1

Lifting the Burden of History from Adaptive Query Processing*

Amol Deshpandeand Joseph M. Hellerstéih

t University of California, Berkeley antlintel Research, Berkeley
{amol, jmh} @cs.berkeley.edu

Abstract

Adaptive query processing schemes attempt to re-
optimize query plans during the course of query
execution. A variety of techniques for adaptive
guery processing have been proposed, varying
in the granularity at which they can make deci-
sions [8]. The eddy [1] is the most aggressive
of these techniques, with the flexibility to choose
tuple-by-tuple how to order the application of op-
erators. In this paper we identify and address a
fundamental limitation of the original eddies pro-
posal: theburden of historyin routing. We ob-
serve that routing decisions have long-term effects
on the state of operators in the query, and can
severely constrain the ability of the eddy to adapt
over time. We then propose a mechanism we call
STAIRs that allows the query engine to manipu-
late the state stored inside the operators and undo
the effects of past routing decisions. We demon-
strate that eddies with STAIRs achieve both high
adaptivity and good performance in the face of un-
certainty, outperforming prior eddy proposals by
orders of magnitude.

Introduction
“Stair above stair the eddying waters rose
circling immeasurably fast...”

— Percy Bysshe Shelley

of adaptive query processing techniques have been pro-
posed [8]. Among these, the eddy [1] is the most flexible
and aggressive mechanism. An eddy is a tuple router that
is placed at the center of a dataflow, intercepting all incom-
ing and outgoing tuples between operators in the flow. By
sitting at the center of the flow, the eddy can both observe
the rates of all the operators, and make decisions about the
order in which tuples will visit the operators. Eddies are
intended to merge the statistics-collection and operator or-
dering facilities of a query optimizer into a query engine’s
runtime system.

In principle, eddies are able to choose different operator
orderings for each tuple during query processing, subject
only to the constraints of whether an operator is able to
process a tuple (for example, a selection operator on table
S can only process tuples from that table). But, as we ob-
serve in this paper, thquery execution planthat eddies
can effect for multi-join queries are limited not only by the
semantic properties of the operators, but also bythrden
of routing history routing decisions made early in query’s
execution limit the eddy’s routing options later on. These
limitations can remove much of the adaptive power of ed-
dies. The crux of the problem is the state accumulated by
joins: once routed, a tuple that resides in the state of a join
can effectively determine the order of execution for subse-
guently arriving tuples from other tables. To illustrate, we
review an example from the original eddies paper [1]:

Example: Consider the query X, S X, T, using two
pipelining hash join operators (Figure 1). At the begin-

In many scenarios, it is difficult or impossible at com- ning of query processing, the data source fois stalled,

pile time to translate a declarative query into an efficientand noR tuples arrive. Hence th& X, S operator never
static execution plan. This problem has been highlightegroduces a match, which makes it an attractive destination
in querying remote data sources [11, 1], in querying datdor routing S tuples: it efficiently removes work from the
streams [14, 3, 15], and even in traditional centralizedquery engine. The result is that the eddy emulates a static
databases [9, 4, 12]. To address this problem, a varietguery plan of the form(R X S) X T. Some time later,

*This work was supported by NSF under grants 0208588 an

0205647, and by an IBM Fellowship.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication an

R tuples arrive in great quantity and it becomes apparent

%hat the best plan would have beéfi X T) X R. The

eddy can switch the routing policy so that subsequetu-

Iples are routed t§' X, T first. Unfortunately, this change
4is “too little too late™ all the previously-seefi tuples are

its date appear, and notice is given that copying is by permission of theStill stored in the internal state Of_ the X, S operator.
Very Large Data Base Endowment. To copy otherwise, or to republishAs R tuples arrive, theynustjoin with theseS tuples be-
requires a fee and/or special permission from the Endowment.
Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

948

fore theS tuples are joined with” tuples. As a result, the
eddy effectively continues to emulate the suboptimal plan
(R M S) X T, even after its routing decision f&# has

R[><]s lution to this problem, and discuss why that solution is un-
satisfactory. To make this discussion concrete, we focus
on a common usage scenario for adaptive query process-

ing [1, 10, 16, 18, 11], where the query processor is asked
/ to evaluate a declarative select-project-join query over a set

of finite relations that are beingtreamed intathe query
R—> processor (from disk or from network). We ignore selec-
S tion predicates, and restrict the choice of join operators to
pipelining symmetric hash join operators. The discussion
T in this section, however, can be easily extended to other
kinds of join operators as welk(g, index join operators,
traditional non-pipelining join operatoedc).

2.1 Eddies

Traditional database systems execute queries by choosing
a query plan a priori, and adhering to it throughout the
guery execution. The basic idea behind eddies is to treat

R.a HashTbl S.a HashTbl

S

S.b HashTbl T.b HashTbl

s>

Figure 1: If the data from relatio® is delayed, the eddy

may routehall ofS to R X, S, resulting in accumulation of query execution as a processrofiting tuples through op-
state as shown. erators, and to allow changing the order in which tuples are
changed. routed on a per-tuple basis. A speaddyoperator is used

This example illustrates both how easy it is to make in-© 'OUte tuples between the query operators, and follows a
mple procedure:

correct routing decisions, and how these decisions can havé s .
permanent effects on the query plan achieved by an eddy — ® Choose a tuple to process next; this could either be a
even when routing policies are changed. As we discuss ~NeW tuple from a base relation, or it could be the result
in Section 2.3, the state accumulation inside the operators ~ ©f Processing an earlier tuple.
also makes it impossible for the eddy to perform aggressive e Among the operators that akelid routing destina-
adaptations such as changing the join spanning tree used tions for this tuple, choose one, route the tuple to it,
for cyclic queries, or to performuery scrambling18] in and store the resulting tuples in the eddy’s internal
presence of delayed data sources. buffer. Valid routing destinations for a tuple are de-
In this paper we introduce a modified eddy architecture ~ termined by the semantic properties of the operators.
that makes use of a query operator called a STAIR (Stor- For example, a tuple can be routed t{pm operator
age, Transformation and Access for Intermediate Results), ~ only if the tuple contains a component from exactly
which holds the state traditionally encapsulated in joins. one of the relations in the join.
STAIRs address the problems illustrated above by allowNotation
ing query state to be modified and migrated across STAIR8efore going on, we define the notation we use in this pa-
during query execution. The ability to modify and migrate per. We use capitalized italics to denote base relatiems (
state lifts the burden of history described above, enabling?, S), and small italics to denote base tuples belonging to
this architecture to undo the effects of prior routing deci-those relationse(g, r, s). We use boldface letters to de-
sions. In essence, STAIRs complete the picture begun witRote sets of relatione(g, Q = {R, S}). Given a set of
eddies: they allow a query executor to achieve the full efrelationsQ such that the relations in the set can be joined
fect of adapting the operator ordering at any point duringwithout use of cartesian products, we denote the resulting
runtime. As we discuss in Section 3.3, the flexibility in join relation by Q, or simply as the concatenation of the
state management provides a number of additional noveelations inQ (e.g. RS denotes the result relation obtained
optimization opportunities as well for trading off computa- by joining 2 and S). We use small boldface letters to de-
tion and storage during query execution. noteintermediatetuples belonging to such joined relations
We have implemented our architecture in the Post{€.9.,d is a tuple inQ.) Finally, we denote byz, all the
greSQL 7.3 database management system in the conteltples of 2 that have been processed by the eddy at time
of the Telegraph project [2], and we present experimenpefinjtion 2.1 [16] Consider a tupleq that belongs to
tal results showing that eddies with STAIRs achieve bothy,o join of k base-tabledl1,. .., Ty,. The tuples of these
high adaptivity and good performance in the face of Un-y55e taples that participate in the generation of this tuple
certainty, outperforming prior eddy proposals by orders ofy s calledbase-table componeni$q, and are denoted by

