A. The value of a policy
IT in state s at step k, Vi i (s), is the expected discounted
cumulative reward over the horizon 7' — k following II.
Formally, Vi x(s) = EH{ZiT:*klviRi}, where R; denotes
the immediate reward obtained at step ¢ if the agent fol-
lows policy II from s. An optimal policy sequence II*
for an MDP over horizon 1" with initial state sq satisfies

IT* = argmaxp Vi,0(So)-

MDPs are commonly described using factored represen-
tations of the states and dynamics. In particular, RDDL
(Sanner, 2010) is a modelling language that allows for a
lifted, compact representation of factored MDPs. States are
given by assignments to all ground state fluents of the RDDL
specification, and transition dynamics are described by con-
ditional probabilities that can be expressed as a stochastic
form of successor state axioms (Reiter, 1991). Intuitively,
the updates on the truth of each ground fluent are described
with respect to what holds in the current state and the ac-
tions that are performed. Modern algorithms for MDPs are
typically based on UCT-search techniques that sacrifice op-
timality in favor of scalability. The current state-of-the-art
solution method for MDPs is PROST (Keller & Eyerich,
2012), a Monte-Carlo sampling algorithm based on UCT
and heuristic search for finite-horizon MDPs. Whereas
PROST generates good-quality solutions to moderate-sized
MDPs, its performance suffers in large problems that require
a significant look-ahead. In such cases, the Monte-Carlo
roll-outs cannot sufficiently capture the structures inherent
in the problem, leading to greedy/myopic search behavior.

2.2 Linear Temporal Logic over Finite Traces

Linear Temporal Logic (LTL) is a compelling language for
expressing temporal properties over (infinite) sequences of
states. It is a propositional modal logic with modalities
referring to time (Pnueli, 1977). LTL¢ has essentially the
same syntax as LTL but is interpreted over finite traces. In
particular, given a set of propositional symbols, P, LTL¢
formula ¢ is defined as follows:

e =TI Llpl-oleiAp2|Op |1l ps

where p € P, and O (next) and U (until) are temporal
operators. Intuitively, next specifies what needs to hold in
the next time step, and until specifies what needs to hold at
least until something else holds. Other temporal operators
such as eventually (), always (), and release ('R ) are
defined by the standard equivalences: O =T U o, Op =
ﬁ<>ﬁ(p, and (%251 R Yo = ﬁ(ﬁ(pl u ﬁ302)- LTL¢ also has



Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)

a weak-next operator (@), defined by @p = -O—p, that
tells that ¢ needs to hold in the next time step if such next
time step exists. Note that =O¢ #Z O—¢ (De Giacomo &
Vardi, 2013). We further extend the syntax of LTL¢ with the
modality final = -O'T to specify properties that hold in
the final state of the trace.

Within the automated planning literature, the study of LTL
interpreted over finite traces dates back at least to the work
on specifying temporally extended goals and preferences
(e.g., (Bacchus & Kabanza, 2000; Baier & Mcllraith, 2006;
Baier et al., 2009)), and a fragment was incorporated into
PDDL 3.0 in 2006 (Gerevini et al., 2009). Recent work
uses LTL¢ (De Giacomo & Vardi, 2013) as a specification
language for synthesis (e.g. (De Giacomo & Vardi, 2015;
Camacho et al., 2018)).

LTL¢ formulae are interpreted over finite traces of proposi-
tional states, 0 = sq - - - s,,, Where each s; is a set of propo-
sitions from P that are true in s;. We say that o satisfies
LTL¢ formula ¢, denoted o |= ¢, when o, 0 = ¢, where:

e 0,i=p, foreachp e PU{T}iffs; = p.
e 0,i = —ypiff 0,4 = ¢ does not hold.

e 0,i =1 ANpaiffo,il= ¢y and 0,i = .
o 0,i=Qgpiffi <nando,(i+1) = .

e 0,i = w1 U v iff there exists a4 < j < n such that
0,7 = w2, and 0, k |= 1, foreachi < k < j.

The interpretation of other modal operators such as eventu-
ally and always follow from these definitions.

3 Non-Markovian Reward

Non-Markovian Reward Decision Processes (NMRDPs)
(e.g., (Bacchus et al., 1996; 1997; Thiébaux et al., 2006))
generalize the MDP model by allowing reward functions
to range over the history of visited states. In contrast to
MDPs, the domain of the reward function R ranges over
the set of finite state-sequences drawn from .S, denoted
S*. As in conventional MDPs, optimal solutions maximize
the expected discounted cumulative reward. Adapted from
(Bacchus et al., 1996):

Definition 1 (NMRDP). A Non-Markovian Re-
ward Decision Process (NMRDP) is a tuple
M = (S,;A P,RT,~,s0), where S, A, P, T, #,
and sy are as defined in MDPs: S is a finite set of states;
A is a finite set of actions; P,(s,s’) is the probability of
reaching the state s' € S after applying action a in state
s € S; T € N is the horizon; v € (0,1] is the discount
factor; and sy € S is the initial state of the NMRDP. In
contrast to MDPs, the reward function is R : S* — R
(sometimes R : (S x A)* — R).

