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Abstract

Adaptive query processing schemes attempt to re-
optimize query plans during the course of query
execution. A variety of techniques for adaptive
query processing have been proposed, varying
in the granularity at which they can make deci-
sions [8]. The eddy [1] is the most aggressive
of these techniques, with the flexibility to choose
tuple-by-tuple how to order the application of op-
erators. In this paper we identify and address a
fundamental limitation of the original eddies pro-
posal: theburden of historyin routing. We ob-
serve that routing decisions have long-term effects
on the state of operators in the query, and can
severely constrain the ability of the eddy to adapt
over time. We then propose a mechanism we call
STAIRs that allows the query engine to manipu-
late the state stored inside the operators and undo
the effects of past routing decisions. We demon-
strate that eddies with STAIRs achieve both high
adaptivity and good performance in the face of un-
certainty, outperforming prior eddy proposals by
orders of magnitude.

1 Introduction
“Stair above stair the eddying waters rose
circling immeasurably fast...”

– Percy Bysshe Shelley

In many scenarios, it is difficult or impossible at com-
pile time to translate a declarative query into an efficient
static execution plan. This problem has been highlighted
in querying remote data sources [11, 1], in querying data
streams [14, 3, 15], and even in traditional centralized
databases [9, 4, 12]. To address this problem, a variety
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of adaptive query processing techniques have been pro-
posed [8]. Among these, the eddy [1] is the most flexible
and aggressive mechanism. An eddy is a tuple router that
is placed at the center of a dataflow, intercepting all incom-
ing and outgoing tuples between operators in the flow. By
sitting at the center of the flow, the eddy can both observe
the rates of all the operators, and make decisions about the
order in which tuples will visit the operators. Eddies are
intended to merge the statistics-collection and operator or-
dering facilities of a query optimizer into a query engine’s
runtime system.

In principle, eddies are able to choose different operator
orderings for each tuple during query processing, subject
only to the constraints of whether an operator is able to
process a tuple (for example, a selection operator on table
S can only process tuples from that table). But, as we ob-
serve in this paper, thequery execution plansthat eddies
can effect for multi-join queries are limited not only by the
semantic properties of the operators, but also by theburden
of routing history: routing decisions made early in query’s
execution limit the eddy’s routing options later on. These
limitations can remove much of the adaptive power of ed-
dies. The crux of the problem is the state accumulated by
joins: once routed, a tuple that resides in the state of a join
can effectively determine the order of execution for subse-
quently arriving tuples from other tables. To illustrate, we
review an example from the original eddies paper [1]:

Example: Consider the queryR 1a S 1b T , using two
pipelining hash join operators (Figure 1). At the begin-
ning of query processing, the data source forR is stalled,
and noR tuples arrive. Hence theR 1a S operator never
produces a match, which makes it an attractive destination
for routingS tuples: it efficiently removes work from the
query engine. The result is that the eddy emulates a static
query plan of the form(R 1 S) 1 T . Some time later,
R tuples arrive in great quantity and it becomes apparent
that the best plan would have been(S 1 T ) 1 R. The
eddy can switch the routing policy so that subsequentS tu-
ples are routed toS 1b T first. Unfortunately, this change
is “too little too late”: all the previously-seenS tuples are
still stored in the internal state of theR 1a S operator.
As R tuples arrive, theymustjoin with theseS tuples be-
fore theS tuples are joined withT tuples. As a result, the
eddy effectively continues to emulate the suboptimal plan
(R 1 S) 1 T , even after its routing decision forS has
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Figure 1: If the data from relationR is delayed, the eddy
may route all ofS to R 1a S, resulting in accumulation of
state as shown.

changed.

This example illustrates both how easy it is to make in-
correct routing decisions, and how these decisions can have
permanent effects on the query plan achieved by an eddy –
even when routing policies are changed. As we discuss
in Section 2.3, the state accumulation inside the operators
also makes it impossible for the eddy to perform aggressive
adaptations such as changing the join spanning tree used
for cyclic queries, or to performquery scrambling[18] in
presence of delayed data sources.

In this paper we introduce a modified eddy architecture
that makes use of a query operator called a STAIR (Stor-
age, Transformation and Access for Intermediate Results),
which holds the state traditionally encapsulated in joins.
STAIRs address the problems illustrated above by allow-
ing query state to be modified and migrated across STAIRs
during query execution. The ability to modify and migrate
state lifts the burden of history described above, enabling
this architecture to undo the effects of prior routing deci-
sions. In essence, STAIRs complete the picture begun with
eddies: they allow a query executor to achieve the full ef-
fect of adapting the operator ordering at any point during
runtime. As we discuss in Section 3.3, the flexibility in
state management provides a number of additional novel
optimization opportunities as well for trading off computa-
tion and storage during query execution.

We have implemented our architecture in the Post-
greSQL 7.3 database management system in the context
of the Telegraph project [2], and we present experimen-
tal results showing that eddies with STAIRs achieve both
high adaptivity and good performance in the face of un-
certainty, outperforming prior eddy proposals by orders of
magnitude.

2 Eddies: Review and Pitfalls

We begin with a description of the eddy mechanism,
and illustrate how state accumulation through bad routing
choices can restrict eddy’s ability to adapt. We then briefly
review the SteMs architecture [16] that also provides a so-

lution to this problem, and discuss why that solution is un-
satisfactory. To make this discussion concrete, we focus
on a common usage scenario for adaptive query process-
ing [1, 10, 16, 18, 11], where the query processor is asked
to evaluate a declarative select-project-join query over a set
of finite relations that are beingstreamed intothe query
processor (from disk or from network). We ignore selec-
tion predicates, and restrict the choice of join operators to
pipelining symmetric hash join operators. The discussion
in this section, however, can be easily extended to other
kinds of join operators as well (e.g., index join operators,
traditional non-pipelining join operatorsetc.).