magnitude. qr,,- - -, qr, respectively. We denotgby qr, gz, - . . g1, .

2 Eddies: Review and Pitfalls Definition 2.2 A tupleq’ € Q' is called asub-tupleof a

.) . . tupleq € Q, if Q' C Q and all base-table components of
We pegm with a description of Fhe eddy mechanlsm,q/ are also present i. We callq a super-tupleof g’
and illustrate how state accumulation through bad routing

choices can restrict eddy’s ability to adapt. We then brieflyGiven this background, Figure 2 shows the eddy instanti-
review the SteMs architecture [16] that also provides a soated for a three-relation join queRy X .S X T (we will use

949

R [><]'S 2.3 Burden of Routing History

R.a HashTbl S.a HashTbl

Given the unpredictable nature of the data, there is not

SI: much the eddy can do to avoid making routing mistakes,
T and the penalties for such wrong decisions must be incurred
t to some degree during execution. Unfortunately, because

of the state that gets materialized in the operators, espe-
cially the join operators, the effects of such mistakes can
be long-lived. Figure 2 shows the state materialized in the
joins at timer. As we can see, the routing choices made for
S determine what gets stored in the joirf(was routed
' toward R X S, and SZ toward S X T resulting in those
two parts ofS getting stored in those join operators respec-
tively). This results in several problems in query execution
later. We discuss them in turn.
s>rT Constraints on Future Adaptation

The join state can significantly constrain the adaptation op-
Figure 2: An eddy instantiated faR X} S X 7. Valid portunities that the eddy has in future. Though the eddy
options for routing are labeled on the edges. The statean choose how to route a tuple when it first processes it,
materialized inside the join operators at timés shown, the choice made at that time constrains subsequent operator
whereSH and ST denote the parts o, that were routed orderings for future results that involve this tuple. Coming
to R X S andS X T respectively. back to our example, when a tuplec SZ arrived at the

eddy, the eddy could have chosen to route it to either of
this query as the running example throughout this paper)t,he joins. But once this choice has been made (in this case,
and the valid routing choices for various types of tuples.ft X S operator), the query plan used for generatingre-
For example, the only valid routing choice f@rtuples is Sult tuple that contains(even one that may be generated in
the R X S operator, wherea$ tuples can be routed to future), is constrained to big? > S) X T'. This is because

e

S.b HashTbl T.b HashTbl

either of the two join operators. any R tuples that come in later will be routed fox S and
thus will join with s. As such, even if the eddy, in future,
2.2 Uncertainties in Routing deduces that joiningwith R is sub-optimal, it is prevented

.) L from doing any adaptation. This can result in significantly
The key to achieving good performance with eddies is mak'sub—optimal performance in many cases, as we will see in
ing intelligent routing decisions. Unfortunately, the eddy gaction 5.

can never have complete information about the data, OFvclic Queries

about the environment, and has to make decisions in pre‘fﬁ'\y'oin Lerv can be reoresented as a query araph. with
ence of incomplete information. Continuing with our ex- jomn query b query grapn,

ample query, let us say that the eddy was able to Compu,[vertlces denoting the relations and edges denoting join

. . Sredicates between relations. Cyclic queries are those in
D ol e ery graph s cycles, For Example, he query
- : : OR.a=S.ans.b=T.bAR.c=T.c(lR X S x T), is a cyclic query.

these selectivities to make routing choices, under the 85¢"in traditional database svstems. eddies choose a span-
sumption that these selectivities will remain constant inthening tree of the query grapr): a pridri and are not ablepto
fmugj;?ur?]u;httrlgrgea\r,\?rg?%ny reasons why such eXtr""pOI""t'OEhange the spanning tree mid-execution. This is because

Del . val of data: If th del . the tuples that get routed to a join operator are “lost” if a
e De€lays In arrival of aata: ere are defays In ar- spanning tree without that join operator is used later on.

rival of data from some relations, the eddy may have,q 5, example, if we routed according to the spanning tree
a very small sample of the data, leading to 'm.:orrethontainingR X S andS X T in the example above, re-
estimation of selectivities, and possibly of the sizes Ofsulting in state as shown in Figure 2 at timeswitching to
the relations. To be able to estimate join selectlvmesthe spanning tree consisting &f X T' and.S x4 T is not
accurately, both these factors need to be correctly e

. S;iossible, becausB. is stored insideR X S and will not
timated. be available to the new spanning tree.
o Order-dependent selectivities: Selectivities are of- Pre-computation in presence of delays
ten correlated with the order of arrival of data. For |f data from remote data sources is delayed, it might be at-
example, if the data is ordered lyge then the selec- tractive to perform other useful work while waiting for that
tivity of a predicate orsalary changes as the tuples data to arrive. Such pre-computation can be useful to pro-
stream in. duce partial results [17] that may contain missing attribute
« Unpredictable data rates: Unpredictable data rates values, or to join the data that has already arrived as much

can result in incorrect estimation of table sizes, and®S Possible [18]. The eddy is prevented from performing
consequently of selectivities of joins involving those SUC adaptations because of the accumulation of state in-
relations. side the operators, and the eddy’s inability to change rout-

