False Positive or False Negative: Mining Frequent
Itemsets from High Speed Transactional Data Streams

Jeffrey Xu Yu!, Zhihong Chong?, Hongjun Lu®, Aoying Zhou?

! The Chinese University of Hong Kong, Hong Kong, China, yu@se.cuhk.edu.hk
% Fudan University, Shanghai, China, {zhchong,ayzhou}@fudan.edu.cn
3 The Hong Kong University of Science and Technology, Hong Kong, China, 1uhj@cs.ust.hk

Abstract

The problem of finding frequent items has
been recently studied over high speed data
streams. However, mining frequent itemsets
from transactional data streams has not been
well addressed yet in terms of its bounds of
memory consumption. The main difficulty is
due to the nature of the exponential explo-
sion of itemsets. Given a domain of I unique
items, the possible number of itemsets can be
up to 2/ —1. When the length of data streams
approaches to a very large number N, the
possibility of an itemset to be frequent be-
comes larger and difficult to track with lim-
ited memory. However, the real killer of ef-
fective frequent itemset mining is that most
of existing algorithms are false-positive ori-
ented. That is, they control memory con-
sumption in the counting processes by an er-
ror parameter €, and allow items with sup-
port below the specified minimum support s
but above s — € counted as frequent ones.
Such false-positive items increase the num-
ber of false-positive frequent itemsets expo-
nentially, which may make the problem com-
putationally intractable with bounded mem-
ory consumption. In this paper, we developed
algorithms that can effectively mine frequent
item(set)s from high speed transactional data
streams with a bound of memory consump-
tion. While our algorithms are false-negative
oriented, that is, certain frequent itemsets
may not appear in the results, the number
of false-negative itemsets can be controlled by
a predefined parameter so that desired recall
rate of frequent itemsets can be guaranteed.
We developed algorithms based on Chernoff
bound. Our extensive experimental studies

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

204

show that the proposed algorithms have high
accuracy, require less memory, and consume
less CPU time. They significantly outperform
the existing false-positive algorithms.

1 Introduction

Recently, data streams emerged as a new data type
that attracted great attention from both researchers
and practitioners. A data stream is essentially a vir-
tually unbounded sequence of data items arriving at
a rapid rate. Since data items arrive continuously, it
is only feasible to store certain form of synopsis (in
memory or disk) rather than the raw data for analy-
sis or information extraction. It is also infeasible to
multiple scan the original data to build such synopsis
because of the massive volume as well as the rapid ar-
rival rate. Research work related to data streams boils
down to the problem of finding the right form of syn-
opsis and related construction algorithms so that the
required statistics or patterns can be obtained with a
bounded error for unbounded input data items with
limited memory. A large amount of work has been
reported for various statistics and patterns, includ-
ing simple aggregates and statistics such as maximum,
minimum, average, median values and quantiles as well
as complex patterns such as decision trees, clusters,
and frequent itemsets.

In this paper we study the problem of mining fre-
quent item(set)s (or pattern) from high speed trans-
actional data streams. Manku and Motwani gave
an excellent review of wide range applications for
the problem of frequent data stream pattern mining
[12]. The problem can be stated as follows. Let
I ={z1,22, -+ ,2,} be a set of items. An itemset is a
subset of items I. A transactional data stream, D, is
a sequence of incoming transactions, (t1,t2,--- ,tn),
where a transaction ¢; is an itemset and N is a un-
known large number of transactions that will arrive.
The number of transactions in D that contain X is
called the support of X, denoted as sup(X). An item-
set X is a frequent pattern, if and only if sup(X) >
sN, where s = sup(X)/N is a threshold called a min-
imum support such that s € (0,1). The frequent data
stream pattern mining, denoted FDPM, is to find an
approzimate set of frequent patterns (itemsets) in D
with respect to a given support threshold, s. The ap-
proximation is controlled by two parameters, € and 4,
where € (€ (0,1)) controls errors and ¢ (€ (0,1)) con-
trols reliability. We call it (¢, 0) approximation scheme.

The challenge is to devise algorithms to support
(e,8) approximation for the FDPM problem with a
bound regarding space complexity. The main diffi-
culty is the nature of the exponential explosion of fre-
quent patterns mining. For data streams, the incom-
ing transactions will not be stored, and we can only
scan them once. If counts are required for each item-
sets, an application with m distinct items will require
2™ — 1 counts. Even with a moderate set of items, for
example m = 1,000. The total number of itemsets is
2m — 1 = 21000 _ 1 which is obviously intractable.

A simple version of FDPM problem, that is, min-
ing frequent items but not itemsets, has been re-
cently widely studied in data stream environments
with bounded memory [2, 3, 5, 6, 7, 9, 10, 12]. Af-
ter a careful study of these published work, we ob-
served that, while the detailed algorithms are differ-
ent, almost all of them are false-positive oriented ap-
proaches. That is, given a minimum support s, they
control memory consumption in the counting processes
by an error parameter €, and allow items with support
below the specified minimum support s but above s—e€
counted as frequent ones.

In this paper, we argue that since frequent item
mining is the first step in frequent itemsets mining,
even a small number of false-positive items, resulted
from the false-positive oriented item counting, could
lead to a large number of false-positive itemsets, which
makes efficient and effective frequent itemsets min-
ing infeasible. This motivated us to develop a false-
negative oriented approach for frequent items mining.
In addition, to further address the problem caused by
explosion of frequent itemsets, we explored a tight
bound to control the counting process for frequent
item(set)s mining. As a summary, our contribution
can be summarized as follows.

o While most existing work follows the approach of
false-positive oriented frequent item counting, we
show that false-negative oriented approach that
allows a controlled number of frequent itemsets
missing from the output is a more promising solu-
tion for mining frequent itemsets from high speed
transactional data streams.

e We developed the first set of one-scan false-
negative oriented algorithms which significantly
outperform the existing false-positive oriented ap-
proaches for frequent itemsets mining as well as
frequent items mining. We also derived memory
bounds for both cases.

e Most existing approaches use the error parame-
ter for two purposes which are conflict: quality
control (¢) and memory size control (1/€ or 1/€?),
which leads to a dilemma: a little increase of €
will make the number of false-positive items large,
and a little decrease of € will make memory con-
sumption large. Our algorithms adopt a (e, §) ap-
proximation scheme with € = 0,6 > 0 that de-
couples the two interrelated but conflict purposes
and makes the parameter setting of the mining
process easier.

205

The remainder of the paper is organized as follows.
Section 2 analyzes the false-positive and false-negative
approaches in frequent item(set)s mining. Section 3
and 4 present our frequent items mining algorithm,
and the results of performance study. Section 5 and
6 present our frequent itemsets mining algorithm, and
the results of performance study. Section 7 concludes
the paper.

2 False-Positive versus False-Negative

Due to the little space allowed to mine frequent data
stream patterns, the key point becomes how to prune
those potentially infrequent patterns and how to main-
tain potentially frequent patterns with probabilistic
guarantees [11]. Approximate mining frequent pat-
terns with probabilistic guarantee can take two pos-
sible approaches, namely, false-positive oriented and
false-negative oriented. The former includes some in-
frequent patterns in the final result, whereas the latter
misses some frequent patterns.