3.1 Temporally-Extended Reward Function

Following Bacchus et al. (1996), non-Markovian reward
in an NMRDP M is described in terms of a finite set of
temporally extended reward formulae, ¢;, each with an as-
sociated reward r;, resulting in tuples (¢; : r;). In this
paper, we specify such reward formulae — the reward wor-
thy temporally extended behaviour — using LTL¢, following
(Camacho et al., 2017b). Previous approaches to NMRDPs
have used Past LTL (PLTL), a dialect of LTL whose tem-
poral modalities refer to past events (Bacchus et al., 1996;
1997), and finitely interpreted future LTL, $FLTL (Thiébaux
et al., 2000) to describe temporally extended reward for-
mulae. Recently Littman et al. (2017) devised a geometric
variant of LTL, GLTL, that appeals to a geometric distri-
bution on the temporal extent of formulae, mimicking the
effect of discounting (2017). Brafman et al. (2018) proposed
LDL¢ to specify temporally extended reward formulae.

Example: By way of illustration, consider an assistive robot
that accumulates reward by ensuring that its ward takes their
medication daily and that they do so after eating lunch. Such
behaviour might be expressed by the LTL¢ formula:
@ = (Oingested (medication))

A (—ingested(medication) U ingested(lunch)).
Associated with this reward-worthy behaviour is a reward
of 100. A robot would have numerous (p; : 7;) pairs.

Adapted from Bacchus et al. (1996), a temporally-extended
reward function (TERF) is in turn defined in terms of a finite
set of tuples {(y; : 75)}; <;<,n,- Each ¢; is a formula that
describes a behaviour, and 7; € R is the reward given to the
agent when its trajectory I € S™ satisfies ¢; (denoted T" =
;). Formally, a TERF R is defined by R(T") = X7 R;(T"),
where R;(I') = r; if ' |= ¢;, and R;(I") = 0 otherwise.

TERFs can be specified in a variety of languages. Here
we illustrate the specification of TERFS using LTL¢ but
the approach to solving NMRDPs proposed in this paper
holds for any language that can be compiled into DFA. This
includes PLTL, a subset of Golog, and LDL¢ formulae. Tem-
porally extended goals compliant with the PDDL3 standard
(Gerevini et al., 2009) are also compilable into DFAs. We
also support rewards specified directly in terms of NFAs
and DFAs (c.f. (Toro Icarte et al., 2018)).

Example (cont.): Returning to our example, we can define
a TERF with the tuple (¢ : 100), that gives a positive
reward of 100 to temporally extended behaviour ¢, as
above. Note that (¢ : 100) rewards all sequences of states
for which there is a prefix that satisfies . To only reward
the first occurrence of the behaviour within a sequence of
states, one could modify the above LTL¢ formula as follows:
(—ingest(medication) U (ingest(medication) A =QT))A
(—ingest(medication) U ingest(lunch)).



Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)

4 Solving NMRDPs via Automata

Bacchus et al. (1996)’s solved NMRDPs via a state-based
construction method that kept track of the state history, but
suffered from state space explosion. Bacchus et al. (1997)
provided a method for translating NMRDPs to a structured-
MDP representation that mitigated for this, but was only
amenable to structural policy construction methods. Fur-
ther work by Thiébaux et al. (2006), which is the current
state-of-the-art method, introduced a framework for solv-
ing NMRDPs using anytime state-based heuristic search
methods. These methods had the benefit of exploring a sig-
nificantly reduced fraction of the state space at the cost of
producing possibly sub-optimal policies.

4.1 Compiling NMRDP into Automata-Based MDPs

Our approach to solve an NMRDP, M, with TERF, R, trans-
forms the problem into a standard MDP,M’, (with Marko-
vian reward) that can be solved with conventional MDP
solvers. Key to our approach is the translation of tempo-
rally extended reward formulae into deterministic finite state
automata (DFAs). The approach comprises four steps.

Step 1 Transform each ¢; in the TERF into a DFA

Step 2 Construct an MDP M’ from M and the DFAs
Step 3 Solve M’ — using any off-the-shelf MDP planner
Step 4 Extract solution to M from a solution to M’

In what follows, we elaborate on each step. For the purposes
of this paper, we limit our explication to finite-horizon NM-
RDPs. Notwithstanding, our approach can be extended to
infinite-horizon NMRDPs.

4.2 Transforming TERFs into Automata Functions

A deterministic finite-state automaton (DFA) is a tuple
(Q,%,9,q0, Qrin), where Q is a finite set of states, X is the
alphabet of the automaton, § : ) X X — ( is a transition
function, o € @ is the initial state, and Q g;,, C @ is a set
of accepting states. The transition dynamics of a DFA is
defined over finite words, or sequences w = Sg, S1,-- ., Sp
of elements in 3. Here, ¥ are the states of an MDP. At every
stage ¢, the automaton makes a deterministic transition from
state g; to state g;+1 = 0(q;, $;). The guard of a transition
from ¢ to ¢’, denoted by guard(q — ¢'), is a propositional
formula so that ¢’ = d(q, s) iff s = guard(q — ¢’). We
say that A accepts w if g, € Qi We say that M accepts
wif i1 € Qrin.