950

Stevlon R As we will see in Section 5, these inherent flaws with

Probe using $ or ST the basic design of the mechanism result in significantly
worse performance than the original eddy architecture in
R.S.ST
most cases.
SteM on S
- Build S
]; L, s P:;be using R or T 3 STAI RS
T—= RS, ST As we argued in the preceding section, and as we will fur-

ther demonstrate in Section 5, routing mistakes are quite
common in adaptive query processing, and the resulting

et burden of history can have long-lasting effects on the query

SteMon'T execution. These effects can be attributed to the state that
Probe using S or RS gets stored in the operators during execution. This obser-
vation naturally leads us to the basic idea behind our pro-
Figure 3: SteMs architecture for the queRyX S X T posed modifications to the eddy architectusxpose the
annotations on the edges show the types of tuples that aféate stored in the operators to the eddy, and allow the eddy
exchanged. to manipulate this stateéWe do this by introducing an op-

erator we call &8TAIR which holds the state traditionally
ing decisions once they are made. In fact, the inability toencapsulated in joins, and provides the eddy with primi-
produce partial results aggressively was one of the maifives to manipulate this state.

reasons the SteMs architecture that we describe below was
developed. 3.1 STAIR Operator

) - i A STAIR operator encapsulates the state typically stored
2.4 SteMs: A Preliminary Solution inside the join operators. More formally, a STAIR on rela-

The State Modules (SteMs) architecture [16] is an extenlion £ and an attribute, denoted byR.a, holds (possibly
sion of the eddy architecture, and inoculates eddies froniftérmediate) tuples that contain a base-table component
these problems by ensuring that the state stored in the offlom relationR, and supports the following two basic op-
erators is entirely independent of the routing history. The€ations:

main_operator in this ar_chitgcture issieM which is i_n- _insert(R.a, t)

stantiated for each relation in the query as shown in FigGiven a tuplet that contains a base-table component from
ure 3. This operator stores all the tuples from that relarelation R, store the tuple inside the STAIR.

tion, and also handles all the probes involving that rela-

tion. The query is once again executed by routing tuplerobe(R.a, val) . _

through these operators. As an example, when a Rew Given a valueval from t.he.domaln of the attribut®.a,
tuple comes into the system, it is (1) inserted into fhe retum all tuples- stored |nS|d€€.c_z such .thatr.a =val.

SteM, (2) probed into thé& SteM to find matchingS tu- Figure 4 shows the STAIRs mstantlate_d_for our exam-
ples corresponding to the joid X S, and (3) the resulting Ple 3-relation query. In essence, for each join operator that
RS tuples are probed into tHE SteM to find matching” ~ Would have been instantiated in the origifildyJoin$ ap-
tuples in order to generat@ST results. The intermediate Proach of [1], we instead use two STAIRs that interact with

RS tuples are not stored anywhere, and are thrown away d&€ eddy directly. We will call the pair of STAIRs corre-
soon as results are produced. sponding to a single joimluals of each other. Note that

As a result of not storing any intermediate tuples, the€Ven if both the joins were on the same attribute, we would

state accumulated inside the SteMs is independent of th@2ve two STAIRs on relatioff and attribute:(= b). These
routing history. This addressed some of the challenge§V0 STAIRs are treated as separate operators, as they par-

mentioned above, but it is also the cause of two significantiCiPate in differentjoins. o
drawbacks: The query execution using STAIRs is similar to query
e Re-computation of intermediate tuples:Since inter- execution using join operators. Instead of routing a tuple
mediate tuples generated during the execution are ndP & join operator as in EddyJoins, the eddy itself performs

stored for future use, they have to be recomputed eacfninserton one STAIR, and arobeinto its dual. In fact,
time they are needed. In this paper, we will assume that the following property is

:)) always obeyed during query execution:
e Constrained plan choices: More importantly, the

query plans that can be executed for any new tuple !To capture join predicates such &a = S.a AND R.b = S.b,

are significantly constrained. For example, any d@w a STAIR can be more generally defined ofisa of attributes from the
tuple r. that comes in at time mustjoin withS. (the schema ofR. For ease of exposition we assume a single join attribute in
tuple’s %OI’S that have already arrived) first ;nd then °Yr discussion; the extension to multi-attribute predicates is straightfor-

h . . g ward.
with T This effectlvely restricts the query plans that 2We will refer to the original eddy architecture that uses explicit join

the eddy can use for this tuple to beX S7) X T, operators by EddyJoins, to distinguish it from the other eddy-based archi-
even if the eddknowsthat that plan is sub-optimal. tectures that we discuss in this paper.

951

R <] S can see, after applying this operation, the tugle in S.b
""" ‘ gets replaced by the tuple.

{ RaSTAIR SaSTAIR
Promotion(R.a, t, S.b)

The promotionoperation replaces a tuple in a STAIR with
supertuples of that tuple that are generated using another
join in the query.

The following conditions must be satisfied by the input
to this operation:

e t must be stored ifR.a.

e t must contain the base-table component correspond-
ing to relationS (note thatS and R may be identical).

e Let the dual STAIR ofS.b be 7.b. Then,t must not
contain the base-table component corresponding to re-

lation 7.
SHSTAIR _ TbSTAIR Intuitively, the point of promotion is to use the jof1X} T
s>t to generate super-tuplesigfthe last two conditions simply

make sure that this is a valid operation.
Given this, the promotion operation performs the fol-
lowing steps:
1. Remove from R.a,

Figure 4: ExecutingR X S X T using an eddy and
STAIRs.

Dual Routing Property: Whenever a tuple is routed to a 2. Insertt into S.b,
?e?r?elgi;?{) Fhrgtg[}gl Q%E)A;Ellt must be simultaneously in 3. ProbeT7 .b using the tuple;, and

This property is analogous to the BuildFirst constraint 4. Insert the resulting matches (that are super-tuples of
described in [16], and is also obeyed by the symmetric join t), if any, back intoR.a.
operator. The Dual Routing Property can be relaxed by Figure 5 shows the result of applying
using timestamps in a similar fashion to the one describeg@romotion(S.b, s3,S.a), to an example initial state.
in [16], so that the probe must follow the insert in time but As a result of this, thes tuple inS.b gets replaced by, s3
need not be atomically combined with the insert. andrs sz, whereass itself gets stored i5.a.

For brevity, we will use the phraseuted toR X, S .
operatorto mean performing the two operations outlined 3-1.2 Duplicates

above on the two STAIRSR.a andS.a, corresponding 10 goih these state management operations, as described

the join. above, can result in a state configuration that allows spu-
311 S M Primit rious duplicate results to be generated in future. Such du-
1.1 State Management Primitives plicates may be acceptable in some scenarios, but can also

Other than the two basic operations described abovelPtionally be removed by maintaining the following local
STAIRs also support two state management primitives; ~ invariant on the STAIRs.