There are a large number of publications on the
false-positive oriented approaches [2, 3, 5, 6, 7, 9, 10,
12], and there is no reported study on one-scan false-
negative oriented approach. All false-positive oriented
approaches focused on frequent items mining, rather
than frequent itemsets mining. In [12], as the first at-
tempt, Manku and Motwani also studied false-positive
oriented frequent itemsets mining in a less theoretical
nature and with a focus on system-level issues.

2.1 Deficiency of False-Positive Oriented Ap-
proaches

Because the focus of this paper is on frequent itemsets
mining, we concentrate ourselves on frequent itemsets
mining, and we mainly address it in comparison with
the algorithms proposed by Manku and Motwani [12].

In [12], Manku and Motwani developed two false-
positive oriented algorithms for frequent items count-
ing, Sticky-Sampling and Lossy-Counting. The Sticky-
Sampling uses O(2log(s~'6~')) expected number of
entries, and Lossy-Counting uses O(% log(eN)) entries.
In theory, Sticking-Sampling requires constant space,
while Lossy-Counting requires space that grows log-
arithmically with N. In practice, as shown in [12],
Sticky-Sampling performs worse because of its ten-
dency to remember unique items sampled. Lossy-
Counting can prune low frequency items quickly and
keep only high frequent items. Based on this fact,
Manku and Motwani give a Lossy-Counting based
three module system (Buffer-Trie-SetGen) for min-
ing frequent itemsets in a less theoretical nature.
The main features of their algorithms include (1) All
item(set)s whose true frequency exceeds sN are out-
put, (2) no item(set)s whose true frequency is less than
(s — €)N is output, and (3) estimated frequencies are
less than the true frequencies by at most e.

In the following, without loss of generality, we ad-
dress our false-negative approach in comparison with
the Lossy-Counting algorithm and the Buffer-Trie-
SetGen approach.

Remark 1 Like Sticky-Sampling, Lossy-Counting is
false-positive oriented and is e-deficient. The parame-
ter € is coupled with two conflict goals. First, let f.
be the number of items in [s — €,s]. Then fe > fo if
€ > €. The smaller € is, a less number of false-positive
items are included in the result set. Second, because the
memory consumption is a factor of 1/€, the memory
consumption increases reciprocally in terms of €.

The Remark 1 states the dilemma of false-positive
oriented approaches (e-deficient). The memory con-
sumption increases reciprocally in terms of € where €
controls the error bound. It is difficult to decouple the
two functions, memory consumption control and error
control, from the error bound e. In Sticky-Sampling,
€ is used to determine a sampling rate, and in Lossy-
Counting, € is used to determine the bucket width.
Changing their ways of dealing with € means to change
the worst case space-complexity analysis.

The impacts of parameter € will be even great when
frequent itemsets mining is concerned, which is in
fact related to the fundamental issue on application
of Apriori property [1]. The Apriori property states:
if any length k pattern is not frequent in a dataset, its
length (k+1)-th super-patterns can never be frequent.
In other words, the Apriori property suggests to use
possibly smallest k-th frequent itemsets to generate the
(k+1)-th candidate itemsets, and then mine the (k+1)-
th candidate itemsets. The false-positive oriented ap-
proaches allow 1l-itemsets with support below s but
above s — € counted as frequent. Consequently, when
there are some false-positive 1-itemsets in [s —¢, s], the
nature of the exponential explosion makes the number
of potential frequent itemsets be very large and makes
false-positive oriented approaches difficult to manage
it.

2.2 OQwur False-Negative Oriented Approach:
€é-Decoupling

False-positive oriented approaches have their limit to
support frequent item(set)s mining. One of the main
difficulties is caused by the conflicts of the error pa-
rameter € as stated in Remark 1. In this paper, we
decouple the two conflict functions of the error para-
meter € as follows.

¢ Error Control and Pruning: We use an effec-
tive € to control error bound, which is changeable
and is not fixed. The effective value of € becomes
smaller while more data items are received from
a data stream. In brief, we compute the effective
value of € using minimum support s (user given),
reliability § (user given), and the number of ob-
servations n (variable), where € is reciprocal to n.
The effective value of € approaches to zero when
the number of observations increases. Therefore,
the frequent item(set)s mining becomes more ac-
curate. It is important to note that we use € to
prune data but do not use it to control memory.

¢ Memory Control: We use the reliability § in-
stead of € to control memory consumption. Differ-
ent from false-positive oriented approaches whose

206

memory consumption is determined by 1/e, the
memory consumption in our algorithms is related
to In(1/4). Consider the same memory space us-
ing either € or §, we have 1/e = In(1/4). For
getting the same memory space, when € = 0.1,
0 = 0.00005; when ¢ = 0.01, § = 3.7 x 10~
Because in practice, 6 = 0.0001, our approach
can significantly reduce the memory consumption
and processing cost for frequent item(set)s min-
ing, while achieving high accuracy. We will dis-
cuss bounds for frequent item(set)s mining later.

Our approach does not allow l-itemsets with sup-
port below s counted as frequent, and therefore is a
false-negative oriented approach. We will give the de-
tails of our approach, and show that the possibility of
missing frequent item(set)s is considerably small later
in this paper.

Our one-scan false-negative oriented approach is
different from Toivonen’s two-scan false-negative ori-
ented approach [13]. In brief, Toivonen’s algorithm
is to pick a random sample and find all association
rules using this sample that probably hold in the whole
dataset in one pass, and to verify the results with the
rest of the dataset. It allows false-negative with proba-
bilistic guarantees, and the sample size can be at least
O((510g(071)). One of the problem of the Toivonen’s
algorithm is that, because the error parameter € can
be very small, the memory consumption using Toivo-
nen’s algorithm can be very large (1/€2). We summa-
rized some bounds in Table 1 for comparison. Note, in
Table 1, as a false-positive approach, GroupTest does
not rely on e. But it requests the knowledge of the
domain of a data stream, which is difficult to obtain
beforehand.

2.3 Frequent Itemsets Mining: A Comparison

To verify our analysis, we conducted experiments to
study the impacts of a large number of itemsets in
the range of [s — €, s + €] on frequent itemsets mining.
We report here one of the experiments. We generated
a data stream of length 1,000K which has an aver-
age transaction size 15 and maximal potentially fre-
quent itemset size 6, with 10K unique items. We im-
plemented the Lossy-Counting based frequent itemset
mining approach, denoted as BTS (Buffer-Trie-SetGen)
[12]. With € = {5 and 6 = 0.1, we obtained results as
shown in Table 2. To measure the quality, we use two
metrics, recall and precision, that are defined as fol-
lows. Given a set of true frequent itemsets A and a

. . . |AnB
set of obtained frequent itemsets B, the recall is |] |
.. . |AnB
and the precision is | B L.
s (%) | True Size Mined Size | Recall | Precision
0.08 21,361 126,307 1.00 0.17
0.10 12,252 68,275 1.00 0.18
0.20 2,359 23,154 1.00 0.16

Table 2: Impact of false positives in BTS

In Table 2, the first column is the minimum sup-
port (s), and the second is the true size of frequent

Algorithm

| Type

| Space

Charikar et al [3]

False-Positive

O(; log(n/9))

Sticky-Sampling [12]

False-Positive

O(Zlog(s~15— 1))

Lossy-Counting [12]

False-Positive

% log(eN))

GroupTest [6]

False-Positive

Toivonen [13]

False-Negative

(7 log(s™ 1))

False-Negative

FDPM-1 (this paper)

(
o(
O(k(log(k) +log(d—")) log(M))
o(

(

O((2 + 21n(2/5))/3)

Table 1: Theoretical Memory Bounds

itemsets(|A|). The next three columns are a summary
for the quality of BTS using minimum support s. The
first of the three columns is the result size (|B|). The
second and third columns of the three columns are its
recall and precision. It can be seen that the sizes of ob-
tained results are about 10 times larger than the true
size. All the three recalls are 1, which means that the
obtained results contain all the true frequent itemsets.
All the three precisions are less than 0.2, which means
that the obtained results contain a large number of
itemsets below s but above s — e. The number of false
positive is large, and its impact is significant in two
ways: 1) the quality of mining result is low, and ii) the
memory needed at run time is even larger accordingly.

