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Abstract

A number of emerging applications of data man-
agement technology involve the monitoring and
querying of large quantities of continuous vari-
ables, e.g., the positions of mobile service users,
termed moving objects. In such applications, large
quantities of state samples obtained via sensors
are streamed to a database. Indexes for moving
objects must support queries efficiently, but must
also support frequent updates. Indexes based on
minimum bounding regions (MBRs) such as the
R-tree exhibit high concurrency overheads dur-
ing node splitting, and each individual update is
known to be quite costly. This motivates the de-
sign of a solution that enables the B � -tree to man-
age moving objects. We represent moving-object
locations as vectors that are timestamped based on
their update time. By applying a novel lineariza-
tion technique to these values, it is possible to
index the resulting values using a single B � -tree
that partitions values according to their timestamp
and otherwise preserves spatial proximity. We de-
velop algorithms for range and � nearest neigh-
bor queries, as well as continuous queries. The
proposal can be grafted into existing database sys-
tems cost effectively. An extensive experimental
study explores the performance characteristics of
the proposal and also shows that it is capable of
substantially outperforming the R-tree based TPR-
tree for both single and concurrent access scenar-
ios.
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1 Introduction

An infrastructure is emerging that enables data manage-
ment applications that rely on the tracking of the locations
of moving objects such as vehicles, users of wireless de-
vices, and goods. Further, a wide range of other applica-
tions, beyond those to do with moving objects, rely on the
sampling of continuous, multidimensional variables. The
provisioning of high performance and scalable data man-
agement support for such applications presents new chal-
lenges. One key challenge derives from the need to accom-
modate frequent updates while simultaneously allowing for
efficient query processing [6, 13].

This combination of desired functionality is particularly
troublesome in the context of indexing of multidimensional
data. The dominant indexing technique for multidimen-
sional data with low dimensionality, the R-tree [5] (and
its descendants such as the R 	 -tree [1]), was conceived
for largely static data sets and exhibits poor update perfor-
mance. The Time-Parameterized R-tree (TPR-tree) [19] (as
well as several of its recent descendants [11]) models object
locations as linear functions of time and supports queries on
the current and anticipated near-future positions of mov-
ing objects. While the use of linear rather than constant
functions may reduce the need for updates by a factor of
three [3], update performance remains a problem.

Individual updates tend to be costly, and the problem is
exacerbated by the concurrency control algorithms of the
R-trees, such as the Rlink-tree [8], not being able to ade-
quately handling a high degree of concurrent accesses that
involve updates. Notably, frequent tree ascents caused by
node splitting and propagation of MBR updates lead to
costly lock conflicts. This problem is inherent in many
multi-dimensional indexes. Another problem with existing
solutions to moving-object indexing is that they are not eas-
ily integrated into existing database systems.

This paper proposes a novel way of indexing moving ob-
jects using the classical B � -tree without compromising on
query and storage efficiency. The motivation for using the
B � -tree is threefold. First, the B � -tree is used widely in
commercial database systems and has proven to be very
efficient with respect to queries as well as updates, ro-
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bust with respect to varying workloads, and scalable. Sec-
ond, being a one-dimensional index, it does not exhibit the
update performance problems associated with MBR-based
multi-dimensional indexes. Third, it is typically appropri-
ate to model moving-object extents as points. This enables
linearization and subsequent B � -tree indexing.

To use the B � -tree, we must be able to linearize the rep-
resentation of the locations of the moving objects. This
is done by means of a space-filling curve, which enumer-
ates every point in a discrete, multi-dimensional space. At-
tractive space-filling curves such as the Peano curve (or Z-
curve) and the Hilbert curve, which we use in this paper,
preserve proximity, meaning that points close in multidi-
mensional space tend to be close in the one-dimensional
space obtained by the curve [12].

A B � -tree with the above space-filling curves works
very well for static databases. A naive way to accommodate
moving points is to update each object in the database at
each time interval. To avoid an excessive update overhead,
we propose a novel indexing method, termed the B 
 -tree,
where “ � ” indicates the flexibility of the proposed method
in employing a specific (“ � ”) space-filling curve as part of
the linearization function.

First, we model moving objects as linear functions of
time. Thus, the data to be indexed in the B 
 -tree are not
points (constant functions), but linear functions coupled
with the times they were updated. Intuitively, an update oc-
curs when the position predicted by an existing function is
deemed inaccurate [3]. Second, we effectively “partition”
the index, placing entries in partitions based on their update
time. More specifically, we first partition the time axis into
intervals where the duration of an interval is an approxi-
mation of the maximum duration in-between two updates
of any object location. We then partition each such inter-
val into � equal-length sub-intervals, termed phases, where� is determined based on minimum time duration within
which each object issues an update of its position. Each
phase is assigned the time point it ends as a label times-
tamp, and a label timestamp is mapped to a partition. An
update is placed in the partition given by the label time-
stamp of the phase during which it occurs. For an object,
the value indexed by the B 
 -tree is the concatenation of its
partition number and the result of applying the underlying
space-filling method to the position of the object as of the
label timestamp of its phase.

This mapping scheme overcomes the limitation of the
B � -tree, which is able to only keep the snapshot of all the
objects at the same time point. This scheme reduces the
update frequency, it preserves spatial proximity within each
partition, and it facilitates queries on anticipated near-future
positions.