Demotion(R.a, t, t) Invariant: A STAIR never contains two tuples € T

Intuitively, thedemotioroperation involves reducing an in- @ndtz € T2, such thatt; andt, match on all base-table
termediate tuple stored in a STAIR to a sub-tuple of thatcOmponents corresponding to the relationdllp N Tz.
tuple, by removing some of the base tuple components that "N Appendix A we discuss techniques to maintain this
it contains. invariant during query execution, and also how it guaran-

The following pre-conditions must be satisfied by the té€s duplicate-free execution.
arguments to this function: o . .

e t must be a tuple stored iR.a, 3.2 Lifting the Burden of History using STAIRs
As we discussed in Section 2.2, storing intermediate result
_ tuples generated during query execution can have a signif-
e t’ must contain the base-table component @brre- icant impact on future query processing. In this section we

e t’ must be a sub-tuple af

sponding to the relatiof. show an example of how STAIRs can be used to manipu-

Given that these pre-conditions are satisfied, the demdate the state stored within the join operators so that such
tion operation simply replacasby t’ in R.a. prior decisions can, in effect, be reversed.

This operation can be thought of asdoing some Figure 6 shows the state maintained inside the join op-

work that was done earlier during execution, and thiserators at timer for our example query. Let us say that,
work may have to be redone if the tuple is requiredat this time, we have better knowledge of the future and
again in future. Figure 5 shows the result of applyingwe know that routingS? toward R X S was a mistake,
demotion(S.b, 151, s1) to an example initial state. As we and will lead to sub-optimal query execution in future (say

952

R[>S R[>=]S R[>=]S

R.aSTAIR S.aSTAIR R.aSTAIR S.aSTAIR R.aSTAIR S.aSTAIR

T
T

1 St iy St
2 Sy P} Sy
53[53

1 t

1

R Demote r s R Promote s
s - - - s Eddy -
r ———= r ——=
s,]t rs, t
™85 1%,
S3 S3
SbSTAIR Tb STAIR SbSTAIR Tb STAIR SHSTAIR T.bSTAIR
s>r s>rT s>]rT
(ii) After demoting r1s1 (i) Initial state (iii) After promoting s3

Figure 5: Examples of promotion and demotion. The middle plan (i) shows the state of the system after the eddy has
received six tuples;, r, s1, s2, 83, t1, and has chosen to routg ands, to R X S, andss to S X T'. The left-hand plan

(ii) shows the state after; s; has been demoted tq in S.b. The right-hand plan (iii) shows the effect, starting from the
initial state, of promotings usings.a.

becausek X SE has high selectivity). This prior routing stalled, it is often desirable to ameliorate the delay by ei-
decision can be reversed as follows (Figure 6): ther producing partial results, or by aggressively joining to-
e Demote theS X R, tuples inS.b to SE. gether previously-received tuples (query scrambling). Both
R R of these ideas involve a form of pre-computation of results.

o Promote the5;” tuples froms.a 0 57" X T+ The promotionprimitive provided by STAIRs can be used

can see, the state now reflects what it would have been | perform such pre-computation as required. As an exam-

S had previously been routed to tSeh and7.b STAIRs ple, if the data from a relatiof® is delayed and the query

: engine wants to join data from relatishthat is waiting for
instead ofR.a andS.a STAIRs. As a result, futur® tuples
will not be forced to join withS2. data fromR (and hence, was routed #® X S operator)

We will refer to this process of moving state from one with da}ta from relatiorir’, the eddy can use the promotion
i0in operator to another agate miaration operation to mové’ tuples toS X 7' operator, and thus
J P 9 ' perform useful work while waiting for data frorR. The
original query scrambling proposal [18] only addresised
tial delays; the ability of STAIRs to allow precomputation
Executing queries using STAIRs allows the eddy to adapkven after some data frof generalizes that approach.
for reasons other than removing the burden of history.

hi ion, we will briefly di how thi n ne. i o .
this section, we briefly discuss how this can be done The SteMs architecture demonstrated that it is possible to

Cyclic queries q X thout stori int diat
Like the original eddy architecture, the base STAIRs archi- 0 queéry processing without storing any intermediate re-

tecture only works naturally with acyclic queries; as such,SUItS at all. The state management primitives provided
a spanningytree of cyclic q)ijew gra)r/Jhs nqlust be chosen :ﬁTAI.R.S enab'le_ Fhe' eddy o lake th|s idea even further by
the query initialization. However, unlike the EddyJoins ar- Providing flexibility in choosing the intermediate result tu-
chitecture, the state management features provided by tkﬂ%les to be stored for further reuse. As an exa’.“p'e’ the eddy
STAIRs can be used to switch the spanning tree used fqEould choose to store only base-table tuples in the STAIRs

execution mid-way through query processing. Briefly, this ydlnstatr;]tly demotln? |ntsert?d ftL#])Ies. This can be usded to
is done by manipulating the state inside the operatorsto r educe the memory footprint of the query processor down

flect query execution using the new spanning tree. In th 0 the memory footprint of the SteMs architecture (though

interest of brevity we omit the details in this paper. We do he actual query execution will not be identical to using
note here that this process can involve fair amount of stat<§teMS)'

movement, and if we expect to change the spanning tree Another instance where such flexibility could be use-
used frequently, the SteMs architecture is an attractive alful is when we are executing sliding window queries over
ternative since it can change the spanning trees more easilstreaming data [14, 3, 2, 7, 19]. Storing and reusing in-
Partial Results, Query Scrambling termediate results is problematic in such a setting, because
When a data source in the query is relatively slow or everwhen a window on a base relation slides, some base-table

3.3 Further motivating adaptive state management

I) .
r\:Iexmle Storage and Reuse of Intermediate Results

953

RE<s RE<s statistics about the data, and uses them to make routing

RaSTAIR S.aSTAIR RaSTAIR S.a STAIR choices, and state migration decisions.
. & R & We developed the routing mechanism carefully to mini-
' S%T ' S% T‘ mize the overheads of routing. The main idea behind these
Lt L optimizations is to perform mini-batch routing instead of
\ per-tuple routing. As we show in [5], the cost of making

. ODme RS routing decisions' can be effectively' amortized over very
s - . s Eddy few tuples, resulting in very low routing mechanism over-
T @) Promote S T—= heads with significant flexibility.

STAIR: We currently implement a STAIR as an in-memory

. . hash table built on the tuples that have been inserted into
S Tt 5 T the STAIR. It supports the four basic operations described
R S, S above {nsert, probe, demoteandpromotg, and also sup-
SBSTAIR Tb STAIR SHSTAIR TbSTAIR ports the iterator interface allowing it to be used in tradi-
s> T s > T tional query plans without eddies.