Astute readers may suggest to turn a false-positive
algorithm into a false-negative one for frequent itemset
mining. That is, for user given s and €, we can delib-
erately use s + € as the minimum support to mine the
frequent itemset so that the output will contain only
those frequent itemsets with support greater than s
but some of frequent itemsets between s and s+ € may
not be in the output, which makes the algorithm false-
negative. We implemented such idea and obtained re-
sults as shown in Table 3. Note, the true frequent
itemsets in Table 2 and Table 3 are the same. We
can see that, in Table 3, the precisions become 1.0 as
there are no false-positive. However, the recall rate
drops 15-26% that seems unsatisfactory low.

s (%) True Size Mined Size | Recall | Precision
0.08 21,361 18,351 0.86 1.00
0.10 12,252 10,411 0.85 1.00
0.20 2,359 1,739 0.74 1.00

Table 3: Impact of false negatives: BTS(s + €) where
e =s/10.

We tested our false-negative oriented approach. For
the same minimum support (s) in Table 2, with € =
5/10 and § = 0.1, we achieve 0.99 recall and 1.0 pre-
cision in all the setting. Recall: BTS does not perform
well, because there are many itemsets in [s — €, s + €]
(Table 2). In order to test whether our false-negative
oriented approach misses itemsets, we used the same
setting as Table 2 but set minimum support to be
s — ¢ instead, and tested if we miss many itemsets
in [s —€, s+ ¢€]. We found that we can still achieve 0.99
recall and 1.0 precision in all the setting.

As a conclusion, we believe that contrary to most
existing approaches, the false-negative oriented ap-
proach is more promising to solve the FDPM problem.

207

3 Mining Frequent Items from a Data
Stream

In this section, we focus on frequent items mining, and
discuss Chernoff bound [4], our basic approach and
algorithm. We will discuss frequent itemsets mining
in Section 5.

3.1 Chernoff Bound

Suppose there is a sequence of observations,
01,02,"** ,0pn,0nt1, . Chernoff bound gives us cer-
tain probabilistic guarantees on the estimation of
statistics about the underlying data, that generates
these observations, based on the n observations ob-
tained so far. Consider the sequence of observations,
01,02, ,0n, as n independent Bernoulli trails (coin
flips) such that Pr[o; = 1] = p, Prjo; = 0] =1 —p for
a probability p. Let r be the number of heads in the n
coin flips. The expectation of r is np. Chernoff bound
states, for any v > 0,

—npy?

Pr{|lr —np| > npy} <2e 2

Let 7 be r/n, and consider the minimum support s as
the probability p. The above equation becomes

—'n,:z'y2

Pr{|t —s| > sy} <22

Further, we replace sy with e.

—ne?
Pr{|t—s| > €} <272 1)

Let the right side of Equation (1) be 6. We see that,
with probability < §, the running average 7 is beyond

+e of s, where
e /231n752/(5) @)

FDPM can be considered as an application of Cher-
noff bound as follows. Given a sequence of 1-item
transactions, D = t1, ta, *++, tn,tny1, * ,tn, Where
n is the number of first n transactions being observed
such as n € N. For a pattern X, its running sup-
port up to n is 3up(X) and its true support up to N
is sup(X). By replacing 7 with 3up(X)/n and r with
s (= sup(X)/N), respectively, we can make the follow-
ing statement. For a pattern X, when n observations
have been made, the running support of X is beyond
+e€ of s with probability < é. In other words, the run-
ning support of X is within e of s with probability

>1-6.

Consider s = 0.1, 6 = 0.1 and ¢ = 0.01. With
Chernoff bound, n ~ 5,991 (Equation (2)). This im-
plies the following for a pattern X. If we have about
5,991 observations, its true value sup(X)/N is in the
range of (5up(X)/n—0.01,5up(X)/n+0.01) with high
probability 0.9.

3.2 The Basic Approach

Based on the Chernoff bound, we group arrival items
into two groups, namely potentially infrequent pat-
terns and potentially frequent patterns. They are de-
fined as follows.

Definition 1 Given n observations, a running error
€n in term of n can be obtained (Eq. (2)). A pattern X
is potential infrequent if Sup(X)/n < s — €, in terms
of n. A pattern X is potential frequent if it is not
potential infrequent in terms of n.

The conditions for determining potential infrequent
pattern can be represented alternatively as sup(X) <
(s — €n)n for a given n observations. A pattern X is
potential frequent if sup(X) > (s — €,)n.

It is important to note that €, is not the user-
specified parameter € but a running variable. The
running error €, decreases, while the number of ob-
servations n increases. When n becomes a very large
number N, ¢, = 0. Therefore, sup(X) ~ sN.

Remark 2 Our algorithm is false-negative oriented
and is a (0,6) approrimate scheme.

Remark 3 For a given minimum support s and relia-
bility 6. The memory consumption is bounded in terms
of the number of observations, and is much less than
the number of observations in practice.

The Remark 3 states the fact that the same transac-
tions may appear many times in a transactional data
stream. As discussed later, our bound does not rely
on the user-specified error €, but on a running error
€, which decreases while the number of observations
n increases.

3.3 Mining Frequent Items

Our algorithm for mining frequent items from a data
stream, denoted FDPM-1, is outlined in Algorithm 1,
which takes s and § as inputs. Note that we do not
take € as input. Algorithm 1 makes use of the Cher-
noff bound. In line 1, ng is the required number of
observations, which is given below.

_ 2+2In(2/6)

3)

We will show how we determine ng later, which in fact
is the memory bound. Now, when we receive a trans-
action ¢t from a l-itemset transactional data stream,
we check whether it exists in the pool of P. If it exits,
we increase its count by 1 (line 4-5). Otherwise, we
insert t into P if the number of entries in P is less

o

208

Algorithm 1 FDPM-1(s, 9)

1: let ng be the required number of observations (Eq.

(3));

2: n+ 0, P+ 0

3: while a new transaction t arrives do

4: if t € P then

5: increase t’s count by 1;

6: else

7 if |P| > ng then

8: calculate the running ¢, for the n observa-
tions;

9: delete all entries in P that are potentially
infrequent;

10: end if

11: insert ¢ with an initial count 1 into P;

12: end if

13: n+<n+1;
14: output P on demand;
15: end while

than ng. When P becomes full (P > ng) (line 7), we
prune potential infrequent patterns X in P based on
Definition 1.