In Step 1 of our approach, we transform each tuple (¢ : )
in the TEREF into a tuple (A, : r), where A, is a DFA
that accepts a word 7 iff it satisfies . The translation of
LTL¢ formula ¢ to a corresponding DFA typically involves
conversion to a non-deterministic automaton followed by de-
teminization (e.g. (Baier & Mcllraith, 2006; De Giacomo &

ingested (lunch) A
ingested(medication)

1
é__/m/g!sted(medication)

Figure 1. DFA for LTL¢ formula (< ingested(medication))
A (—ingested(medication) U ingested(lunch)).

—ingested(lunch) A
—ingested(medication

ingested (lunch) A
—ingested(medication

Vardi, 2015)). Other dialects of LTL can be transformed into
DFA. In particular, Sohrabi et al. (2011) showed a method
to transform PLTL formulae into an NBA (that can also be
determinized to a DFA), and all basic temporal operators in
PDDL3 have automaton representations (cf. (Gerevini et al.,
2009)). Some fragments of LTL, such as safe and co-safe
formulae, can be transformed into DFA (c.f. (Kupferman &
Vardi, 2001)).

Example (cont.): Figure 1 depicts a DFA correspond-
ing to LTL¢ formula ¢ := <ingested(medication) A
(—ingested(medication) U ingested(lunch)). Automaton
states are represented by nodes, and transitions are repre-
sented by arcs. Transition labels describe the guards. Finally,
accepting states are depicted by double-ringed nodes. The
word m = {so, s1, $2} with s = {—ingested(lunch) A
—ingested(medication)}, so | {ingested(lunch) A
—ingested(medication)}, and s3 = {ingested(lunch) A
ingested(medication)} induces one and only one run in
the automaton, {qo, o, g1, g2}. As this run finishes in an
accepting state, it follows that 7 satisfies the LTL¢ formula.

4.3 Compiling NMRDPs to MDPs

In Step, we construct an MDP, M’, by augmenting M with
extra fluents and actions that integrate the dynamics of the
DFAs within the MDP, making it possible for the reward
function to be Markovian. The dynamics of M’ expand each
time step into three modes: world, sync, and reward. In
world mode, an action from the NMRDP is applied. In sync
mode, the automata states are synchronized according to
the observed state. Intuitively, the automata states simulate
the runs of the automata given the observed world state
trajectories. The assignment of reward is delayed to reward
mode and is performed upon satisfaction of each of the
LTL¢ reward formulae in the TERF. This is detected when
an automaton reaches an accepting state. Table 1 contains
technical details of the compilation. We provide a detailed
account of the compilation below.

M’ has the same fluents as M, plus the auxiliary fluents
described below. The fluents world, sync, reward con-
trol the dynamics of the problem, forcing an alternation
between three different modes: world mode, sync mode,
and reward mode. For each automaton A, and for each



Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)

Original NMRDP

Compiled MDP

Initial state S0

50 = 50 UU(,.yerifq | ¢ initial state of A,} U {sync}

Successor state axioms  p’ <> (¢1F) V (p A —gy)

p’ < (¢ Aworld) V (p A (—world V (—¢, A world))

world’ < reward
sync’ « world
reward’ < sync

fq ¢ (sync A ¢7) V (fy A —sync)

Reward function

R={(ei:ri)},1 m

Vs such that s = reward,

R/(‘S) = Z((p:’r‘)ER ZqEAw, q accepting Ti]lfq (S)

Discound factor ¥ ¥

1/3

Horizon T

T :=3T

Table 1. Dynamics of the compiled MDP in terms of the dynamics of the original NMRDP. Here, p € F' are propositional variables

and ¢ € A, are automaton states for each pair (¢ :

r) in R. The successor state axioms for a predicate fluent p are described in

the form p’ <+ ¢, where ¢ are the conditions that make p true at time ¢ + 1 as a function of the values of fluents at time ¢. The
function ¢; (resp. ¢, ) is a propositional formula that describes the conditions under which p is made true (resp. false). Likewise,
o = Vyrca, guard(q’ — q) A fyr describes the conditions under which f; is made true. In the definition of R’, 1, (s) is the indicator

function that evaluates to 1 when f; holds in s, and 0 otherwise.

automaton state ¢ € A, M’ has fluents f,. Intuitively, each
fluent f, simulates an automaton state q. The set of actions
in M’ contains the set of actions A in M. For simplicity,
and without loss of generality, we assume A contains an
action no-op — denoting that the agent performs no explicit
action — and an action o, that the agent is required to
execute at the end of the search horizon.