2.1 Eddies

Traditional database systems execute queries by choosing
a query plan a priori, and adhering to it throughout the
query execution. The basic idea behind eddies is to treat
query execution as a process ofrouting tuples through op-
erators, and to allow changing the order in which tuples are
routed on a per-tuple basis. A specialeddyoperator is used
to route tuples between the query operators, and follows a
simple procedure:
• Choose a tuple to process next; this could either be a

new tuple from a base relation, or it could be the result
of processing an earlier tuple.

• Among the operators that arevalid routing destina-
tions for this tuple, choose one, route the tuple to it,
and store the resulting tuples in the eddy’s internal
buffer. Valid routing destinations for a tuple are de-
termined by the semantic properties of the operators.
For example, a tuple can be routed to ajoin operator
only if the tuple contains a component from exactly
one of the relations in the join.

Notation
Before going on, we define the notation we use in this pa-
per. We use capitalized italics to denote base relations (e.g.,
R, S), and small italics to denote base tuples belonging to
those relations (e.g., r, s). We use boldface letters to de-
note sets of relations (e.g., Q = {R,S}). Given a set of
relationsQ such that the relations in the set can be joined
without use of cartesian products, we denote the resulting
join relation by1 Q, or simply as the concatenation of the
relations inQ (e.g.RS denotes the result relation obtained
by joining R andS). We use small boldface letters to de-
noteintermediatetuples belonging to such joined relations
(e.g.,q is a tuple inQ.) Finally, we denote byRτ all the
tuples ofR that have been processed by the eddy at timeτ .

Definition 2.1 [16] Consider a tupleq that belongs to
the join ofk base-tablesT1, . . . , Tk. The tuples of these
base-tables that participate in the generation of this tupleq
are calledbase-table componentsof q, and are denoted by
qT1 , . . . , qTk

respectively. We denoteq by qT1qT2 . . . qTk
.

Definition 2.2 A tupleq′ ∈ Q′ is called asub-tupleof a
tupleq ∈ Q, if Q′ ⊆ Q and all base-table components of
q′ are also present inq. We callq a super-tupleof q′.

Given this background, Figure 2 shows the eddy instanti-
ated for a three-relation join queryR 1 S 1 T (we will use
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Figure 2: An eddy instantiated forR 1 S 1 T . Valid
options for routing are labeled on the edges. The state
materialized inside the join operators at timeτ is shown,
whereSR

τ andST
τ denote the parts ofSτ that were routed

to R 1 S andS 1 T respectively.

this query as the running example throughout this paper),
and the valid routing choices for various types of tuples.
For example, the only valid routing choice forR tuples is
the R 1 S operator, whereasS tuples can be routed to
either of the two join operators.

2.2 Uncertainties in Routing

The key to achieving good performance with eddies is mak-
ing intelligent routing decisions. Unfortunately, the eddy
can never have complete information about the data, or
about the environment, and has to make decisions in pres-
ence of incomplete information. Continuing with our ex-
ample query, let us say that the eddy was able to compute
the selectivities of the two joinsR 1 S andS 1 T accu-
rately over the data it has seen. The eddy now could use
these selectivities to make routing choices, under the as-
sumption that these selectivities will remain constant in the
future. But, there are many reasons why such extrapolation
may turn out to be wrong.
• Delays in arrival of data: If there are delays in ar-

rival of data from some relations, the eddy may have
a very small sample of the data, leading to incorrect
estimation of selectivities, and possibly of the sizes of
the relations. To be able to estimate join selectivities
accurately, both these factors need to be correctly es-
timated.

• Order-dependent selectivities: Selectivities are of-
ten correlated with the order of arrival of data. For
example, if the data is ordered byage, then the selec-
tivity of a predicate onsalary changes as the tuples
stream in.

• Unpredictable data rates: Unpredictable data rates
can result in incorrect estimation of table sizes, and
consequently of selectivities of joins involving those
relations.

2.3 Burden of Routing History

Given the unpredictable nature of the data, there is not
much the eddy can do to avoid making routing mistakes,
and the penalties for such wrong decisions must be incurred
to some degree during execution. Unfortunately, because
of the state that gets materialized in the operators, espe-
cially the join operators, the effects of such mistakes can
be long-lived. Figure 2 shows the state materialized in the
joins at timeτ . As we can see, the routing choices made for
S determine what gets stored in the joins (SR

τ was routed
towardR 1 S, andST

τ towardS 1 T resulting in those
two parts ofS getting stored in those join operators respec-
tively). This results in several problems in query execution
later. We discuss them in turn.
Constraints on Future Adaptation
The join state can significantly constrain the adaptation op-
portunities that the eddy has in future. Though the eddy
can choose how to route a tuple when it first processes it,
the choice made at that time constrains subsequent operator
orderings for future results that involve this tuple. Coming
back to our example, when a tuples ∈ SR

τ arrived at the
eddy, the eddy could have chosen to route it to either of
the joins. But once this choice has been made (in this case,
R 1 S operator), the query plan used for generatinganyre-
sult tuple that containss (even one that may be generated in
future), is constrained to be(R 1 S) 1 T . This is because
anyR tuples that come in later will be routed toR 1 S and
thus will join with s. As such, even if the eddy, in future,
deduces that joinings with R is sub-optimal, it is prevented
from doing any adaptation. This can result in significantly
sub-optimal performance in many cases, as we will see in
Section 5.
Cyclic Queries
A join query can be represented as a query graph, with
vertices denoting the relations and edges denoting join
predicates between relations. Cyclic queries are those in
which the query graph has cycles. For example, the query
σR.a=S.a∧S.b=T.b∧R.c=T.c(R × S × T ), is a cyclic query.
As in traditional database systems, eddies choose a span-
ning tree of the query graph a priori, and are not able to
change the spanning tree mid-execution. This is because
the tuples that get routed to a join operator are “lost” if a
spanning tree without that join operator is used later on.
As an example, if we routed according to the spanning tree
containingR 1 S andS 1 T in the example above, re-
sulting in state as shown in Figure 2 at timeτ , switching to
the spanning tree consisting ofR 1 T andS 1 T is not
possible, becauseRτ is stored insideR 1 S and will not
be available to the new spanning tree.
Pre-computation in presence of delays
If data from remote data sources is delayed, it might be at-
tractive to perform other useful work while waiting for that
data to arrive. Such pre-computation can be useful to pro-
duce partial results [17] that may contain missing attribute
values, or to join the data that has already arrived as much
as possible [18]. The eddy is prevented from performing
such adaptations because of the accumulation of state in-
side the operators, and the eddy’s inability to change rout-
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ing decisions once they are made. In fact, the inability to
produce partial results aggressively was one of the main
reasons the SteMs architecture that we describe below was
developed.