We output the mining results (P) only when there
is such a demand at line 14. Note: we do not ini-
tially allocate memory for keeping ng entries in P. We
increase the size of P incrementally.

Theorem 1 Algorithm 1 finds frequent 1-itemsets in
a data stream, with two parameters s and §. Algorithm
1 ensures the followings, when data is independent.

(a) All items whose true frequency exceeds sN are
output with probability of at least 1 — 4.

(b) No items whose true frequency is less than sN are
output.

(c) The probability of the estimated support that
equals the true support is no less than 1 — 4.

(d) The bound on memory space is (2 + 21n(2/6))/s
when the Chernoff bound is used.

The proof of Theorem 1 is sketched below.

First, the first three properties (a), (b) and (c) can
be directly derived from the Chernoff bound. When
n transactions have been received, the true support of
a pattern X, sup(X)/N, for N > n, is within +e,
of the running support 3up(X)/n when the Chernoff
bound is used. Recall ¢, approaches 0 when the num-
ber of observations n increases. Because we prune po-
tential infrequent patterns whose true support is not
in the given range with probability J, the probability
of pruning a frequent pattern is at most d. Therefore,
the probability of the estimated support that equals
the true support is no less than 1 — 4.

Second, we show the proof for the property (d) when
the Chernoff bound is concerned. As shown in Algo-
rithm 1, P always keeps all potential frequent patterns

X such that sup(X) > (s — €,)n, when n transactions
have been received. Therefore, |P| < 1/(s —€,), when
s — en > 0, otherwise |P| - (s — €,)n > n, which is
impossible. let |P| = n = 1/(s — €,). We have the
following equation.

N S 1 @

S — €p 2sIn(2/6)
s—1/ Zolni2/8)
Solve the equation, we get

"o 24 21:(2/6)

(5)
as the proof of the last property (d) of Theorem 1.

The last property of Theorem 1 is proved for the
minimum number of observations. As an example,
suppose s = 0.001, ¢ = s/10 and § = 0.1. The
memory bound is ng = 7,991. Consider ¢, as fol-
lows. When n < ng, €, = 0, because all items can
be kept in the pool. When n = 7,992 (= ng + 1),
€n, = 0.000866 (the largest possible error). When
n = 100,000, €, = 0.000245. When n = 1,000, 000,
€, = 0.000077.

We discuss the time complexity regarding Algo-
rithm 1 in brief. In Algorithm 1, the cost for inserting
a new item is O(1). The cost for one pruning is O(1)
because we only maintain ng items. The maximum
number of pruning is at most N/ng where N is the
length of the data stream.

Algorithm 1 is designed on top of the Chernoff
bound which assumes data independent. In reality,
data in a data stream is highly possible to be depen-
dent. When data is dependent in a transactional data
stream, the quality of Algorithm 1 cannot be guaran-
teed. Several approaches can be taken to handle data
dependent data streams. One is to conduct random
sampling with a reservoir [14], as indicated in [12].
The technique of random sampling with a reservoir is,
in one sequential pass, to select a random sample of n
records without replacement from a pool of N records
where N is unknown [14]. With this technique, we can
handle a data dependent data stream as a data inde-
pendent data stream. In [8], a probabilistic-inplace
algorithm was introduced to handle different distri-
butions. Given m counters, the probabilistic-inplace
algorithm reserves m/2 to store the current best can-
didates, and uses the unreserved m/2 to monitor net-
work traffic. For every run, the probabilistic-inplace
algorithm replaces the m/2 reserved counters with the
top out of all m counters. With this technique, we
can divide a transactional data stream into segments
and apply Algorithm 1 to segments one-by-one contin-
uously. The length of each segment is k - ng where k
is a positive number and ng is the smallest number of
observations. The memory required is 2ng — one for
reserving potentially frequent patterns and the other
for monitoring a segment.

209

10406 —

100000

> 10000+
g

£

5

= 1000

LA \
001 0.10 1.00 10.00 001 0.10 100 10.00
Support (%)

(b) CPU (Zipf = 0.5)

TR [Rogmania
S§ B
FDPM-1

Lo —g— n o
SS B
FDPM-1 -+ p)
0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00
Support (%) Support (%)

(c) Memory (Zipf = 1.5)
Figure 1: The effectiveness of s (e = s/10, § = 0.1)

(d) CPU (Zipf = 1.5)

4 Performance Study I: Mining Fre-
quent Items

We report our experimental results for frequent items
mining in this section. For frequent items mining,
we implemented our false-negative oriented algorithm
FDPM-1 (Algorithm 1). We also implemented false-
positive oriented algorithms, Lossy-Counting [12] and
Sticky Sampling [12], and denote them as LC and SS,
respectively. For testing frequent items mining, we
generate l-itemset transactional data streams using
Zipf distribution.

We implemented all the frequent item(set)s min-
ing algorithms using Microsoft Visual C++ Version 6.0.
We used the same data structures and subroutines in
all implementations, in order to minimize any perfor-
mance differences caused by minor differences in im-
plementation. We conducted all testings (Section 4
and Section 6) on a 1.7GHz CPU Dell PC with 1GB
memory. Because the memory size is 1GB, there were
no I/O0s in all our testings. We report our results in
terms of memory consumption (the number of coun-
ters) and CPU time (seconds), as well as the recall and
precision.

4.1 Data Distribution

We first test two data sets of length 1000K using two
Zipf factors, 0.5 and 1.5. We compare the three al-
gorithms: CL, SS, and FDPM-1, by varying s, where
€ = 5/10 and § = 0.1. The memory and CPU are
shown in Figure 1. In both cases, SS consumes the
largest memory for different s. Different from SS, the
memory consumption of both LC and FDPM-1 decreases
while s increases. It is interesting to note that when
Zipf = 0.5, FDPM-1 outperforms LC in terms of memory
consumption. On the other hand, when Zipf = 1.5, LC
outperforms FDPM-1 in terms of memory consumption.
In terms of CPU time, FDPM-1 outperforms LC in all
the cases.

A B = = n

100000

Lc ——
S§ B
FDPM-1 -

05 10 15 20 25 3.0

(a) Memory (b) CPU

Figure 2: Effectiveness of Zipf factors

Some explanations can be made below. When Zipf
= (.5, the data distribution is near uniform. Because
of uniform distribution, there are only a small number
of items whose support is greater than the minimum
support s. LC and SS need more memory to maintain
items in a rather sparse data stream. FDPM-1 prunes
items using the running error €,. While n increases, €,
approaches zero, and it allows us to track those near
s items with less memory consumption. When Zipf
= 1.5, data is more skewed, and the number of unique
items is less. FDPM-1 cannot prune as it does when Zipf
= 0.5. LC can effectively prune items whose support is
less than s — e. The recall and precision for Zipf = 1.5
are given in Table 4. FDPM-1 achieves 100% recall and
100% precision. SS and LC ensure recall to be 100%,
but allow precision to be down to (91%, 92%), despite
the fact that the patterns are skewed.

s (%) | LC [SS [FDOPM-1 |
[RT P [R[P [R]P]
0.01 1 091 [1 []091 |1 1
0.1 1 096 | 1 | 096 | 1 1
il 1 092 [1 | 092 1 1
10 1 1 1 1 1 1

Table 4: Varying s (Zipf = 1.5)

In order to investigate the effectiveness of Zipf dis-
tribution, we fix s = 0.1%, ¢ = s/10, and § = 0.1,
and test different Zipf factors. The results are shown
in Figure 2 in which there is turn over when Zipf is
about 1.25 (Figure 2 (a)). When Zipf is less than 1.25,
FDPM-1 consumes less memory than LC. FDPM-1 per-
forms best in terms of CPU cost. The recall and preci-
sion are shown in Table 5. When Zipf = 0.5, s = 0.1%,
no frequent items can be found. When Zipf = 1.0, the
precisions of L.C and SS are even down to 0.87. FDPM-1
ensures high recall and precision.