In world mode, execution of actions from A emulates the
stochastic transition model of the actions in the original
NMRDP. After an action is applied in world mode, the
dynamics of the MDP switches to sync mode. In sync
mode, the truth of the automaton state fluents f, is updated
to simulate the state transition of each automaton A4 with
respect to the current state of the MDP. After an action is
applied in sync mode, the dynamics of the MDP switches to
reward mode. In reward mode, the agent collects reward
upon satisfaction of each of the LTL¢ reward formulae in the
simulated NMRDP. More precisely, for each mapping ¢ : r
in the TERF, a reward r is given to the agent in state s when
fq holds in s for some accepting automaton state g € A,,.
The resulting reward is Markovian, and is formalized by R’
in Table 1. Without loss of generality, we assume that the
agent is forced to perform o.,4 in the last reward mode
(i.e., in the last turn) before reaching the search horizon, T".

The horizon in M’, T, is three times the horizon T in the
original NMRDP M. This is because each step in M has
three counterparts in M’, corresponding to the world, sync,
and reward modes. Likewise, the discount factor of M’
is 7/ = v'/3. Finally, the initial state s{, of M’ has all the
fluents in the initial state sy of M, plus fluents f, for the
initial automaton state ¢ of each automaton A, and fluent
sync that forces the agent to start in sync mode.

The size of the compiled MDP M’ is polynomial in the

size of the DFAs from the TERF (Theorem 1). When the
TEREF is given in terms of LTLs formulae, the size of M’ is
worst-case double-exponential in the size of the formulae.

Theorem 1. The size of the compiled MDP is polynomial
in the size of the DFAs.

Proof sketch. The set of ground fluents in the compiled MDP
is augmented with automaton state fluents f; and g, one
for each automaton state. Other fluents and parametrized
actions in the compiled MDP are bounded in size. [

Corollary 1. The size of the compiled MDP is worst-case
double-exponential in the size of the LTL¢ formulae.

Proof sketch. 1t is well-known that LTL; formulae can
be transformed into DFAs that are worst-case double-
exponential in the size of the formula. [J

4.4 Solution and Optimality Preservation

The compilation described above transforms a finite-horizon
NMRDP M into a finite-horizon MDP M’ that preserves
optimal, and near-optimal solutions. A key aspect to under-
stand this property is to realize that the stochastic transition
model in M’ in world mode simulates the transitions in
M, whereas automata transitions simulated in sync mode
are deterministic. As such, there exists a correspondence
between finite state-action trajectories in M and M’. For a
state-action trajectory I' = sg, a1, s1, a2, ..., S, in M one
can construct a state-action trajectory in M’ by interleaving
synchronization and reward state-actions between each a;.
Conversely, for each state-action trajectory I in M’ one can
construct I' by removing synchronization and reward state-
actions from I'. The association described above defines a
correspondence between policies IT in M and policies I in
M. Tt is straightforward to see that Vi 0(so) = Virr,0(s()-



Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)

Consequently, the compilation from NMRDP into MDPs
preserves optimal, and near-optimal solutions.

Theorem 2. The automata-based compilation from NM-
RDP to MDP preserves optimal and near-optimal solutions.

Proof sketch. Follows from the observation above, establish-
ing the correspondence between state-action sequences in
M and M’'. O

Example (cont.): Returning to our example with
TERF, {(¢ : 100)}, suppose the agent performs action
ingest(lunch) followed by ingest(medication), inducing
the state trajectory (only relevant subset of state shown):
7w ={—ingested (lunch), ~ingested (medication);

ingested (lunch), ~ingested (medication);

ingested (lunch), ingested (medication)}
The dynamics in the compiled MDP start by process-
ing the initial state, and self-transitioning from the au-
tomaton state ¢o to itself. In reward mode, no re-
ward is given.  Then, in world mode the action
ingest(lunch) is performed, leading to a state s; in which
{—ingested(medication), ingested(lunch)} holds. The
following sync mode synchronizes the automaton state
to g1, and so on until reaching world state so, where
{ingested(medication), ingested(lunch)} holds. At this
point, the automaton synchronizes to state g3, that is accept-
ing. In reward mode, a reward of 100 is given.

5 Reward Shaping to Improve Performance

The approach to solving NMRDPs presented in Section 4
preserves optimality (cf. Theorem 2). Here we augment our
approach with reward shaping in an effort to mitigate for
the sparse reward inherent in our non-Markovian rewards,
which aggravates the weak guidance and lookahead of state-
of-the-art UCT-based MDP planners.

In particular, state-of-the-art MDP planner PROST (Keller &
Eyerich, 2012) suffers from such myopia. PROST expands
a search tree by favoring the branches that achieve the most
immediate reward. An estimation of the expected reward
is computed in a leaf node by either (i) throwing a Monte-
Carlo (MC) roll-out, (ii) running iterative deepening search
(IDS) with a bounded horizon, or (iii) running depth-first
search (DFS) with a bounded horizon. When the rewards
are sparse, neither of the methods below provides good
guidance. MC roll-outs make random moves that collect
little non-Markovian reward. IDS does not collect reward
most of the time, and it does not scale with long look-ahead
horizon. Similarly, DFS is blind most of the time.