The STAIR operator is also used to implement two other
Figure 6: State Migration: Reversing prior decisions usingoPerators: _ , ,
STAIRS e Symmetric Hash Join: As discussed previously, a

symmetric hash join operator is simply two STAIRs

tuples are dropped from the window, and all intermediate used together.
tuples that contain those base-table tuples must be removed, steM: There are two main differences between SteMs
from the engine. The cost of deletion can be quite signif- 4339 STAIRs: (1) SteMs only store base tuples, (2)
icant, and many of these architectures choose to discard 5 single SteM manages all inserts and probes on the
intermediate result tuples (e.g. CACQ [14]). STAIRs can pase tuples corresponding to a single relation. We em-
be used to store only long-living intermediate tuples, thus y|ate this architecture by (1) inserting each base tu-
enabling selective caching of intermediate tuples. ple into all the STAIRs on the corresponding relation,
(2) never inserting an intermediate tuple into any of
the STAIRs, and (3) routing a probe on a relation to
Given the generality of the operations that can be per- the appropriate STAIR on that relation. It might seem

3.4 Correctness of Operation

formed on STAIRSs, it is not clear that the eddy will always that we pay a penalty relative to SteMs for maintain-
produce correct query result when using STAIRs. In Ap- ing multiple STAIRs on the same relation. However,
pendix A we prove the following: as described in [16], a SteM actually maintains mul-

tiple internal hash-indexes, one corresponding to each
Theorem 3.1 An eddy with STAIRs always produces the probing attribute, and as such, the overheads of the
correct query result in spite of arbitrary applications of the two architectures are identical.
promotion and demotion operations.
4.1 Routing Policy

4 Implementation Details The routing policy we use for the experiments in this paper

. . . . is based on the rank ordering technique [13] for ordering
We have implemented this architecture in the POStgreSQISelections. The eddy maintains two sets of statistics on the

7}2 dﬁtarlc))"?‘:; E?r}ﬁ%ﬁgggg%ﬁte&'CvitlTgrf;?t%ﬁ;gzégeoﬂ?lgéta: (1) the selectivities of the predicates on the base rela-
igm Fl)en?erftation(lease see [5] ;‘or the full det)‘/ails of the im_tions, and (2) the domain sizes of the join attributes corre-
P P sponding to the joins, which are used to compute the join

Fr:irgigttgtrlgg)@y\(/: %Q:ﬁ?gqed two main new operators tgelectivitie_s periodically. For Stel_\/ls, a gre_edy routing _pol—

' icy of routing a tuple such that it joins with the relation
Eddy: An eddy operator handles a single select-projectwith the lowest join selectivity is used; this policy produces
join query block that may contain arbitrary selections, joinsthe minimal number of intermediate tuples in response to
and projections, but no aggregates, groupbys or subqueriea.new base tuple, and hence is optimal under that metric
The latter constructs are handled by existing PostgreSQlor SteMs (assuming that the selectivity estimates are ac-
operators that interact with the eddy operator using the traeurate).
ditional iterator interface. To be able to support such an The same policy is however not optimal for EddyJoins
interface, the eddy operator is implemented as a finite stater STAIR; the state accumulation through making locally
machine that internally keeps track of its computationaloptimal routing choices can result in sub-optimal overall
state. The eddy instantiates a set of operators (STAIRgerformance. For these two techniques, we use the follow-
joins, SteMsetc) as required, and executes the query bying routing policy to route a given tuple:
fetching tuples from the source modules (with which itin- 1. For each join (or corresponding STAIRS) that the tu-
teracts using the iterator interface as well) and by routing ple could be routed to, computeimulativeselectivity
the tuples among the operators. The eddy also maintains of joining it with the tuples from all relations that the

954

tuple is connected to through this join (e.g., while con-derstand the trade-offs involved in the state migration pro-
sidering aR tuple and thek X S join in our example cess. We use the following query on the TPC-H Bench-
query, cumulative selectivity is the result of joining mark schema that asks fineitem’sin a specified period

this R tuple with S X T7.). and corresponding to a specified set of customers.
2. Route the tuple to the join with the lowest cumulative S€'€ct .
selectivity. from customer c, orders o, lineitem |
Note that, the computation of these selectivities is amorWhere c.cu;tkiy :_ol.cuzltk?(y and d
tized using the mini-batch routing optimizations as we de- g'g;ﬁirnkeeyy = 'fr er aer)(d an
scribe in detail in [5], and is not done per-tuple. ' -
[5] P P c.acctbal > 9000 and
4.2 State Migration Policy l.shipdate > date '1996-01-01’

We currently use a areedv state miaration policy that ea- The data from relatiofineitemarrives at the query en-
ently 9 y . gration policy ine sorted in ascending order blgipdate Early on in the
gerly migrates state when routing decisions are changetgﬂ

This approach ignores the cost of state migration, and coul uery, the selectivity of the predicate bneitem appears
Pp gn . 9 ' uch lower than that afustomey so the eddy makes rout-
potentially result in sub-optimal performance for two rea-

) ; : .~ ing mistakes in the beginning by routing the tuples from
sons: the eddy might thrash by performing too many M6 ordersto the join with relationlineitem Figure 7(i)

tions in response to fluctuating selectivities, and the edd)éhows the execution times of the various query processing

might perform a large state migration at the end of queryL{echniques for this query in the scenario, where data rates

execution, with no subsequent payoff. As our experimenta re proportional to the sizes of the relations. Thieffect

results demonstrate, these scenarios may be infrequent ﬁ%/es the eddy correct estimates of the sizes of the relations,

spite of which, EddyJoins performs significantly worse
than STAIRs because of the initial routing mistake of rout-
?ng orderstuples tolineitem orders On the other hand,
STAIRs is able to correct this routing mistake by migrating
5 Experimental Study the orderstuples to the second join when it gets more in-

])] formation, performing almost as well as having routed cor-
In this section, we present an experimental study that valirectly from the beginning. Thiswitchhappens when the
dates our approach. We begin by studying in detail an illusgqdy has seen about 55% of the tuples franters and the
trative query on the TPC-H benchmark schema, to analyzgorresponding state migration operation migrates all those
the effect of state on the eddy architecture. We demonstraigp|es to the second join at that time.
the advantages of our architecture for both a completion- " gyen though reuse of intermediate tuples is quite min-
time mc_etric, and an online delay metric that looks at theimal in this query, SteMs perform poorly compared to the
outputtimes of tuples. We then present a more extensive Sgfner techniques because there is no way to avoid joining
of experiments on an synthetic database modeled after thge |ater-arrivinglineitem tuples with orders intermedi-
Wisconsin benchmark [6]. We use a set of randomly genyte results fromcustomenx orders must be materialized
erated queries on this benchmark, and focus on the comg avoid this expense.
pletion time metric to demonstrate the advantages of such 4 petter understand the trade-offs involved in state mi-