Zipf | LC [SS [FDPM-1 |
[R] P [R] P | R [P]
0.5 | - - - - - -
1.0 [1 {087 [1 [087 [099 1
1.5 [1 [096 [1 | 0.96 1 1
30 [1 1 1 1 1 1

Table 5: Varying Zipf factors

210

s (%)] LC [Ss | FDPM-1 |
[R] P |R] P [R]P]
0010 1 JO79 1079171
0.009 1 0731 073 |1 |1
0.008 1 10791 [079 1 [1
0007 [[1 108 [1 [080 [1[1
0.006 1 08 |1 [08 |11
0.005 1 108 | 1 [08 [1 [1
0004 [[1 [078 | 1 [078 |1 [1

Table 6: Sliding Window (Zipf = 0.5)

s (%)] LC [SS [FDOPM-1 |
[R] P [R] P [R[P]
0.010 1 Joor[J1Joor 11
0.009 1 o095 [1]o95 |1 1
0.008 1 0921 [092[1]1
0.007 1]096 |1 096 |11
0.006 110931 093 |11
0.005 110931 [093 |1 |1
0.004 10931 093 |1 |1

Table 7: Sliding Window (Zipf = 1.5)

4.2 Critical Region Testing

In this section, we further conduct several testing to
test a critical region of [s — €, s]. Suppose that many
frequent items reside in the critical region. LC and SS
may suffer if they use s and € to mine, because it is
most likely to include many false-positive and affect
the precision. On the other hand, FDPM-1 may suffer
if it uses s — € to mine, because it is most likely to miss
items.

First, with a window size e = 0.00001, we slide the
minimum support starting from s = 0.01% to s —i - €
where ¢ = 1,2,---,6, and test two data streams with
Zipf = 0.5 and Zipf = 1.5. The recall and precision are
shown in Table 6 and Table 7. Both LC and SS perform
in a similar way. When data is not skewed (Zipf = 0.5),
LC and SS are easier to include false-positives. FDPM-1
reaches 100% recall and 100% precision in all the cases.

Second, we identify a region with [s —¢, s] using the
data stream of Zipf = 1.5 where LC and SS perform
well. We artificially move frequent items from (s, 1]
to [s —€,8]. where s = 0.1% and € = s/10. We test
LC and SS using s as the minimum support, and test
FDPM-1 using s — € as the minimum support. The
recall and precision are shown in Table 8. As expected,
the precision of LC and SS decreases while more items
reside in [s — €, s]. But, FDPM-1 is insensitive to the
number of items in the critical region.

25000

20000

15000

Memory
CPU (second)
5

10000

5000

0 o
00 10 RO SO FF FM FL 00 © RO SO FF FM FL

(a) Memory (b) CPU

Figure 3: Effectiveness of data arrival order

‘ [s —¢,s8] ‘ (s, 1] ‘| LC [SS [[FDPM-1 |
[RT P R[] P [[R[P]

25 247 1 0.91 1 0.91 1 1

73 200 1 0.74 1 0.74 1 1

123 150 1 0.55 1 0.55 1 1

173 100 1 0.36 1 0.36 1 1

223 50 1 0.17 1 0.17 1 1

Table 8: Critical Region: Test LC/SS with s = 0.1%,
and test FDPM-1 with s = 0.09% where € = 5/10, 6 =
0.1, Zipf = 1.5

‘ Data ‘| LC SS [FDPM-1 |

[R] P [R] P |[R]P]
00 1] 0.96 1 0.96 1 1
r0 1 | 0.96 1 0.96 1 1
RO 1 1 1 1 1 1
S0 1 1 1 1 1 1
FF 1 [0.95 1 095 [1 1
FM 1 [0.95 1 095 [1 1
FL 1 [0.95 1 0.95 | 1 1

Table 9: Data arrival order

4.3 The Impacts of Data Arrival Order

We test data arrival orders, in order to ensure whether
our approaches are order sensitive. Let s = 0.1%,
€ =5/10, § = 0.1, and Zipf = 1.5. Several data arriv-
ing orders are tested: 00 (Original Order), r0 (reverse
Order), RO (Random Order), SO (segment-based ran-
dom order!, FF (Frequent First), FM (Frequent Mid-
dle), FL (Frequent Last). FDPM-1 is shown to be in-
sensitive to data arrival order. The results are shown
in Figure 3 and Table 9. It achieves 100% recall and
100% precision. It outperforms the others in terms of
CPU. The memory consumption is not influenced by
the data arrival order. LC and SS are rather sensitive
to the data arrival order. For example, when frequent
items arrive late (FM or FL), both LC and SS consume
more than FDPM-1.

Algorithm 2 FDPM(s,)

1: let ng be the required number of observations (Eq.

(3));
2: ny + k- ng;
3:n«0,F <0, P«
4: for every n, transactions do
5: keep potential frequent patterns in P in terms
of nq;
6: F+PUF;
7: prune potential infrequent patterns from F fur-
ther if |F| > ¢y - no;
8: P« (D;
9: n < n-+ni;
10: end for
11: output the patterns in F whose count > sn on-

demand;

!We randomly reorder data in a unit of segment (1,000 items)

211

5 Mining Frequent Itemsets from a
Data Stream

We show our frequent data stream pattern (itemsets)
mining algorithm in Algorithm 2. In line 1, we ob-
tain ng based on the Chernoff bound. Here ng is the
number of transactions. We divide a transactional
data stream into segments. The length of segment
is ng = k- ng (line 2). The parameter k controls the
size of transactions we process in each run in a similar
way like the probabilistic-inplace algorithm in [8]. We
maintain potential frequent patterns in F, and use P
for each segment in a run. Both are initialized in line
3. We will discuss the size of P and F in detail later.
In a for loop statement (line 4-10), we deal with every
segment of length of n; transactions as an individual
data stream repeatedly. For each segment, first, we
prune potential infrequent patterns (line 5), using the
same techniques given in Algorithm 1. A pattern X
is potential infrequent if sup(X) < (s — €,)n where n
increases from 0 to n; and ¢, is computed in terms of
n (Definition 1). Second, we merge the potential fre-
quent patterns in P with F. That is for every pattern
X € P with a count ¢, we increase the count of the
same pattern X by c if we can find it in F. Otherwise,
we create X in F with an initial count of ¢. Third,
we further prune potential infrequent patterns in F,
when |F| > ¢, - no using an existing association rule
mining algorithm. We will discuss ¢,, in detail next.

In Algorithm 2, the k controls the size of segment
(k- ng) in a run. If k is small, Algorithm 2 will prune
potential infrequent patterns frequently, which leads to
less memory but more CPU time. On the other hand,
alarge k may lead to more memory but less CPU time.
Regarding data dependent, we found in our extensive
testing that a small k& does not necessarily decrease
the quality of frequent itemsets mining, because the
number of combinations is large, in comparison with
frequent items mining.