5.1 Reward Shaping

Reward shaping is a common technique in MDPs which
aims to improve search by transforming the reward function.

Such reward transformations have the form R'(s,a,s’) =
R(s,a,s’) + F(s,a,s’), where R is the original reward
function and F' is a shaping reward function. The intuition
behind reward shaping is that by increasing (resp. decreas-
ing) the reward in states that lead to other high-value states
or trajectories (resp. low-value states or trajectories), we
can increase the effectiveness of search and the quality of
solutions found, while reducing search memory and run
times. Unfortunately, reward shaping with an arbitrary
F(s,a,s’) may lead to an optimal policy that is subopti-
mal w.r.t. the original unshaped reward. However, as noted
by (Ngetal., 1999), if F'(s,a,s’) is chosen from a restricted
class of potential-based reward shaping functions defined
as F(s,a,s") =~v¢(s") — ¢(s) (for some real-valued func-
tion ¢), then this guarantees preservation of optimal and
near-optimal policies with respect to the original unshaped
MDP. Preservation of near-optimality is desirable since it
provides guarantees for suboptimal solutions obtained by
state-of-the-art heuristic search approximate methods.

Theorem 3 (Ng et al., 1999)). Potential-based MDP re-
ward shaping preserve optimal, and near-optimal solutions.

5.2 Automata-based Potentials

Reward shaping can be applied to the compiled MDP, as
with regular MDPs, with the aim of providing better guid-
ance to MDP solvers. The particular structure of the com-
piled MDPs, where automata fluents capture relevant his-
torical information, suggest that we can exploit automata
to design a class of shaping rewards that provide effective
guidance by exploiting automata. In this section, we intro-
duce a class of automata-based shaping reward functions
that is, by construction, potential based. In Section 6, we
conduct a preliminary evaluation of this class of potentials.

We augment the MDP with additional fluents, f¢, one for
each automaton fluent f,. These fluents keep track of the
previous configuration of the automata. Its value is updated
in sync mode according to the successor state axioms:

f;/ < (sync A fq) V (fy A —sync)

Formally, our shaping reward function is defined over states
s in reward mode (i.e. s = reward) as follows:

Fls.a) =7 olfa) = S 6(f2)
fa f$

for all actions @ € A\ {0¢na}, and f, and f7 that hold in s.
Unlike Ng et al. (1999)’s method, our shaping function F'
does not depend on two consecutive states in the MDP, but
on the two states visited in the last two world modes. Intu-
itively, ' emulates a potential-based reward transformation
of the form F'(s,a,s’) = v¢(s') — ¢(s) (i.e., as defined by
Ng et al.) in the original NMRDP. The important thing to
notice here is that, in the compiled MDP, the application of



Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)

F is delayed to the reward mode. This is because many
off-the-shelf MDP planners employ reward functions of the
form R(s, a), rather than the more general R(s, a, s’).

The potential function ¢(s) decomposes into a sum of po-
tential functions evaluated on the automaton states that hold
true in state s. More precisely, the potential function has
the form ¢(s) = >, ¢, #(fq). Automaton state copies f7
make it possible to evaluate the potential in the previous
world mode state. In order to preserve optimality (and near-
optimality) of solutions to finite-horizon NMRDPs, we need
to substract the shaping rewards at the end of each finite
execution trace. This is performed upon application of 0., g
action in reward mode, by extending the domain of F' to
states s |= reward as follows:

F(s,0cna) = — Z¢(f;)
13

for all f; that hold in s.

Theorem 4. Automata-based reward shaping preserves op-
timal, and near-optimal solutions.

Example (cont.): In our robot example, we may want
to provide guidance by assigning potentials ¢(qy) = 0,
¢(q1) = 50, and ¢(g2) = 100. Intuitively, these potentials
assign positive reward for transitioning from g to g1, with
the rationale that state trajectories that yield such transitions
make progress towards achievement of an accepting state.

In what follows, we introduce different criteria to engineer
potential functions. It is not our purpose to give an exhaus-
tive list, nor to study theoretical guarantees. Rather, our
purpose is to inspire the reader about the number of ways
that reward shaping can be used to improve guidance in
NMRDPs. In Section 6, we prove empirically that even
naive potential functions can successfully guide search and
result in significant improvements in terms of the quality of
the solutions found by approximate methods.

Liveness Preservation: It is possible to incent exploration
of those states for which satisfaction of the reward formula
( is, in principle, still reachable. This is the case for non-
Markovian liveness behaviors where we can assign ¢(f,) =
0 to non-accepting sink automaton states ¢ € A, and
&(fq4) = cotherwise, with ¢ € R*.

Heuristic Guidance: In order to incentive the search pro-
cess towards satisfaction of the TERFs — and, therefore,
collect reward —, we can distribute the potentials ¢( f,) in a
way that they increase monotonically w.r.t. the inverse of a
distance measure between ¢ and the set of accepting states
in A,. For example, the potentials can be distributed pro-
portionally according to the graph distance in the directed
graph representation of A,.