2.4 SteMs: A Preliminary Solution

The State Modules (SteMs) architecture [16] is an exten-
sion of the eddy architecture, and inoculates eddies from
these problems by ensuring that the state stored in the op-
erators is entirely independent of the routing history. The
main operator in this architecture is aSteM, which is in-
stantiated for each relation in the query as shown in Fig-
ure 3. This operator stores all the tuples from that rela-
tion, and also handles all the probes involving that rela-
tion. The query is once again executed by routing tuples
through these operators. As an example, when a newR
tuple comes into the system, it is (1) inserted into theR
SteM, (2) probed into theS SteM to find matchingS tu-
ples corresponding to the joinR 1 S, and (3) the resulting
RS tuples are probed into theT SteM to find matchingT
tuples in order to generateRST results. The intermediate
RS tuples are not stored anywhere, and are thrown away as
soon as results are produced.

As a result of not storing any intermediate tuples, the
state accumulated inside the SteMs is independent of the
routing history. This addressed some of the challenges
mentioned above, but it is also the cause of two significant
drawbacks:
• Re-computation of intermediate tuples:Since inter-

mediate tuples generated during the execution are not
stored for future use, they have to be recomputed each
time they are needed.

• Constrained plan choices: More importantly, the
query plans that can be executed for any new tuple
are significantly constrained. For example, any newR
tuple,r, that comes in at timeτ must join withSτ (the
tuples forS that have already arrived) first, and then
with Tτ . This effectively restricts the query plans that
the eddy can use for this tuple to be(r 1 Sτ ) 1 Tτ ,
even if the eddyknowsthat that plan is sub-optimal.

As we will see in Section 5, these inherent flaws with
the basic design of the mechanism result in significantly
worse performance than the original eddy architecture in
most cases.

3 STAIRs

As we argued in the preceding section, and as we will fur-
ther demonstrate in Section 5, routing mistakes are quite
common in adaptive query processing, and the resulting
burden of history can have long-lasting effects on the query
execution. These effects can be attributed to the state that
gets stored in the operators during execution. This obser-
vation naturally leads us to the basic idea behind our pro-
posed modifications to the eddy architecture:expose the
state stored in the operators to the eddy, and allow the eddy
to manipulate this state.We do this by introducing an op-
erator we call aSTAIR, which holds the state traditionally
encapsulated in joins, and provides the eddy with primi-
tives to manipulate this state.

3.1 STAIR Operator

A STAIR operator encapsulates the state typically stored
inside the join operators. More formally, a STAIR on rela-
tion R and an attributea, denoted byR.a, holds (possibly
intermediate) tuples that contain a base-table component
from relationR, and supports the following two basic op-
erations1:

insert(R.a, t)
Given a tuplet that contains a base-table component from
relationR, store the tuple inside the STAIR.

probe(R.a, val)
Given a valueval from the domain of the attributeR.a,
return all tuplesr stored insideR.a such thatr.a = val.

Figure 4 shows the STAIRs instantiated for our exam-
ple 3-relation query. In essence, for each join operator that
would have been instantiated in the originalEddyJoins2 ap-
proach of [1], we instead use two STAIRs that interact with
the eddy directly. We will call the pair of STAIRs corre-
sponding to a single joinduals of each other. Note that
even if both the joins were on the same attribute, we would
have two STAIRs on relationS and attributea(= b). These
two STAIRs are treated as separate operators, as they par-
ticipate in different joins.

The query execution using STAIRs is similar to query
execution using join operators. Instead of routing a tuple
to a join operator as in EddyJoins, the eddy itself performs
an inserton one STAIR, and aprobeinto its dual. In fact,
in this paper, we will assume that the following property is
always obeyed during query execution:

1To capture join predicates such asR.a = S.a AND R.b = S.b,
a STAIR can be more generally defined on alist of attributes from the
schema ofR. For ease of exposition we assume a single join attribute in
our discussion; the extension to multi-attribute predicates is straightfor-
ward.

2We will refer to the original eddy architecture that uses explicit join
operators by EddyJoins, to distinguish it from the other eddy-based archi-
tectures that we discuss in this paper.
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Dual Routing Property: Whenever a tuple is routed to a
STAIR for probing into it, it must be simultaneously in-
serted into the dual STAIR.

This property is analogous to the BuildFirst constraint
described in [16], and is also obeyed by the symmetric join
operator. The Dual Routing Property can be relaxed by
using timestamps in a similar fashion to the one described
in [16], so that the probe must follow the insert in time but
need not be atomically combined with the insert.

For brevity, we will use the phraserouted toR 1a S
operator to mean performing the two operations outlined
above on the two STAIRs,R.a andS.a, corresponding to
the join.

3.1.1 State Management Primitives

Other than the two basic operations described above,
STAIRs also support two state management primitives:

Demotion(R.a, t, t’)
Intuitively, thedemotionoperation involves reducing an in-
termediate tuple stored in a STAIR to a sub-tuple of that
tuple, by removing some of the base tuple components that
it contains.

The following pre-conditions must be satisfied by the
arguments to this function:
• t must be a tuple stored inR.a,

• t′ must be a sub-tuple oft,

• t′ must contain the base-table component oft corre-
sponding to the relationR.

Given that these pre-conditions are satisfied, the demo-
tion operation simply replacest by t′ in R.a.

This operation can be thought of asundoing some
work that was done earlier during execution, and this
work may have to be redone if the tuple is required
again in future. Figure 5 shows the result of applying
demotion(S.b, r1s1, s1) to an example initial state. As we

can see, after applying this operation, the tupler1s1 in S.b
gets replaced by the tuples1.