Theorem 2 Algorithm 2 finds frequent itemsets in a
data stream, with two parameters s and 6. Algorithm
2 ensures the same properties.

(a) All itemsets whose true frequency exceeds sN are
output with probability of at least 1 — 4.

(b) No itemsets whose true frequency is less than sN
are output.

(c) The probability of the estimated support that
equals the true support is no less than 1 — 4.

Theorem 2 can be directly derived from the Cher-
noff bound. Below, we concentrate ourselves on
bounds of Algorithm 2.

In Algorithm 2, P keeps potential frequent itemsets
in a segment of n; transactions, and F keeps potential
frequent itemsets in all n transactions received so far.
At run time, some potential infrequent itemsets may
exist in P (F). An itemset in P (F) is an entry (a
pair of itemset and count). We discuss the size of P
(F) in terms of the number of entries, denoted |P|

(|F]). Obviously, |P| < |F|. The size |P| (|F|) can be
possibly larger than n; (n). For example, suppose that
we receive 2 transactions, --- ,t1,t2,---, where t; =
{1,2} and ¢ = {2, 3}. The possible potential frequent
itemsets can be {1}, {2}, {3}, {1,2}, {1,3}, {2,3},
and {1,2,3}. Because P (F) may contain potential
infrequent patterns, the theoretical upper bound of P
(F) is difficult to be determined due to the nature of
the exponential explosion of itemsets.

In this paper, we address an empirical upper bound
of | F| (|P| < |F|) using the Chernoff bound. We show
that the empirical upper bound of |F|, ur, can be
determined as a factor of ng, that is,

UR = Cy " N

such as | F| < up. Here, ng is determined by the Cher-
noff bound (Eq. (3)). The empirical upper bound (ur)
is determined as follows.

First, let Fia, denote the largest |F| for a given
minimum support s in the process of frequent item-
sets mining. Here, F,, 4, is the number of entries used
for processing transactions up to the current n trans-
actions (n > ny). We obtained different F,,,, values
using T10.I4.D1000K and T15.16.D1000K, by varying
s and 6. In Table 10, due to the space limit, we only
show the results with 6 = 0.1. We find that ¢4, =
Fonaz/s 2 is about the same for different minimum
support values (s), for a data stream with a given 4.
The ¢4, value obtained from T15.16.D1000K is larger
than the ¢4, value obtained from T10.I4.D1000K,
because the average of transaction size and the max-
imal potentially frequent itemsets of T15.16.D1000K
are larger than those of T10.I14.D1000K. Note: when
& decreases (higher reliability), ¢4, increases a lit-
tle. For example, when s = 0.1% and 6 = 0.01,
Cmaz = 0.0001 and ¢;e, = 0.00072 for T10.I4.D1000K
and T15.16.D1000K, respectively.

Second, based on our finding, consider F,,, =
bmaz - Mo for a given minimum support s, then, we
have

bmaes = max/no = (Cmaa:/SS)/no-

Some b, values are shown in Table 11 for different
minimum supports. Several points can be made: i)
binas increases while the minimum support s decreases.
ii) bmaz can be greater than, equal to, or less than 1.

Third, for determining the empirical upper bound
of |F| for different data streams, Dy, Ds,---, the
above finding suggests that we can select the largest
Cmaz, Cmaz, 10 determine the largest by,q, value us-
ing a representative data stream D,. For example,
T15.16.D1000K is the representative in comparison
with T10.I4.D1000K, because T15.16.D1000K has a
larger transaction size and a larger maximal poten-
tially frequent itemsets than T10.I4.D1000K. As fu-
ture work, we will further study the issues related to
the representative data streams. In Table 10, Cez =
0.00045. Alternatively, we can determine ¢,,,, based
on a regression line among ¢4, values. Consequently,
we can determine the largest by,q, value, b4z, for a
transactional data stream (D;), that is represented by

212

s (%) ‘ no ‘| T10.14.D1000K | T15.16.D1000K |
[Fmaz | Cmaz | Fmaz | Cmaz |
0.1 7,991 59,385 | 0.00006 | 454,092 | 0.00045
0.2 3,996 6,874 | 0.00005 19,690 | 0.00015
0.4 1,998 875 | 0.00006 1,722 | 0.00011
0.6 1,332 233 | 0.00005 660 | 0.00014
0.8 999 71 | 0.00004 245 | 0.00012
1.0 799 20 | 0.00002 102 | 0.00010
Table 10: The ¢pqq for |F|
[s (%)] 10 | bmas (T10.14) | bmas (T15.16) |
0.1 7,991 7.43 56.82
0.2 3,996 1.72 4.93
0.4 1,998 0.44 0.86
0.6 1,332 0.17 0.50
0.8 999 0.07 0.25
1.0 799 0.03 0.13

Table 11: The b,,4, for Table 10

the representative data stream (D), with an arbitrary
minimum support s.

5mlm: = (Emaz/SS)/no-
Finally, we identify ¢, = bmaz.

Remark 4 For mining frequent patterns from a
transactional data stream, the number of entries in
F can empirically be bounded by c, - ng where ¢, is
selected using a representative data stream.

Remark 4 is important because it states that in fact
the number of potential frequent itemsets can be pos-
sibly bounded by ¢, - ng. In addition, ¢, is a consider-
ably small constant, and is not necessarily related with
the domain of I unique items. Recall the number of
potential frequent itemsets can be up to 27 for a trans-
actional data stream in a domain of I unique items.
In other words, it states that the memory required for
| F| is possible to be multiplication of ng (linearity).

The value ¢, is used as a way to determine pruning
(line 7) in Algorithm 2. In addition, we are able to do
eager pruning. There are patterns that we can pos-
sibly prune if the running error €, > s in terms of n
observations. It is based on Definition 1. A pattern X
is potential infrequent if sup(X)/n < s — €,. Because
sup(X) > 0, €, < s means no patterns can be pruned.

Remark 5 Based on Algorithm 2, the empirical upper
bound for transactional data streams is O(1/s%) if ¢, is
selected from a representative data stream with a fized

J.

The Remark 5 is based on up = ¢, -ng where ng is a
denominator of ¢,. Note: the bound, (2+21n(2/6))/s,
for Algorithm 1 is an exact bound.

6 Performance Study II: Mining Fre-
quent Itemsets

We report our experimental results for frequent item-
sets mining. For frequent itemsets mining, we im-
plemented our false-negative oriented algorithm FDPM

1000000

BTS —E—
1504 FDPM -
100000 [
£ e
N g 100+
10000 . A n

1000 . °

2
g
g
g
H

L]
CPU (second)

50
100 .

10
01 02 03 04 05 06 07 08 09 10

Support (%)

o
01 02 03 04 05 06 07 08 09 10
Support (%)

(b) CPU (T10.14.D1000K)

(a) Mem (T10.14.D1000K)

10000000

i
1000000
*
100000 F
N
Fo
.

10000

Memory
CPU (second)

1000 + .