Attenuation Factor: Similar to the discount factor in
infinite-horizon MDPs, an attenuation factor can be applied

to the potentials in order to incentive early achievement of
rewards. Unlike the discount factor, the attenuation factor
need not be uniform over all behaviours in the TERF. For
example, we can attenuate potentials by a factor T — k /T,
where £k is the steps counter in the current state and 7" is the
horizon limit. Whereas the potentials with this technique
are not constant over time, it has been shown that optimal-
ity, and near-optimality guarantees are equally preserved in
dynamic reward shaping (Devlin & Kudenko, 2012).

Given the linearity of the shaping function, linear combina-
tions of the methods presented above preserve optimality
guarantees. Similarly, the technique to attenuate the poten-
tials is orthogonal to the liveness preservation and heuristic
guidance techniques presented above.

6 Empirical Evaluation

We conducted experiments to evaluate the impact of differ-
ent reward shaping techniques on the quality of the solutions
obtained by MDPs compiled from NMRDPs. We conducted
experiments over a range of RDDL-encoded MDP prob-
lems from International Probabilistic Planning Competitions
(IPPCs) in which we replaced the Markovian rewards by
TERFs. We used different configurations of PROST as the
MDP planner, including, the current state-of-the-art UCT*,
the configurations that won the IPPC 2011 and 2014, and
a configuration of PROST that behaves like the basic UCT
algorithm by Kocsis & Szepesvari (2006). For UCT*, we
tested different heuristic evaluation functions based on itera-
tive deepening search (IDS), and depth-first search (DFS).

6.1 Guiding Towards Long-term TERFs

In our first set of experiments, we evaluated the impact
of reward shaping in guiding search for long-term non-
Markovian rewards. We conducted our tests in a modifica-
tion of the academic-advising domain. In these problems,
the agent can take courses. Courses have prerequisites —
e.g. second-year courses have as prerequisite all first-year
courses, and so on —, that affect the probability to pass a
course. The agent is given a (non-Markovian) reward upon
completion of all courses, if these were taken in an order that
satisfies all prerequisites. In LTL¢, the reward formula is the
conjunction of two families of subfomulae. The first family
asks the agent to pass all courses, and is captured by for-
mulae & (passed(c)), one for each course, ¢. The second
family asks the agent to take courses in an order that satisfies
the prerequisites, that is, if ¢’ is a prerequisite of c, then ¢
should not be taken until ¢’ is passed. This is captured by for-
mulae O( A ((taken(c) A prereq(c’, c)) — passed(c’)).

Table 2 summarizes the results of experiments with different
academic-advising problems. Each problem p_Y_C has the
TERF described above, where Y is the number of academic



Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)

o Ny %7 X
MDP Planner Compilation {7 {7 R K7
PROST UCT*(IDS) MDP 30 30 0 O
PROST UCT*(DFS) MDP 30 30 0 O
PROST IPPC-2014 MDP 2 30 0 O
PROST IPPC-2011 MDP 27 30 2 O
UCT MDP o 0 0 O
PROST UCT*(IDS) MDP+ RS 30 30 30 30
PROST UCT*(DFS) MDP+RS 30 30 30 30

PROST IPPC-2014
PROST IPPC-2011
UCT (3 steps look ahead)

MDP +RS 30 30 30 30
MDP +RS 30 30 30 30
MDP+RS 29 30 29 30

Table 2. Number of runs (over 30 trials) that achieved the non-
Markovian reward in the academic-advising problems. Different
MDP planners were used to solve the compiled MDP problem,
with and without reward shaping (RS).

years, and C' is the number of courses per academic year.
We compiled each NMRDP problem into an MDP, with and
without reward shaping. We evaluated the quality of the
solutions using different configurations of PROST.

As predicted, state-of-the-art anytime planners are short-
sighted and struggle to find good long-term strategies in
MDP compilations of NMRDPs. To improve look ahead,
we modified the compiled MDP to have only one mode,
world mode, in which the automata is also progressed. The
results of these experiments are reported in Table 2 as MDP
compilation. We note an abrupt decrease in performance in
larger problem instances. This is because the look ahead per-
formed by PROST in the presence of sparse non-Markovian
rewards is highly uninformed (i.e. close to blind search),
and for sufficiently large instances the look ahead cannot
provide any information. If this occurs, PROST makes early
random moves that prevent the agent from collecting any
long-term reward. When the compiled MDP is enhanced
with reward shaping, the search performance improves sig-
nificantly. In our tests with reward shaping, the potentials
are distributed uniformly with the number of courses passed
— i.e. inversely proportional to the distance to the accept-
ing automaton states as described in Section 5.2 —, and
go down to zero when the prerequisites are violated. State-
of-the-art configurations of PROST achieved the TERF in
all trials. Remarkably, reward shaping boosted the perfor-
mance of the basic UCT algorithm from zero to achieving
the non-Markovian reward in almost all trials.