Promotion(R.a, t, S.b)
Thepromotionoperation replaces a tuple in a STAIR with
super-tuples of that tuple that are generated using another
join in the query.

The following conditions must be satisfied by the input
to this operation:
• t must be stored inR.a.

• t must contain the base-table component correspond-
ing to relationS (note thatS andR may be identical).

• Let the dual STAIR ofS.b beT .b. Then,t must not
contain the base-table component corresponding to re-
lationT .

Intuitively, the point of promotion is to use the joinS 1 T
to generate super-tuples oft; the last two conditions simply
make sure that this is a valid operation.

Given this, the promotion operation performs the fol-
lowing steps:

1. Removet fromR.a,

2. Insertt into S.b,

3. ProbeT .b using the tuplet, and

4. Insert the resulting matches (that are super-tuples of
t), if any, back intoR.a.

Figure 5 shows the result of applying
promotion(S.b, s3,S.a), to an example initial state.
As a result of this, thes3 tuple inS.b gets replaced byr1s3

andr2s3, whereass3 itself gets stored inS.a.

3.1.2 Duplicates

Both these state management operations, as described
above, can result in a state configuration that allows spu-
rious duplicate results to be generated in future. Such du-
plicates may be acceptable in some scenarios, but can also
optionally be removed by maintaining the following local
invariant on the STAIRs.

Invariant: A STAIR never contains two tuplest1 ∈ T1

andt2 ∈ T2, such thatt1 andt2 match on all base-table
components corresponding to the relations inT1 ∩T2.

In Appendix A we discuss techniques to maintain this
invariant during query execution, and also how it guaran-
tees duplicate-free execution.

3.2 Lifting the Burden of History using STAIRs

As we discussed in Section 2.2, storing intermediate result
tuples generated during query execution can have a signif-
icant impact on future query processing. In this section we
show an example of how STAIRs can be used to manipu-
late the state stored within the join operators so that such
prior decisions can, in effect, be reversed.

Figure 6 shows the state maintained inside the join op-
erators at timeτ for our example query. Let us say that,
at this time, we have better knowledge of the future and
we know that routingSR

τ towardR 1 S was a mistake,
and will lead to sub-optimal query execution in future (say
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becauseR 1 SR
τ has high selectivity). This prior routing

decision can be reversed as follows (Figure 6):
• Demote theSR

τ 1 Rτ tuples inS.b to SR
τ .

• Promote theSR
τ tuples fromS.a to SR

τ 1 Tτ .
Figure 6 shows the result of these operations. As we

can see, the state now reflects what it would have been if
SR

τ had previously been routed to theS.b andT .b STAIRs,
instead ofR.a andS.a STAIRs. As a result, futureR tuples
will not be forced to join withSR

τ .
We will refer to this process of moving state from one

join operator to another asstate migration.

3.3 Further motivating adaptive state management

Executing queries using STAIRs allows the eddy to adapt
for reasons other than removing the burden of history. In
this section, we will briefly discuss how this can be done.
Cyclic queries
Like the original eddy architecture, the base STAIRs archi-
tecture only works naturally with acyclic queries; as such,
a spanning tree of cyclic query graphs must be chosen at
the query initialization. However, unlike the EddyJoins ar-
chitecture, the state management features provided by the
STAIRs can be used to switch the spanning tree used for
execution mid-way through query processing. Briefly, this
is done by manipulating the state inside the operators to re-
flect query execution using the new spanning tree. In the
interest of brevity we omit the details in this paper. We do
note here that this process can involve fair amount of state
movement, and if we expect to change the spanning tree
used frequently, the SteMs architecture is an attractive al-
ternative since it can change the spanning trees more easily.
Partial Results, Query Scrambling
When a data source in the query is relatively slow or even

stalled, it is often desirable to ameliorate the delay by ei-
ther producing partial results, or by aggressively joining to-
gether previously-received tuples (query scrambling). Both
of these ideas involve a form of pre-computation of results.
Thepromotionprimitive provided by STAIRs can be used
to perform such pre-computation as required. As an exam-
ple, if the data from a relationR is delayed and the query
engine wants to join data from relationS that is waiting for
data fromR (and hence, was routed toR 1 S operator)
with data from relationT , the eddy can use the promotion
operation to moveT tuples toS 1 T operator, and thus
perform useful work while waiting for data fromR. The
original query scrambling proposal [18] only addressedini-
tial delays; the ability of STAIRs to allow precomputation
even after some data fromR generalizes that approach.

Flexible Storage and Reuse of Intermediate Results
The SteMs architecture demonstrated that it is possible to
do query processing without storing any intermediate re-
sults at all. The state management primitives provided
STAIRs enable the eddy to take this idea even further by
providing flexibility in choosing the intermediate result tu-
ples to be stored for further reuse. As an example, the eddy
could choose to store only base-table tuples in the STAIRs
by instantly demoting inserted tuples. This can be used to
reduce the memory footprint of the query processor down
to the memory footprint of the SteMs architecture (though
the actual query execution will not be identical to using
SteMs).

Another instance where such flexibility could be use-
ful is when we are executing sliding window queries over
streaming data [14, 3, 2, 7, 19]. Storing and reusing in-
termediate results is problematic in such a setting, because
when a window on a base relation slides, some base-table
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Figure 6: State Migration: Reversing prior decisions using
STAIRs

tuples are dropped from the window, and all intermediate
tuples that contain those base-table tuples must be removed
from the engine. The cost of deletion can be quite signif-
icant, and many of these architectures choose to discard
intermediate result tuples (e.g. CACQ [14]). STAIRs can
be used to store only long-living intermediate tuples, thus
enabling selective caching of intermediate tuples.

3.4 Correctness of Operation

Given the generality of the operations that can be per-
formed on STAIRs, it is not clear that the eddy will always
produce correct query result when using STAIRs. In Ap-
pendix A we prove the following:

Theorem 3.1 An eddy with STAIRs always produces the
correct query result in spite of arbitrary applications of the
promotion and demotion operations.