adaptive query processing. gration, we change the setup so that the eddy is not allowed
5.1 Setup to e!ther char!ge its routing deci;ions or perform state mi-
grations until it has seen a certain numbeonferstuples.
We ran the experiments on two machines, a 2GHz PenFigure 7(ii) shows the results of this experiment. Since the
tium IV machine and a 1.4 GHz Pentium Il machine change in the selectivities happens at about 55%, the execu-
with 512MB of memory each, running RedHat Linux. We tion times of these techniques are unaffected until that time.
present experiments comparing four query processing tectxs we can see, the state migration cost up to this point is
niques: Symmetric Hash Joins (SHJhich uses tradi- about 7% of the total execution cost with STAIRs. As we
tional static query plans with symmetric hash join opera-increase the number afrderstuples that need to be mi-
tors, and our three adaptive schemésidyJoins SteMs grated, the cost of state migration increases, and its benefit
and STAIRs Each experiment compared all four schemesgoes down. Even then, the cost of state migration is low
on the same machine. The data was read off of local diskssnough that STAIRs outperform EddyJoins, except at the
and for the adaptive query processing techniques, the datgry end when STAIRs migrate the entiweders relation
was presented to the eddy through a module that controllegjithout any benefit to doing so since the query execution is
the input rates, and introduced delays as required by thgyer.
setup. The “mini-batch” size for the eddy was set so thatit Finally, we take a brief look at an interactive metric,
could change routing decisions every 1000 tuples. namely, the rate at which output tuples are produced by
. these techniques. Figure 7(iii) shows the output rates for
52 Anlllustrative TPC-H Query these four techniques (for SHJ, we show the output rates
We begin with an illustrative query to validate the need fortwo plans, the best static plan and the worst static plan)
state management in adaptive query processing, and to ufer the above TPC-H query. As we can see, STAIRs pro-

practice. We are planning to address these shortcomings
the state migration policy by instituting a back-off mecha-

avoid large migrations at the end of a query.

955

209 259 —s— Eddyloins SHI : Worst Plan
—e— SteMs — — SteMs
—a— STAIRs 15 —-—- Eddyloins
- - STAIRs Migration Cost) - - - STAIRs
s 209] s SHJ : Best Plan _/
H Z o
2 2 -7
°E) o 15 104 7 7
- .g @ e . -
= 10 = E /o
5 £ & e
k=4 g 104 -
g g L
% 5 5 s
=2 5 = 2
z
] G
7 ———mooTT T TS
_a /o mmmTT TS
_x Yoo
Sy iy Sy S k-7 .
0= 0 7 + 7 T 1 0 T T T T 1
Static Execution Plans ~ EddyJoins ~ SteMs ~ STAIRs 20 40 60 80 100 20 40 60 80 100
Query Processor % Orders tuples processed pre-switch % Output tuples produced

(i) (ii) (ii)

Figure 7: An illustrative TPC-H query: (i) The execution costs of the query processing techniques assuming data is

streamed at rates proportional to the sizes of the relations (for SHJ, we show the ctwgtsstatic query execution plans,

the best plan and the worst plan), (ii) Micro-benchmarking the state migration cost, (iii) Rates at which tuples are produced.

duce results at a much better rate except whebdiséstatic gration policy which can result in late migrations and/or
execution plan is used for SHJ, and even in that case, thirashing, STAIRs perform worse than EddyJoins in a very

performance of STAIRs is very close. few cases, and at worst by a factor of 2.25. In future, we
plan to address both these remaining problems with better
5.3 Synthetic Query Workload migration policies as sketched in Section 4.2.

To get a sense of benefits.in a variety of different scenarg 4 Adaptivity Benefits in a Traditional Setting

ios, and for different queries, we present results from a

set of experiments over a synthetic dataset modeled aftéie close this section with an example over locally stored
the Wisconsin Benchmark [6] using a randomly generatedelations. The example illustrates the potential for “mix-
query workload. We populate the database with a total ofures” of query plans to improve query performance even in
20 tables, five each of sizes 1k, 10k, 50k and 100k. Queriesaditional database scenarios, a direction we hope to pur-
were generated randomly by first choosing a query graplsue more deeply in future.

shape from among four choices (path-shaped queries with We use a 3-relation join querg X S X T, over a syn-

4 or 5 relations each, and star-shaped queries with 4 or thetic dataset. The tables contains 50000 100-byte tuples
relations each), choosing the relations participating in theeach, and the selectivities of the two joins were set up such
query randomly among the 20 tables above, choosing sehat, over the first 25000 tuples of the tables (ordered by
lection predicates with randomly chosen selectivities, andhe primary key of the table), the selectivity Bfix S was
finally, choosing the selectivities of the joins randomly be-high (eachS tuple joins with 5R tuples), and the selectiv-
tween 0 and 10. The initial plan for the all techniques wasity of S X T was zero, whereas over the last 25000 tuples,
also chosen randomly among all the query plans for thehe selectivities were reversed. Figure 9 shows the results
query. Finally, we randomly varied the rates at which dataof running this query for the variety of query processing ar-
from various relations was streamed, and also introducedhitectures (including@ase the vanilla PostgreSQL query
random delays in the beginning. processor with its full range of join algorithms). We use a

We ran these experiments for 475 such setups, andariation of the routing policy described in Section 4.1 for
measured the execution costs of the four techniquethe adaptive query processing techniques, where the rout-
(SHJ, SteMs, EddyJoins, and STAIRs). In Figure 8 weing and state migration decisions are made based on the
present three graphs, comparing the relative performancsgelectivities observed over a small window in the past. As
of STAIRs with each of the other three techniques. In eactwe can see, both EddyJoins and STAIRs execute the query
data point, we plot theatio of the slower runtime to the much faster than the best static plan for the query, with
faster, when STAIRSs is faster, the plot darkgray. The x STAIRs performing slightly better because of the initial de-
axis orders the experiments in ascending order of the benday in adapting, during which the eddy makes bad routing
fit of STAIRSs. choices.

As we can see in Figure 8, STAIRs perform better than The fundamental reason behind this is that the table
either SHJ or SteMs in almost all cases, with orders ofis naturally divided into twgartitions, which exhibit very
magnitude difference in many cases. While comparing Eddifferent join characteristics. Choosing the same query plan
dyJoins and STAIRs, we observe that, in about 66% of thdor both of them results in sub-optimal performance. Both
cases, the execution costs of the two techniques differed bigddyJoins and STAIRs, on the other hand, are able to iden-
less than 10%, whereas out of the remaining 33% casesify and exploit this horizontal partitioning by routing part
STAIRs outperform EddyJoins in most cases, once by af the table through one query plan, and part of the table
factor of almost 10. In spite of using a greedy state mi-through another query plan. This example is simplified by

956

60

40 o

204

Max of Ratios of Execution Costs
Max of Ratios of Execution Costs
Max of Ratios of Execution Costs

00 200 300 400 ‘ 100 200 300 400
Comparing SHJ and STAIRs Comparing SteMs and STAIRs Comparing EddvJoins and STAIRs

Figure 8: Comparing the execution costs of SHJ, SteMs and EddyJoins with STAIRs over 475 runs. The plots show the
distribution of the ratios of execution costs, with gray bars on the left showing cases where STAIRs perform worse than
the alternative technique. For the comparison of EddyJoins and STAIRs, we only plot results for the experiments where
the execution costs differed by more than 10% (about 33% runs).