6.2 Guiding Towards Liveness Tradeoffs

In our second set of experiments, we evaluated the practi-
cality of our approach in problems where the stochasticity
of the domain could make it infeasible to accomplish all
reward-worthy behaviors. We used a modification of the
wildfire domain. In the wildfire domain, some places in

MDP Planner NoRS RS
PROST UCT*(IDS) mem 617
PROST UCT*(DFS) mem 627
PROST IPPC-2014 mem 620
PROST IPPC-2011 mem 637

UCT (3 steps look ahead) 423 527
no actions taken 263 263

Table 3. Average reward achieved (over 30 trials) in a wildfire
problem with desired behaviours, for each cell c: never have fire
in ¢ for more than two turns in a row. Different MDP planners
were used to solve the compiled MDP problem, with and without
reward shaping (RS).

a grid field are originally burning. Fire can propagate to
neighboring cells with certain probability. The agent can
attempt to extinguish fire, one cell at a time. We consider
a wildfire problem in a 3 x 3 grid with desired behaviours,
one for each cell c: never have fire in c for more than two
turns in a row. We assign each reward r = 100 if, at the end
of an execution trace of length 10, the behaviour is satisfied.
We experimented with different configurations of PROST,
UCT, and a naive planner that takes no action. The results
are summarized in Table 3. In these experiments, we noted
that reward shaping is beneficial to the quality of the plans.
Moreover, PROST easily runs out of memory (512MB) if
no reward shaping is applied. This is because the sparsity of
rewards forces it to expand a large search tree. Limiting the
memory usage in PROST resulted in policies of lower qual-
ity than those obtained with reward shaping. On the other
hand, naive reward shaping (¢(F,) = r in accepting states,
0 otherwise) successfully guides search, with a significant
reduction in memory, demonstrating improved scalability.

7 Summary and Discussion

NMRDPs provide a powerful framework for modelling
decision-making problems with behaviour-based rewards.
In this paper we used LTL¢ to specify rich non-Markovian
rewards and presented a technique for solving NMRDPs via
compilation to MDPs that can be solved with off-the-shelf
MDP planners. Our approach employs automata represen-
tations of the LTL¢ formulae into the compiled MDP. We
leverage reward shaping to help guide search, mitigating
for the sparseness of non-Markovian rewards and the poor
lookahead of some state-of-the-art UCT-based methods. Our
experiments demonstrate that automata-based reward shap-
ing is an effective method to enhance search and obtain
solutions of superior quality. While non-Markovian rewards
were specified here in LTLy, the proposed approach will
work for rewards specified in any formal language for which
there is a corresponding automata representation including
PLTL and other dialects of LTL; Golog and other dialects
of regular expressions including LDL¢; and compositions of
these languages (c.f., (Baier et al., 2008)).



Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)

Acknowledgements: The authors gratefully acknowledge
funding from the Natural Sciences and Engineering Re-
search Council of Canada.

References

Bacchus, Fahiem and Kabanza, Froduald. Using temporal
logics to express search control knowledge for planning.
Artificial Intelligence, 116(1-2):123—-191, 2000.

Bacchus, Fahiem, Boutilier, Craig, and Grove, Adam J.
Rewarding behaviors. In Proceedings of the 13th National
Conference on Artificial Intelligence (AAAI), pp. 1160—
1167, 1996.

Bacchus, Fahiem, Boutilier, Craig, and Grove, Adam J.
Structured solution methods for non-markovian decision
processes. In Proceedings of the 14th National Confer-
ence on Artificial Intelligence (AAAI), pp. 112-117, 1997.

Baier, Jorge A. and Mcllraith, Sheila A. Planning with tem-
porally extended goals using heuristic search. In Proceed-
ings of the 16th International Conference on Automated
Planning and Scheduling (ICAPS), pp. 342-345, 2006.

Baier, Jorge A., Fritz, Christian, and Mcllraith, Sheila A.
Exploiting procedural domain control knowledge in state-
of-the-art planners. In Proceedings of the 17th Interna-
tional Conference on Automated Planning and Schedul-
ing (ICAPS), pp. 26-33, Providence, Rhode Island, USA,
September 22 - 26 2007.

Baier, Jorge A., Fritz, Christian, Bienvenu, Meghyn, and
Mcllraith, Sheila A. Beyond classical planning: Procedu-
ral control knowledge and preferences in state-of-the-art
planners. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (AAAI), pp. 1509-1512, 2008.

Baier, Jorge A., Bacchus, Fahiem, and Mcllraith, Sheila A.
A heuristic search approach to planning with temporally
extended preferences. Artificial Intelligence, 173(5-6):
593-618, 2009.

Bienvenu, Meghyn, Fritz, Christian, and Mcllraith, Sheila A.
Specifying and computing preferred plans. Artificial In-
telligence, 175(7-8):1308-1345, 2011.

Boutilier, Craig, Dean, Thomas, and Hanks, Steve. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence Research
(JAIR), 11:1-94, 1999.