4 Implementation Details
We have implemented this architecture in the PostgreSQL
7.3 database management system in the context of the Tele-
graph project [2]. In this section, we will briefly discuss our
implementation (please see [5] for the full details of the im-
plementation). We have added two main new operators to
the PostgreSQL code base:

Eddy: An eddy operator handles a single select-project-
join query block that may contain arbitrary selections, joins
and projections, but no aggregates, groupbys or subqueries.
The latter constructs are handled by existing PostgreSQL
operators that interact with the eddy operator using the tra-
ditional iterator interface. To be able to support such an
interface, the eddy operator is implemented as a finite state
machine that internally keeps track of its computational
state. The eddy instantiates a set of operators (STAIRs,
joins, SteMsetc.) as required, and executes the query by
fetching tuples from the source modules (with which it in-
teracts using the iterator interface as well) and by routing
the tuples among the operators. The eddy also maintains

statistics about the data, and uses them to make routing
choices, and state migration decisions.

We developed the routing mechanism carefully to mini-
mize the overheads of routing. The main idea behind these
optimizations is to perform mini-batch routing instead of
per-tuple routing. As we show in [5], the cost of making
routing decisions can be effectively amortized over very
few tuples, resulting in very low routing mechanism over-
heads with significant flexibility.

STAIR: We currently implement a STAIR as an in-memory
hash table built on the tuples that have been inserted into
the STAIR. It supports the four basic operations described
above (insert, probe, demote, andpromote), and also sup-
ports the iterator interface allowing it to be used in tradi-
tional query plans without eddies.

The STAIR operator is also used to implement two other
operators:
• Symmetric Hash Join: As discussed previously, a

symmetric hash join operator is simply two STAIRs
used together.

• SteM: There are two main differences between SteMs
and STAIRs: (1) SteMs only store base tuples, (2)
a single SteM manages all inserts and probes on the
base tuples corresponding to a single relation. We em-
ulate this architecture by (1) inserting each base tu-
ple into all the STAIRs on the corresponding relation,
(2) never inserting an intermediate tuple into any of
the STAIRs, and (3) routing a probe on a relation to
the appropriate STAIR on that relation. It might seem
that we pay a penalty relative to SteMs for maintain-
ing multiple STAIRs on the same relation. However,
as described in [16], a SteM actually maintains mul-
tiple internal hash-indexes, one corresponding to each
probing attribute, and as such, the overheads of the
two architectures are identical.

4.1 Routing Policy

The routing policy we use for the experiments in this paper
is based on the rank ordering technique [13] for ordering
selections. The eddy maintains two sets of statistics on the
data: (1) the selectivities of the predicates on the base rela-
tions, and (2) the domain sizes of the join attributes corre-
sponding to the joins, which are used to compute the join
selectivities periodically. For SteMs, a greedy routing pol-
icy of routing a tuple such that it joins with the relation
with the lowest join selectivity is used; this policy produces
the minimal number of intermediate tuples in response to
a new base tuple, and hence is optimal under that metric
for SteMs (assuming that the selectivity estimates are ac-
curate).

The same policy is however not optimal for EddyJoins
or STAIR; the state accumulation through making locally
optimal routing choices can result in sub-optimal overall
performance. For these two techniques, we use the follow-
ing routing policy to route a given tuple:

1. For each join (or corresponding STAIRs) that the tu-
ple could be routed to, computecumulativeselectivity
of joining it with the tuples from all relations that the
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tuple is connected to through this join (e.g., while con-
sidering aR tuple and theR 1 S join in our example
query, cumulative selectivity is the result of joining
thisR tuple withSτ 1 Tτ ).

2. Route the tuple to the join with the lowest cumulative
selectivity.

Note that, the computation of these selectivities is amor-
tized using the mini-batch routing optimizations as we de-
scribe in detail in [5], and is not done per-tuple.

4.2 State Migration Policy

We currently use a greedy state migration policy that ea-
gerly migrates state when routing decisions are changed.
This approach ignores the cost of state migration, and could
potentially result in sub-optimal performance for two rea-
sons: the eddy might thrash by performing too many migra-
tions in response to fluctuating selectivities, and the eddy
might perform a large state migration at the end of query
execution, with no subsequent payoff. As our experimental
results demonstrate, these scenarios may be infrequent in
practice. We are planning to address these shortcomings of
the state migration policy by instituting a back-off mecha-
nism to avoid thrashing, and by migrating state in stages to
avoid large migrations at the end of a query.

5 Experimental Study
In this section, we present an experimental study that vali-
dates our approach. We begin by studying in detail an illus-
trative query on the TPC-H benchmark schema, to analyze
the effect of state on the eddy architecture. We demonstrate
the advantages of our architecture for both a completion-
time metric, and an online delay metric that looks at the
output times of tuples. We then present a more extensive set
of experiments on an synthetic database modeled after the
Wisconsin benchmark [6]. We use a set of randomly gen-
erated queries on this benchmark, and focus on the com-
pletion time metric to demonstrate the advantages of such
adaptive query processing.

5.1 Setup

We ran the experiments on two machines, a 2GHz Pen-
tium IV machine and a 1.4 GHz Pentium III machine
with 512MB of memory each, running RedHat Linux. We
present experiments comparing four query processing tech-
niques: Symmetric Hash Joins (SHJ), which uses tradi-
tional static query plans with symmetric hash join opera-
tors, and our three adaptive schemes:EddyJoins, SteMs,
andSTAIRs. Each experiment compared all four schemes
on the same machine. The data was read off of local disks,
and for the adaptive query processing techniques, the data
was presented to the eddy through a module that controlled
the input rates, and introduced delays as required by the
setup. The “mini-batch” size for the eddy was set so that it
could change routing decisions every 1000 tuples.