100 f BTS —HF— 1)
FDPM -
Bound
10 °
01 02 03 04 05 06 07 08 09 10

Support (%)

o
01 02 03 04 05 06 07 08 09 10
Support (%)

(c) Mem (T15.16.D1000K) (d) CPU (T15.16.D1000K)

Figure 4: Varying s (e = s/10, 6 =0.1)

(Algorithm 2). The idea of probabilistic-inplace is
also used in Algorithm 2. For comparison pur-
poses, we implemented Manku and Motwani’s false-
positive oriented three module system BTS (Buffer-
Trie-SetGen). The Apriori implementation we used
is available from, http://fuzzy.cs.uni-magdeburg.
de/"borgelt/software.html#assoc, which is used in
many commercial data mining tools. Its version is
4.07.

For testing frequent itemsets mining, we generate
transactional data streams using IBM data generator
[12]. We mainly use two datasets, T10.I4.D1000K and
T15.16.D1000K with 10K unique items (as default).
We process transactional data in batches. The size of
a batch is 50,000 transactions. The parameter k used
in FDPM and 3 used in BTS are adjusted accordingly.

6.1 Effect of Minimum Support

We fix € = 5/10 and § = 0.1, and vary s from 0.1%
to 1.0%. Figure 4 (a) and (b) show memory con-
sumption and CPU for T10.I4.D1000K, and Figure
4 (c) and (d) show memory consumption and CPU
for T15.16.D1000K. Recall memory consumption is the
number of counters. In addition to BTS and FDPM, we
show our empirical bounds (Bound) of FDPM, which
is computed by ¢, - ng and ¢, is computed using
Cmaz = 0.00045.

As shown in Figure 4, FDPM significantly outper-
forms BTS. In the worst case, when s = 0.1%, FDPM
only consumes 59,385 entries for T10.I4.D1000K and
454,092 entries for T15.16.D1000K, whereas BTS con-
sumes 259,581 and 2,373,968, accordingly. In the
best case, when s = 1.0%, FDPM consumes only
20 entries for T10.I4.D1000K and 102 entries for
T15.16.D1000K, whereas BTS consumes 16,218 and
53,767, accordingly. FDPM significantly outperforms
BTS for both memory consumption and CPU cost. Fig-
ure 4 (a) and (c) show that the memory consumption
is bounded by our empirical bound ¢, - ng.

213

s (%) ‘| BTS [FoPM |
| P |

R] [R P |
0.1 1 0.85 1 1
0.2 1 0.84 1 1
0.4 1 0.70 0.99 1
0.6 1 0.68 0.99 1
0.8 1 0.46 1 1
1.0 1 0.55 1 1

Table 12: Varying s (t10.14.01000k, € = §/10, 6 = 0.1)

s (%)] BTS [FDPM |
[R] P [R [P
0.1 1]0.72 1 1
0.2 1 [0.91 1 1
0.4 1 1080099 |1
0.6 1 1072099 |1
0.8 1 1064 099 |1
1.0 1 1058095 |1

Table 13: Varying s (t15.16.01000k, € = §/10, 6 = 0.1)

Table 12 and Table 13 show the recall and precision
for Figure 4. Here, FDPM achieves high recall (at least
95%) and ensures 100% precision.

6.2 Effect of Error Control

We fix s = 0.1% and § = 0.1, and vary e. Figure
5 (a) and (b) show memory consumption and CPU
for T10.I4.D1000K, and Figure 5 (c) and (d) show
memory consumption and CPU for T15.I6.D1000K.
The recall and precision are shown in in Table 14 and
Table 15.

As shown in Figure 5, our false-negative oriented
algorithm FDPM is not influenced by e. Both mem-
ory consumption and CPU are constant while vary-
ing e. FDPM only needs 59,385 and 454,092 en-
tries for T10.I4.D1000K and T15.16.D1000K, respec-
tively. However, € has great impacts on the false-
positive oriented approach BTS. Its memory con-
sumption increases while e decreases. When € =
0.005%, BTS needs large memory to keep 360,476 en-
tries for T10.I4.D1000K, and 3,196,445 entries for
T15.16.D1000K, and achieves 93% and 85% preci-
sion, respectively. When € = 0.04%, BTS needs small
memory to keep 86,537 entries for T10.I4.D1000K,
and 659,233 entries for T15.I6.D1000K. But, BTS
can only have 32% precision, and 16% precision for
T10.I4.D1000K and T15.I6.D1000K, respectively. In
sequent, BTS faces a dilemma: a little increase of €
will make the number of false-positive items large, and
a little decrease of ¢ will make memory consumption
large.

e (%) ‘| BTS [FDPM |
[RT P [RTP]
0.040 1 0321 1
0.030 1 [042 [1 1
0.020 1 058 |1 1
0.010 1 085 |1 1
0.005 1 093 |1 1

Table 14: Varying € (t10.14.01000%, s = 0.1%, § = 0.1)

1000000

200

100000

it
\\S\E\ﬂ
o0 , , ,

M

BTS —H—
FOPM_~—F
10000

Memory

CPU (second)

BTS —5—
FDPM -

0.005 0.01 002
Epsilon (%)

0.03 0.04 0.005 0.01 0.02

Epsilon (%)

0.03

(a) Mem (T10.I4.D1000K) (b) CPU (T10.14.D1000K)

10000000

0.04

BTS —5—
FDPM -+

a
1000000 ;\S\S\S\(

Memory

BTS —H—
FoPM,_—T
100000

0
0.005 0.01 0.02 0.005 0.01

Epsilon (%)

0.03 0.04 0.02

Epsilon (%)

0.03

(c) Mem (T15.16.D1000K)

Figure 5: Varying € (s = 0.1%, 6 = 0.1)

(d) CPU (T15.16.D1000K)

e (%)] BTS [FDPM |
[R] P [R]P]
0.040 [1 J016 [1 |1
0030 [| 1T o027 |1 |1
0.020 [| 1T o048 | 1 |1
0010 [T o721 |1
0005 [[1T |08 | T [1

Table 15: Varying € (115.16.01000k, s = 0.1%, § = 0.1)

300000

25406
iz,

i;
250000 26406

200000 +.
T 15e+06 | .

150000

Memory
Memory

1e+06
100000

50000 500000

BTS —H—
FOPM -+

BTS —5—
FDPM -~

[
0.0001 0.0010 0.0100 0.0001

Delta

0.1000 0.0010 0.0100

Delta

(a) Mem (T10.14.D1000K) (b) Mem (T15.16.D1000K)

Figure 6: Varying ¢

‘] ‘| BTS [FoPM |
[RT P [R[P]
0.1 1 108 [1 1
0.01 i]08 |1 i
0.001 1 08 |1 1
0.0001 1]08 |1 1

Table 16: Varying § (T10.I4.D1000K)

‘ D] ‘| BTS [FDPM |
[RT P [R [P]
1000K 1 [0.72 | 0.99 1
3000K 1 | 072 | 0.99 1
6000K 1 | 072 | 0.99 1
9000K 1 [0.72 1 1

Table 17: Varying length (T15.16.D1000K)

0.1000

214

8000

BTs —B5— h
[FDPM

2e+06 7000

6000

1.5e+06 5000

4000

Memory

CPU (second)

R 3000
500000 2000
1000,
0 M . QE + N
1000 3000 6000 9000 1000 3000 6000 9000
Data Stream Length (K) Data Stream Length (K)
(a) Memory (b) CPU
Figure 7: Varying length (T15.16.D1000K)
sos05
I 20000 o
2.5e+06
il
2e+06 5 15000
5
2 15e+06 8
g a 10000
1e+06 BTS —5— o
FDPM -
5000
500000
F +
o o -+
1 5 10 1 5 10
Unique Items (K) Unique Items (K)
(a) Memory (b) CPU

Figure 8: Varying domain (T15.16.D1000K)

6.3 Effect of Reliability Control

We fix s = 0.1% and € = s/10, and vary §. We com-
pare FDPM with BTS, and show results in Figure 6. As
expected, varying & does not affect BTS, because it
treats 6 = 0. As shown in Figure 6, while the reli-
ability increases (smaller §), the memory consumption
of FDPM increases, because it uses § to approximate
the memory consumption. Even when 6 = 0.0001, the
memory consumption of FDPM is much smaller than
the memory consumption of BTS. As shown in Table
16, FDPM achieves 100% recall and 100% precision, even
with § = 0.1, while BTS achieves 100% recall and 85%
precision. FDPM outperforms BTS.