Brafman, Ronen 1., De Giacomo, Giuseppe, and Patrizi,
Fabio. LTLf/LDLf non-Markovian rewards. In Proceed-
ings of the 32nd AAAI Conference on Artificial Intelli-
gence (AAAI), 2018.

Camacho, Alberto, Chen, Oscar, Sanner, Scott, and Mcll-
raith, Sheila A. Decision-making with non-markovian
rewards: From LTL to automata-based reward shaping.
In 3rd Multidisciplinary Conference on Reinforcement
Learning and Decision Making (RLDM), pp. 279-283,
2017a.

Camacho, Alberto, Chen, Oscar, Sanner, Scott, and Mcll-
raith, Sheila A. Non-Markovian rewards expressed in
LTL: Guiding search via reward shaping. In Proceedings
of the 10th Symposium on Combinatorial Search (SOCS),
pp- 159 — 160, 2017b.

Camacho, Alberto, Chen, Oscar, Sanner, Scott, and Mcll-
raith, Sheila A. Decision-making with non-markovian
rewards: Guiding search via automata-based reward shap-
ing. Technical Report CSRG-632, Department of Com-
puter Science, University of Toronto, June 2017c.

Camacho, Alberto, Baier, Jorge A., Muise, Christian J., and
Mcllraith, Sheila A. Finite LTL synthesis as planning.
In Proceedings of the 28th International Conference on
Automated Planning and Scheduling (ICAPS), pp. 29-38,
2018.

De Giacomo, Giuseppe and Vardi, Moshe Y. Linear tem-
poral logic and linear dynamic logic on finite traces. In
Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI), pp. 854-860, 2013.

De Giacomo, Giuseppe and Vardi, Moshe Y. Synthesis for
LTL and LDL on finite traces. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1558-1564, 2015.

Devlin, Sam and Kudenko, Daniel. Dynamic potential-
based reward shaping. In Proceedings of the 11th Interna-
tional Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS), pp. 433—440, 2012.

Fritz, Christian, Baier, Jorge A., and Mcllraith, Sheila A.
ConGolog, sin Trans: Compiling ConGolog into basic
action theories for planning and beyond. In Proceedings
of the 11th International Conference on Knowledge Rep-
resentation and Reasoning (KR), pp. 600-610, Sydney,
Australia, 2008.

Gerevini, Alfonso, Haslum, Patrik, Long, Derek, Saetti,
Alessandro, and Dimopoulos, Yannis. Deterministic
planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners. Ar-
tificial Intelligence, 173(5-6):619—668, 2009.

Keller, Thomas and Eyerich, Patrick. PROST: probabilistic
planning based on UCT. In Proceedings of the 22nd
International Conference on Automated Planning and
Scheduling (ICAPS), 2012.



Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)

Kocsis, Levente and Szepesvari, Csaba. Bandit based monte-
carlo planning. In Proceedings of the 17th European
Conference on Machine Learning (ECML), pp. 282-293,
2006.

Kupferman, Orna and Vardi, Moshe Y. Model checking of
safety properties. Formal Methods in System Design, 19
(3):291-314, 2001.

Littman, Michael L., Topcu, Ufuk, Fu, Jie, Jr., Charles
Lee Isbell, Wen, Min, and MacGlashan, James.
Environment-independent task specifications via GLTL.
CoRR, abs/1704.04341, 2017.

Ng, Andrew Y., Harada, Daishi, and Russell, Stuart. Policy
invariance under reward transformations : Theory and
application to reward shaping. In Proceedings of the 16th
International Conference on Machine Learning (ICML),
volume 3, pp. 278-287, 1999.

Pnueli, Amir. The temporal logic of programs. In Pro-
ceedings of the 18th IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 46-57, 1977.

Puterman, Martin L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1994,

Reiter, Raymond. The Frame Problem in the Situation Cal-
culus: A Simple Solution (sometimes) and a completeness
result for goal regression, pp. 359-380. Artificial Intelli-
gence and Mathematical Theory of Computation: Papers
in Honor of John McCarthy. Academic Press, San Diego,
CA, 1991.

Sanner, Scott. Relational dynamic influence diagram
language (RDDL): Language description. 2010.
URL http://users.cecs.anu.edu.au/
~ssanner/IPPC_2011/RDDL.pdf.

Sohrabi, Shirin, Baier, Jorge A., and Mcllraith, Sheila A.
Preferred explanations: Theory and generation via plan-
ning. In Proceedings of the 25th AAAI Conference on
Artificial Intelligence (AAAI), pp. 261-267, August 2011.

Thiébaux, Sylvie, Gretton, Charles, Slaney, John K, Price,
David, Kabanza, Froduald, et al. Decision-theoretic plan-
ning with non-markovian rewards. Journal of Artificial
Intelligence Research (JAIR), 25:17-74, 2006.

Toro Icarte, Rodrigo, Klassen, Toryn, Valenzano, Richard,
and Mcllraith, Sheila A. Using reward machines for high-
level task specification and decomposition in reinforce-
ment learning. In Proceedings of the 35th International
Conference on Machine Learning (ICML), 2018.


http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