5.2 An Illustrative TPC-H Query

We begin with an illustrative query to validate the need for
state management in adaptive query processing, and to un-

derstand the trade-offs involved in the state migration pro-
cess. We use the following query on the TPC-H Bench-
mark schema that asks forlineitem’s in a specified period
and corresponding to a specified set of customers.
select *
from customer c, orders o, lineitem l
where c.custkey = o.custkey and

o.orderkey = l.orderkey and
c.nationkey = 1 and
c.acctbal > 9000 and
l.shipdate > date ’1996-01-01’

The data from relationlineitemarrives at the query en-
gine sorted in ascending order byshipdate. Early on in the
query, the selectivity of the predicate onlineitemappears
much lower than that ofcustomer, so the eddy makes rout-
ing mistakes in the beginning by routing the tuples from
the orders to the join with relationlineitem. Figure 7(i)
shows the execution times of the various query processing
techniques for this query in the scenario, where data rates
are proportional to the sizes of the relations. This,in effect,
gives the eddy correct estimates of the sizes of the relations,
in spite of which, EddyJoins performs significantly worse
than STAIRs because of the initial routing mistake of rout-
ing orderstuples tolineitem1 orders. On the other hand,
STAIRs is able to correct this routing mistake by migrating
the orders tuples to the second join when it gets more in-
formation, performing almost as well as having routed cor-
rectly from the beginning. Thisswitchhappens when the
eddy has seen about 55% of the tuples fromorders, and the
corresponding state migration operation migrates all those
tuples to the second join at that time.

Even though reuse of intermediate tuples is quite min-
imal in this query, SteMs perform poorly compared to the
other techniques because there is no way to avoid joining
the later-arrivinglineitem tuples with orders; intermedi-
ate results fromcustomer1 orders must be materialized
to avoid this expense.

To better understand the trade-offs involved in state mi-
gration, we change the setup so that the eddy is not allowed
to either change its routing decisions or perform state mi-
grations until it has seen a certain number oforderstuples.
Figure 7(ii) shows the results of this experiment. Since the
change in the selectivities happens at about 55%, the execu-
tion times of these techniques are unaffected until that time.
As we can see, the state migration cost up to this point is
about 7% of the total execution cost with STAIRs. As we
increase the number oforders tuples that need to be mi-
grated, the cost of state migration increases, and its benefit
goes down. Even then, the cost of state migration is low
enough that STAIRs outperform EddyJoins, except at the
very end when STAIRs migrate the entireorders relation
without any benefit to doing so since the query execution is
over.

Finally, we take a brief look at an interactive metric,
namely, the rate at which output tuples are produced by
these techniques. Figure 7(iii) shows the output rates for
these four techniques (for SHJ, we show the output rates
two plans, the best static plan and the worst static plan)
for the above TPC-H query. As we can see, STAIRs pro-

955



Static Execution Plans EddyJoins SteMs STAIRs

Query Processor 

0

5

10

15

20

E
xe

cu
tio

n 
T

im
e 

(s
ec

s)

(i)

20 40 60 80 100

% Orders tuples processed pre-switch

0

5

10

15

20

25

E
xe

cu
tio

n 
tim

e 
(s

ec
s)

(ii)

EddyJoins
SteMs
STAIRs
STAIRs (Migration Cost)

20 40 60 80 100

% Output tuples produced

0

5

10

15

T
im

e 

(iii) 

SHJ : Worst Plan 
SteMs 
EddyJoins 
STAIRs 
SHJ : Best Plan 

Figure 7: An illustrative TPC-H query: (i) The execution costs of the query processing techniques assuming data is
streamed at rates proportional to the sizes of the relations (for SHJ, we show the costs fortwostatic query execution plans,
the best plan and the worst plan), (ii) Micro-benchmarking the state migration cost, (iii) Rates at which tuples are produced.

duce results at a much better rate except when thebeststatic
execution plan is used for SHJ, and even in that case, the
performance of STAIRs is very close.

5.3 Synthetic Query Workload

To get a sense of benefits in a variety of different scenar-
ios, and for different queries, we present results from a
set of experiments over a synthetic dataset modeled after
the Wisconsin Benchmark [6] using a randomly generated
query workload. We populate the database with a total of
20 tables, five each of sizes 1k, 10k, 50k and 100k. Queries
were generated randomly by first choosing a query graph
shape from among four choices (path-shaped queries with
4 or 5 relations each, and star-shaped queries with 4 or 5
relations each), choosing the relations participating in the
query randomly among the 20 tables above, choosing se-
lection predicates with randomly chosen selectivities, and
finally, choosing the selectivities of the joins randomly be-
tween 0 and 10. The initial plan for the all techniques was
also chosen randomly among all the query plans for the
query. Finally, we randomly varied the rates at which data
from various relations was streamed, and also introduced
random delays in the beginning.

We ran these experiments for 475 such setups, and
measured the execution costs of the four techniques
(SHJ, SteMs, EddyJoins, and STAIRs). In Figure 8 we
present three graphs, comparing the relative performance
of STAIRs with each of the other three techniques. In each
data point, we plot theratio of the slower runtime to the
faster; when STAIRs is faster, the plot isdark gray. The x
axis orders the experiments in ascending order of the bene-
fit of STAIRs.

As we can see in Figure 8, STAIRs perform better than
either SHJ or SteMs in almost all cases, with orders of
magnitude difference in many cases. While comparing Ed-
dyJoins and STAIRs, we observe that, in about 66% of the
cases, the execution costs of the two techniques differed by
less than 10%, whereas out of the remaining 33% cases,
STAIRs outperform EddyJoins in most cases, once by a
factor of almost 10. In spite of using a greedy state mi-

gration policy which can result in late migrations and/or
thrashing, STAIRs perform worse than EddyJoins in a very
few cases, and at worst by a factor of 2.25. In future, we
plan to address both these remaining problems with better
migration policies as sketched in Section 4.2.

5.4 Adaptivity Benefits in a Traditional Setting

We close this section with an example over locally stored
relations. The example illustrates the potential for “mix-
tures” of query plans to improve query performance even in
traditional database scenarios, a direction we hope to pur-
sue more deeply in future.