6.4 The Impacts of Data Stream Length

We test the impacts of the data stream length on FDPM.
We fix s = 0.1% (e = s/10, 6 = 0.1), and vary the
length of T15.16.D1000K from 1000K to 9000K. The
memory consumption and CPU cost are shown in Fig-
ure 7. FDPM significantly outperforms BTS. When deal-
ing with a 9000K data stream, BTS consumes 2,333,510
entries, while as FDPM consumes only about its 10%,
269,126. Also, BTS requires 7,545 seconds to process
it, whereas FDPM only needs 1,355 seconds. As shown
in Table 17, FDPM guarantees high recall and precision
(almost 100%). The precision of BTS is only 72%.

‘ I ‘| BTS | FDPH |
[RT P [R [P
1K 1 0.76 0.99 1
5K 1 0.71 0.99 1
10K 1 0.72 0.99 1

Table 18: Varying domain (T15.16.D1000K)

800
1e+06 0
600

z g soo
£ 8 400
= 100000 2 300

)

200

100

10000 0

00 © RO SO FF FM FL

BTS m——

00 0 RO SO FF FM FL

FDPM —— BTS =— FDPM ——

(a) Memory (b) CPU

Figure 9: Impacts of data arrival order

‘ Data ‘| BTS [FDPM |

[RT P [R [P]
00 1 0.72 0.99 1
r0 1 0.72 0.99 1
RO 1 0.72 0.97 1
S0 1 0.72 0.99 1
FF 1 0.72 0.99 1
FM 1 0.72 0.99 1
FL 1 0.72 0.96 1

Table 19: Impacts of data arrival order

6.5 The Impacts of Unique Items

We test the impacts of the domain sizes, 1K, 5K and
10K, using T15.16.D1000K, where s = 0.1%, € = s/10
and 0 = 0.1. The results are shown in Figure 8 and
Table 18. When the data is dense (1K), there are many
patterns. BTS needs 10 times of CPU than FDPM. Also,
as shown in Table 18, FDPM ensures 100% precision
and high recall (99%). BTS can only achieve about
71% precision.

6.6 The Impacts of Data Arrival Order

We test several data arrival orders wusing
T15.16.D1000K: 00 (Original Order), r0 (reverse
Order), RO (Random Order), SO (segment-based ran-
dom order, FF (Frequent First), FM (Frequent Middle),
FL (Frequent Last) where s = 0.1%, ¢ = s/10, and
6 = 0.1. As shown in Figure 9 and Table 19. FDPM and
BTS are insensitive to data arrival orders regarding
frequent itemsets mining. FDPM achieves high recall
(almost all 99% only one 97%) and ensures 100%
precision. The precision of BTS is low (72%). In
addition, FDPM outperforms BTS in terms of CPU and
memory consumption.

7 Conclusion

In this paper, we study the problem of mining fre-
quent patterns from transactional data streams, the
problem of FDPM. While most existing algorithms in
mining frequent items for data streams using false-
positive oriented approaches to control the error on the
estimated frequency of mined patterns and memory re-
quirement, we explored a new paradigm in FDPM, the
false-negative oriented approach. That is, we control
the data mining process by limiting the probability of
a frequent pattern that misses in the result, but all
mined patterns are frequent. We developed both fre-
quent item and itemset mining algorithms using the

215

Chernoff bound. The bound enables us pruning infre-
quent patterns from the continuously arriving trans-
actions with the guarantee of the required recall rate
of frequent patterns. The performance study demon-
strated the effectiveness and efficiency of our false-
negative oriented approach which uses a running er-
ror, €, to prune infrequent item(set)s, and uses ¢ to
control memory space.

The Chernoff bound assumes some underlying prop-
erty of the underlying distributions of the data. Al-
though the current performance study indicated that
even the data does not follow strictly the assumptions,
the bound is surprisingly effective. One of our imme-
diate future work is to further study the data distri-
bution issues and explore possible theoretical bounds
for frequent data stream pattern mining.

Acknowledgment

The authors would like to thank Zhenjie Zhang for his contri-
bution to this project. The work described in this paper was
supported by grant from the Research Grants Council of the
Hong Kong SAR, China (CUHK4229/01E).

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. of 20th Intl. Conf. on Very Large
Data Bases, pages 487 — 499, 1994,

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. In Proc. of ACM
STOC, 1996.

[3] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Proc. of the Intl.
Colloquium on Automata, Languages and Programming
(ICALP), pages 693 — 703, 2002.

[4] H. Chernoff. A measure of asymptotic efficiency for tests of
a hypothesis based on the sum of observations. The Annals
of mathematical Statistics, 23(4):493-507, 1952.

[5] S. Cohen and Y. Matias. Spectral bloom filter. In Proc. of
ACM SIGMOD, 2003.

[6] G. Cormode and S.Muthukrishnan. What’s hot and what’s
not: Tracking most frequent items dynamically. In Proc. of
22nd ACM Symposium on Principles of Database Systems
(PODS), pages 296 — 306, 2003.

[7] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintain-
ing stream statistics over sliding windows. In 13th Annual
ACM-SIAM Symp. on Discrete Algorithms, 2002.

[8] E. Demaine, A. Lépez-Ortiz, and J. I. Munro. Frequency
estimation of internet packet streams with limited space. In
Proc. of 10th Annual European Symposium on Algorithms,
pages 348 — 360, 2002.

[9] J. Feigenbaum and S. Kannan. An approximate 11-
difference algorithm for massive data streams. In IEEE
Symposium on Foundations of Computer Science, 1999.

[10] P. Flajolet and G. N. Martin. Probabilistic counting algo-
rithms. J. of Comp. and Sys. Sci, (31):182-209, 1985.

[11] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and
mining data streams: You only get one look. In Tutorial
in 28th Intl. Conf. on Very Large Data Bases, 2002.

[12] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. of 28th Intl. Conf. on
Very Large Data Bases, pages 346 — 357, 2002.

[13] H. Toivonen. Sampling large databases for association
rules. In Proc. of 22nd Intl. Conf. on Very Large Data
Bases, pages 134 — 145, 1996.

[14] J. S. Vitter. Random sampling with a reservoir.
ACM Transactions on Mathematical Software (TOMS),
11(1):37-57, 1985.