] guery execution, using the optimal plan for the query. In
10 contrast, the eddy architecture produces all query results as

1 soon as they are available. However, in absenstadé mi-
gration, eddies can result in sub-optimal performance be-
cause of the query plans it is forced to use as a result of
accumulated state.

Our work builds on the earlier work on eddies [1]
and SteMs [16]. The eddy architecture has since been
] extended to execute continuous queries over streaming
0 data [14, 3, 2]. These continuous query engines are based

Base SHJ Eddvloins SteMs STAIRs primarily on the SteMs architecture, and hence, do not
.)) . . reuse intermediate results generated during query process-
Figure 9: An experiment illustrating that the eddy archltec—ing_ We believe that reusing intermediate results using
ture can perform much better than theststatic plan when STAIRs can result in better performance in data-stream en-
the data has naturhbrizontal partitioning vironments as well, and we plan to work on this in future.

Execution Time (secs)
W
1

the ordering of the relations. In future work we intend to / Conclusions
explore techniques to learn content-sensitive routing stratgy, this paper, we focused on the effect of therden on
gies that can identify such partitions via tuple attnbuteshistory on the effectiveness of eddies, a highly adaptive

rather than arrival order. query processing technique. Despite the ability to make
mid-flight corrections to the query plan chosen to execute a
6 Related Work query, the state that gets accumulated in the query operators

can significantly constrain the ability of an eddy to adapt,
sulting in sub-optimal performance in many cases. To al-
eviate this problem, we propose STAIRs, a modified eddy

There has been much work on adapting join and selectio
ordering during query execution. Due to lack of space, wq

will briefly discuss only the most relevant work here -for a 5 chjtecture that exposes the state accumulated inside the
detailed survey, please see [8]. , . operators to the eddy, and provides state management prim-
_ Kabra and DeWitt [12] propose mid-query reoptimiza- jtiyes to manipulate this state. Our implementation of this
tion, where a running query is reoptimized after everyychitecture in a full-function database management system
blocking point in the query plan. Tukwila [11] uses a (postgreSQL 7.3) demonstrates the viability of our archi-

similar technique, where in the absence of enough inforyeciyre, even in traditional query processing applications.
mation about the data, only partially-complete plans are

built in the beginning. Query scrambling [18] reacts to

delays in the arrival of sources by rescheduling operatorgee‘cerenceS

mid-flight, and in some cases, by reoptimizing the query [1] Ron Avnur and Joe Hellerstein. Eddies: Continuously
to enable other operators. Most of these techniques, how- adaptive query processing. 8iGMOD 2000.

ever, can not change the order of in-flight joins. Convergent [2] Sirish Chandrasekaragt al. TelegraphCQ: Contin-
query processing [10] proposes changing the query execu- uous dataflow processing for an uncertain world. In
tion plan (and the join order) in-flight in response to chang- CIDR, 2003.

ing runtime conditions. The times at which the query plans [3] Sirish Chandrasekaran and Michael J. Franklin.
were changed divide the query executionpinases and Streaming queries over streaming data. VIioDB,
theinter-phasequery results are generated at the end of the 2002.

957

[4] Richard Cole. A decision theoretic cost model for dy- STAIRs operators at points of stases.

namic planslEEE Data Engineering Bulletir2000. Let C be a connected subgraph of the query graph. As
[5] Amol Deshpande. An initial study of overheads of the query graph is acycliaZ induces a cut on the query
eddies.SIGMOD RecordMarch 2004. graph as shown in Figure 10 (i). L&f; X Y; denote the

[6] David J. DeWitt. The Wisconsin Benchmark: Past, edge betweel© andD;. Furthermore, leC.. denote the
present, and future. IThe Benchmark Handbook result of joining the data for the relations @ that has ar-
Database and Transaction Systems (2nd Edition)rived before timer.

1993. Invariant A: At any point of stasis, for any co_nnec.ted

[7] Lukasz Golab and M. Tamer Ozsu. Processing slidingsubgraphC of the query graph, the state maintained in the
window multi-joins in continuous queries over data STAIR operators satisfies the following property: for every

streams. In/LDB, 2003. tuple c € C, a sub-tuple_oi;, c’, is contained in some
[8] Joe Hellersteinet al. Adaptive query processing: i X Y; (ie., ¢ has been built into a STAIR on Somg).

Technology in evolution.|IEEE Database Engineer- e say that is present ag’ in join X; X Y;.

ing Bulletin, June 2000. Intuitively, if this were not true, then if there were to

[9] Yannis loannidis and Younkyung Cha Kang. Ran- exist a final result tuple such that (1) is a sub-tuple of
domized algorithms for optimizing large join queries. @ @nd (2) the final base componentcpthat arrives in the
In SIGMOD, 1990. system is from a relation outsid€, then this final base

[10] Zachary IvesEfficient query processing for data inte- cOMPonent will not be able to join with to produceq at
gration. PhD thesis, University of Washington, Seat- &' . o . I
tle, 2002. The invariant is clearly truein the beginning of the query
[11] Zachary G. Ivest al. An adaptive query execution (at = 0), whenC. = Co is empty for allX.

system for data integration. BIGMOD, 1999. Lemma A.1 If the invariant is true before applying the de-

[12] Navin Kabra and David J. DeWitt. Efficient mid- motion operation, the invariant remains true after applica-
query re-optimization of sub-optimal query execution tjgn of the operation.

plans. InSIGMOD, 1998. _ o

[13] Ravi Krishnamurthy, Haran Boral, and Carlo Zan- Proof: If ¢ € C; was present in a joinX; X Y; asc/,
iolo. Optimization of nonrecursive queries. VDB, and if we replace’ by a sub-tuplec”, c is still present in
1986. X; XY,

[14] Sam Madden, Mehul Shah, Joe Hellerstein, and Vi-

jayshankar Raman. Continously adaptive continoué‘emma A2 It thg invariant s frue befqre applying the
queries over strearﬁs BIGMOD, 2002 promotion operation, the invariant remains true after ap-

[15] Rajeev Motwankt al. Query processing, approxima- plication of the operation.
tion, and resource management in a data stream maiproof: Letc € C, be present inX; X Y; as a sub-tuple
agement system. I8IDR, 2003. c1 € (C1),, whereC; C C. Cy, which itself is a con-

[16] Vijayshankar Raman, Amol Deshpande, and Joenected subgraph, induces a cut@ras shown in Figure 10
Hellerstein. Using state modules for adaptive query(ii).

processing. INCDE, 2003. We will prove that promoting tuple; does not change
[17] Vijayshankar Raman and Joe Hellerstein. Partial rethe invariant forc.
sults for online query processing. 8iGMOD 2002. As c; € (Cq),, the pair of STAIRs used for promoting

[18] Tolga Urhan, Michael J. Franklin, and Laurent Am- c; must correspond to a join that includes one relation from
saleg. Cost based query scrambling for initial delays.c;. There are two such sets of STAIRs.