We use a 3-relation join query,R 1 S 1 T , over a syn-
thetic dataset. The tables contains 50000 100-byte tuples
each, and the selectivities of the two joins were set up such
that, over the first 25000 tuples of the tables (ordered by
the primary key of the table), the selectivity ofR 1 S was
high (eachS tuple joins with 5R tuples), and the selectiv-
ity of S 1 T was zero, whereas over the last 25000 tuples,
the selectivities were reversed. Figure 9 shows the results
of running this query for the variety of query processing ar-
chitectures (includingBase, the vanilla PostgreSQL query
processor with its full range of join algorithms). We use a
variation of the routing policy described in Section 4.1 for
the adaptive query processing techniques, where the rout-
ing and state migration decisions are made based on the
selectivities observed over a small window in the past. As
we can see, both EddyJoins and STAIRs execute the query
much faster than the best static plan for the query, with
STAIRs performing slightly better because of the initial de-
lay in adapting, during which the eddy makes bad routing
choices.

The fundamental reason behind this is that the tableS
is naturally divided into twopartitions, which exhibit very
different join characteristics. Choosing the same query plan
for both of them results in sub-optimal performance. Both
EddyJoins and STAIRs, on the other hand, are able to iden-
tify and exploit this horizontal partitioning by routing part
of the table through one query plan, and part of the table
through another query plan. This example is simplified by
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Figure 8: Comparing the execution costs of SHJ, SteMs and EddyJoins with STAIRs over 475 runs. The plots show the
distribution of the ratios of execution costs, with gray bars on the left showing cases where STAIRs perform worse than
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Figure 9: An experiment illustrating that the eddy architec-
ture can perform much better than thebeststatic plan when
the data has naturalhorizontal partitioning.

the ordering of the relations. In future work we intend to
explore techniques to learn content-sensitive routing strate-
gies that can identify such partitions via tuple attributes
rather than arrival order.

6 Related Work

There has been much work on adapting join and selection
ordering during query execution. Due to lack of space, we
will briefly discuss only the most relevant work here - for a
detailed survey, please see [8].

Kabra and DeWitt [12] propose mid-query reoptimiza-
tion, where a running query is reoptimized after every
blocking point in the query plan. Tukwila [11] uses a
similar technique, where in the absence of enough infor-
mation about the data, only partially-complete plans are
built in the beginning. Query scrambling [18] reacts to
delays in the arrival of sources by rescheduling operators
mid-flight, and in some cases, by reoptimizing the query
to enable other operators. Most of these techniques, how-
ever, can not change the order of in-flight joins. Convergent
query processing [10] proposes changing the query execu-
tion plan (and the join order) in-flight in response to chang-
ing runtime conditions. The times at which the query plans
were changed divide the query execution inphases, and
theinter-phasequery results are generated at the end of the

query execution, using the optimal plan for the query. In
contrast, the eddy architecture produces all query results as
soon as they are available. However, in absence ofstate mi-
gration, eddies can result in sub-optimal performance be-
cause of the query plans it is forced to use as a result of
accumulated state.

Our work builds on the earlier work on eddies [1]
and SteMs [16]. The eddy architecture has since been
extended to execute continuous queries over streaming
data [14, 3, 2]. These continuous query engines are based
primarily on the SteMs architecture, and hence, do not
reuse intermediate results generated during query process-
ing. We believe that reusing intermediate results using
STAIRs can result in better performance in data-stream en-
vironments as well, and we plan to work on this in future.

7 Conclusions
In this paper, we focused on the effect of theburden on
history on the effectiveness of eddies, a highly adaptive
query processing technique. Despite the ability to make
mid-flight corrections to the query plan chosen to execute a
query, the state that gets accumulated in the query operators
can significantly constrain the ability of an eddy to adapt,
resulting in sub-optimal performance in many cases. To al-
leviate this problem, we propose STAIRs, a modified eddy
architecture that exposes the state accumulated inside the
operators to the eddy, and provides state management prim-
itives to manipulate this state. Our implementation of this
architecture in a full-function database management system
(PostgreSQL 7.3) demonstrates the viability of our archi-
tecture, even in traditional query processing applications.
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A Proof of Correctness

Given the generality of the operations that can be per-
formed on STAIRs, it is not clear that the eddy will pro-
duce the correct query result in all cases. In this section,
we give a rigorous proof of correctness of this architecture.
For simplicity, we will assume that when the eddy receives
a new base tuples from a relationS, it completely finishes
processings as well as all the intermediate tuples that re-
sult from joinings with existing tuples, before starting to
process a new base tuple. We will also assume that the pro-
motion and demotion operations are only applied at such
times, also calledpoints of stasis.

We begin with an invariant on the state maintained in the

STAIRs operators at points of stases.
Let C be a connected subgraph of the query graph. As

the query graph is acyclic,C induces a cut on the query
graph as shown in Figure 10 (i). LetXi 1 Yi denote the
edge betweenC andDi. Furthermore, letCτ denote the
result of joining the data for the relations inC that has ar-
rived before timeτ .
Invariant A: At any point of stasisτ , for any connected
subgraphC of the query graph, the state maintained in the
STAIR operators satisfies the following property: for every
tuple c ∈ Cτ , a sub-tuple ofc, c′, is contained in some
Xi 1 Yi (ie., c has been built into a STAIR on someXi).

We say thatc is present asc′ in join Xi 1 Yi.
Intuitively, if this were not true, then if there were to

exist a final result tupleq such that (1)c is a sub-tuple of
q, and (2) the final base component ofq that arrives in the
system is from a relation outsideC, then this final base
component will not be able to join withc to produceq at
all.

The invariant is clearly true in the beginning of the query
(at τ = 0), whenCτ = C0 is empty for allX.

Lemma A.1 If the invariant is true before applying the de-
motion operation, the invariant remains true after applica-
tion of the operation.

Proof: If c ∈ Cτ was present in a joinXi 1 Yi as c′,
and if we replacec′ by a sub-tuplec′′, c is still present in
Xi 1 Yi.

Lemma A.2 If the invariant is true before applying the
promotion operation, the invariant remains true after ap-
plication of the operation.