In SIGMOD, 1998. e STAIRs corresponding to a join that includes a rela-
[19] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. ~ tion outsideC, and a relation insid€;. Say we use
Maximizing the output rate of multi-way join queries the STAIRSs on the joinX, X Y3, whereX; € Cy. In
over streaming information sources.\/h.DB, 2003. that case, during Step 2 of the promotion operation (cf.
3.1.1),c4 will be built into the STAIR onX, and the
A Proof of Correctness invariant remains true foe, asc will now be present

Given the generality of the operations that can be per- In X5 XY; aser.
formed on STAIRs, it is not clear that the eddy will pro- ® STAIRs corresponding to a join on two relations in
duce the correct query result in all cases. In this section, ~C- Let us say we use the join betweeh and Z;
we give a rigorous proof of correctness of this architecture. ~ for this purpose, wher&, € C, andZ, € Cs. Let
For simplicity, we will assume that when the eddy receives €3 € (Cs) be the projection ot on the relations in

a new base tuple from a relations, it completely finishes Cs. Applying the invariant te's, a sub-tuple of it (say

processing as well as all the intermediate tuples that re- c3) must:

sult from joining s with existing tuples, before starting to e Eitherbe built into the join betweei; and Z,:

process a new base tuple. We will also assume that the pro- in that case, whea, is promoted using that join,

motion and demotion operations are only applied at such the resultc; ¢y will be built back intoX; X Y3

times, also callegoints of stasis (Step 4, Section 3.1.1), and the invariant will re-
We begin with an invariant on the state maintained in the main true fore, asc; ¢ is a sub-tuple oé.

958

O] (i) (iii)
Figure 10: Proof of correctness figures

e Or be built into the join between some relation Lemma A.4 If a new base tuple € S arrives in the sys-
in C3 and some relation outsidg: in that case, tem at timer, and if the invariant is true at time, then
the invariant will still be satisfied fot, ascj is the eddy produces the result of joining that tuple with all
a sub-tuple o€ built into a join that goes outside the tuples of the other relations that have already arrived,
C. ie., the eddy produces X (77), X ... X (T}),, where

. . T1,...,T; denote the rest of the relations in the query.
Lemma A.3 If a new base tuple € S arrives in the sys- ! ! query

tem at timer, and if the invariant is true at time, thenthe Proof: This follows from the above proof, by lettinG
invariant remains true after the eddy has finished processbe the entire query graph, and observing that, in that case,
ing s and all the intermediate tuples that it generates (atthe only joinc) can be present in, i&; X Z,, and thus
timer’). contradicting the assumption that the largest sub-tuple of

. . the result tuple: that was generated, was a strict sub-tuple
Proof: The invariant may only be affected for connected ¢ .. I P 9 P

subgraphs of the query graph that contélinand further- From Lemmas A.1, A.2, A.3, and A.4, it follows that:
more, only for those intermediate tuples that have the new e '
tuple s as a base-table component. I@the such a con- Theorem A.1 The eddy always produces all the result tu-
nected subgraph and letc C. be a tuple for which the ples for acyclic queries inspite of arbitrary applications of
invariant is not satisfied after the eddy has finished procesghe promotion and demotion operations.
ing s. We have that is sub-tuple ot.

Let ¢’ be the largest sub-tuple efthat was generated A.1 Duplicates

byglle etljdy/when_ilithprom?ssetlj_ d routing choices far if 110ugh the above proof guarantees that all results for a
_ Clearly,c’ # g.d € only vall _routmgbg ;lces @, T query will be produced, it does not guarantee that every
it was generated during processing, fg Y; operators, raqit will be produced exactly once. We avoid generating

and it would have been built into one such join when thed ; S : : ;
. X uplicate results by maintaining the following local invari-
eddy routed it. Let’ € C’, whereC’ C C. Once again, an{)on the STAIRsyat all times.g g

C’ induces a cut o as shown in Figure 10 (iii). Now, the ; . ;
valid routing choices fot’ are: andts ¢ T, such thatt, andts agree on allbase-table
’ . . i) b
¢ tX5trI? Y5, Xs < Ch.’)r:?% C (Ftl)gturel 12&('"))' Iflgorl:ted components corresponding to the relationdlip N Ts.
0 this jon, ¢, which IS & sub-tupie of, would have As an example, at time, S.a is not allowed to contain
been built into that join, satisfying the invariant for bothsab.s € S..a € A- b € B. andsac.s € S-.a ¢
/ P I T T T i T
As such,c’ could not have been routed to such a join. A.,E € E,, as the two tuples agree on the common base-
o Z1 W ZyZy € C',Z, € C—C": Now, let table componentsanda.
c1 € (C1), be the intermediate tuple that contains Due to lack of space, we will state the following theorem
base-table components©torresponding to relations without proof:
in C;. Note that,c; does not contais and as such,
the invariant is true for this tuple. Hence, we get that
a sub-tuplecq, sayc) (which is also a sub-tuple @),
is:
e eitherpresent in joinX; X Y;, X; € C1,Y; ¢ _ _ _ _ _
C: this is not possible as the invariant would As thg duplicate avoidance invariant remains true aftgr
have been satisfied ferin that case. processing a new tuple, we only need to explicitly enforce it
e Or present in the joinZ, M Z,: in that case, after a state management operation (which we do explicitly
when the eddy routed’ to Z; X Z, it would ~ USINg a sorting-based algorithm). The following theorem
have joined withc; to producec’c;, which ~ completes our proof of correctness:

would have been returned to the eddy. This con-Thegrem A.3 If Invariant A is true and the eddy manip-

tradicts our assumption that was the !a/rg_est ulates the state to enfordavariant B, Invariant A will
sub-tuple ofc processed by the eddy, @&} is emain true after the operation.

also a sub-tuple of.

Theorem A.2 If the above invariant is true when a new
"tuple enters the system, no duplicate results will be gen-
erated, and the invariant will remain true after processing
that tuple to completion.

959