Proof: Let c ∈ Cτ be present inX1 1 Y1 as a sub-tuple
c1 ∈ (C1)τ , whereC1 ⊆ C. C1, which itself is a con-
nected subgraph, induces a cut onC as shown in Figure 10
(ii).

We will prove that promoting tuplec1 does not change
the invariant forc.

As c1 ∈ (C1)τ , the pair of STAIRs used for promoting
c1 must correspond to a join that includes one relation from
c1. There are two such sets of STAIRs.
• STAIRs corresponding to a join that includes a rela-

tion outsideC, and a relation insideC1. Say we use
the STAIRs on the joinX2 1 Y2, whereX2 ∈ C1. In
that case, during Step 2 of the promotion operation (cf.
3.1.1),c1 will be built into the STAIR onX2 and the
invariant remains true forc, asc will now be present
in X2 1 Y2 asc1.

• STAIRs corresponding to a join on two relations in
C. Let us say we use the join betweenZ1 and Z2

for this purpose, whereZ1 ∈ C1 andZ2 ∈ C3. Let
c3 ∈ (C3)τ be the projection ofc on the relations in
C3. Applying the invariant toc3, a sub-tuple of it (say
c′3) must:

• Either be built into the join betweenZ1 andZ2:
in that case, whenc1 is promoted using that join,
the resultc1c′3 will be built back intoX1 1 Y1

(Step 4, Section 3.1.1), and the invariant will re-
main true forc, asc1c′3 is a sub-tuple ofc.
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• Or be built into the join between some relation
in C3 and some relation outsideC: in that case,
the invariant will still be satisfied forc, asc′3 is
a sub-tuple ofc built into a join that goes outside
C.

Lemma A.3 If a new base tuples ∈ S arrives in the sys-
tem at timeτ , and if the invariant is true at timeτ , then the
invariant remains true after the eddy has finished process-
ing s and all the intermediate tuples that it generates (at
timeτ ′).

Proof: The invariant may only be affected for connected
subgraphs of the query graph that containS, and further-
more, only for those intermediate tuples that have the new
tuple s as a base-table component. LetC be such a con-
nected subgraph and letc ∈ Cτ be a tuple for which the
invariant is not satisfied after the eddy has finished process-
ing s. We have thats is sub-tuple ofc.

Let c′ be the largest sub-tuple ofc that was generated
by the eddy when it processeds.

Clearly,c′ 6= c. The only valid routing choices forc, if
it was generated during processing, areXi 1 Yi operators,
and it would have been built into one such join when the
eddy routed it. Letc′ ∈ C′

τ , whereC′ ⊂ C. Once again,
C′ induces a cut onC as shown in Figure 10 (iii). Now, the
valid routing choices forc′ are:
• X5 1 Y5, X5 ∈ C′, Y5 /∈ C (Figure 10 (iii)): If routed

to this join,c′, which is a sub-tuple ofc, would have
been built into that join, satisfying the invariant forc.
As such,c′ could not have been routed to such a join.

• Z1 1 Z2, Z1 ∈ C′, Z2 ∈ C−C′: Now, let
c1 ∈ (C1)τ be the intermediate tuple that contains
base-table components ofc corresponding to relations
in C1. Note that,c1 does not contains and as such,
the invariant is true for this tuple. Hence, we get that,
a sub-tuplec1, sayc′1 (which is also a sub-tuple ofc),
is:

• either present in joinXi 1 Yi, Xi ∈ C1, Yi /∈
C: this is not possible as the invariant would
have been satisfied forc in that case.

• or present in the joinZ1 1 Z2: in that case,
when the eddy routedc′ to Z1 1 Z2, it would
have joined withc′1 to producec′c′1, which
would have been returned to the eddy. This con-
tradicts our assumption thatc′ was the largest
sub-tuple ofc processed by the eddy, asc′c′1 is
also a sub-tuple ofc.

Lemma A.4 If a new base tuples ∈ S arrives in the sys-
tem at timeτ , and if the invariant is true at timeτ , then
the eddy produces the result of joining that tuple with all
the tuples of the other relations that have already arrived,
ie., the eddy producess 1 (T1)τ 1 . . . 1 (Tl)τ , where
T1, . . . , Tl denote the rest of the relations in the query.

Proof: This follows from the above proof, by lettingC
be the entire query graph, and observing that, in that case,
the only joinc′1 can be present in, isZ1 1 Z2, and thus
contradicting the assumption that the largest sub-tuple of
the result tuplec that was generated, was a strict sub-tuple
of c.

From Lemmas A.1, A.2, A.3, and A.4, it follows that:

Theorem A.1 The eddy always produces all the result tu-
ples for acyclic queries inspite of arbitrary applications of
the promotion and demotion operations.

A.1 Duplicates

Though the above proof guarantees that all results for a
query will be produced, it does not guarantee that every
result will be produced exactly once. We avoid generating
duplicate results by maintaining the following local invari-
ant on the STAIRs at all times.
Invariant B: A STAIR never contains two tuplest1 ∈ T1

andt2 ∈ T2, such that,t1 andt2 agree on all base-table
components corresponding to the relations inT1 ∩T2.

As an example, at timeτ , S.a is not allowed to contain
both sab, s ∈ Sτ , a ∈ Aτ , b ∈ Bτ andsac, s ∈ Sτ , a ∈
Aτ , E ∈ Eτ , as the two tuples agree on the common base-
table componentss anda.

Due to lack of space, we will state the following theorem
without proof:

Theorem A.2 If the above invariant is true when a new
tuple enters the system, no duplicate results will be gen-
erated, and the invariant will remain true after processing
that tuple to completion.

As the duplicate avoidance invariant remains true after
processing a new tuple, we only need to explicitly enforce it
after a state management operation (which we do explicitly
using a sorting-based algorithm). The following theorem
completes our proof of correctness:

Theorem A.3 If Invariant A is true and the eddy manip-
ulates the state to enforceInvariant B , Invariant A will
remain true after the operation.
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