Based on the above, we propose efficient algorithms for
range and � nearest neighbor queries, as well as for continu-
ous queries. The algorithms are general and can be applied
to indexes that use sampling techniques to model moving
objects. Like any new indexing method built on top of the
B � -tree, the paper’s proposal can be grafted into existing

database systems cost effectively.
The paper reports on an extensive experimental study,

which includes a comparison with the TPR-tree. The re-
sults show that the B 
 -tree is efficient with respect to stor-
age space and range and � nearest neighbor queries. Indeed,
the B 
 -tree is capable of outperforming the TPR-tree by a
wide margin in single and concurrent access environments.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3, describes the structure of
the proposed B 
 -tree, and it presents the associated query
and update operations. Section 4 covers comprehensive
performance experiments. Finally, Section 5 concludes.

2 Related Work

Traditional indexes for multi-dimensional databases, such
as the R-tree [5] and its variants (e.g., [1]) were, implicitly
or explicitly, designed with the main objective of support-
ing efficient query processing as opposed to enabling effi-
cient update. This works well in applications where queries
are relatively much more frequent than updates. However,
applications involving the indexing of moving objects ex-
hibit workloads characterized by heavy loads of updates, in
addition to frequent queries.

Several new index structures have been proposed for
moving-object indexing, and recent surveys exist that cover
different aspects of these [11, 13]. One may distinguish
between indexing of the past positions versus indexing of
the current and near-future positions of spatial objects. Our
approach belongs to the latter category.

Past positions of moving objects are typically approxi-
mated by polylines composed of line segments. It is pos-
sible to index line segments by R-trees, but the trajectory
memberships of segments are not taken into account. In
contrast to this, the Spatio-Temporal R-tree [15] attempts to
also group segments according to their trajectory member-
ships, while also taking spatial locations into account. The
Trajectory-Bundle tree [15] aims only for trajectory preser-
vation, leaving other spatial properties aside.

The representations of the current and near-future posi-
tions of moving objects are quite different, as are the index-
ing challenges and solutions. Positions are represented as
points (constant functions) or functions of time, typically
linear functions. The Lazy Update R-tree [9] aims to re-
duce update cost by handling updates of objects that do not
move outside their leaf-level MBRs specially, and a gener-
alized approach to bottom-up update in R-trees has recently
been examined [10].

Tayeb et al. [24] use PMR-Quadtrees [20] for index-
ing the future linear trajectories of one-dimensional mov-
ing points as line segments in 
�������� -space. The segments
span the time interval that starts at the current time and ex-
tends some time into the future, after which time, a new tree
must be built. Kollis et al. [7] employ dual transformation
techniques which represent the position of an object mov-
ing in a � -dimensional space as a point in a ��� -dimensional
space. Their work is largely theoretical in nature. Based on
a similar technique, Patel et al. [14] have most recently de-
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veloped a practical indexing method, termed STRIPES, that
supports efficient updates and queries at the cost of higher
space requirements.

Finally, we cover the Time-Parameterized R-tree (TPR-
tree) [19] in some detail, as we use this tree for comparison
in our performance study. An extension to the R 	 -tree, the
TPR-tree indexes linear functions of time. The current loca-
tion of a moving point is found simply by applying the func-
tion representing its location to the current time. MBRs are
also functions of time. Specifically, in each dimension, the
lower bound of an MBR is set to move with the maximum
downward speed of all enclosed objects, while the upper
bound is set to move with the maximum upward speed of all
enclosed objects. As enclosed objects may be both moving
points and moving rectangles, this ensures that the bound-
ing rectangles are indeed bounding at all times considered.
Frequent updates are needed to ensure that moving objects
that are currently close are assigned to the same bound-
ing rectangles. Further, bounding rectangles never shrink
and are generally larger than strictly needed. To counter
this phenomenon, the so-called “tightening” is applied to
bounding rectangles when they are accessed.

Algorithms for nearest neighbor and reverse nearest
neighbor queries on moving objects have been proposed
based on the TPR-tree [2]. Next, two notable proposals
exist that build on the ideas of the TPR-tree. Procopiuc et
al. [16] propose the STAR-tree. This index seems to be best
suited for workloads with infrequent updates. Tao et al. [22]
adopt assumptions about the query workload that differ
slightly from those underlying the TPR-tree. This leads to
a different grouping of objects into index tree nodes.

To the best of the authors’ knowledge, no proposals for
the indexing of moving objects exist that use a combina-
tion of temporal partitioning and space-filling curves. How-
ever, our work adopts a design philosophy similar to that
of iDistance [25], where application of a mapping func-
tion that uses reference points and metric distances with
respect to the reference points enables B � -tree indexing of
high-dimensional points for the purpose of nearest neighbor
search.

3 Structure and Algorithms

We first describe the structure of the B 
 -tree. We then
cover algorithms for range and � NN queries and contin-
uous queries. Finally, update, insertion, and deletion are
covered.

3.1 Index Structure

The base structure of the B 
 -tree is that of the B � -tree.
Thus, the internal nodes serve as a directory. In order to
support B-link concurrency control [21], each internal node
contains a pointer to its right sibling (the pointer is non-null
if one exists). The leaf nodes contain the moving-object lo-
cations being indexed and corresponding index time. We
proceed to describe how object locations are mapped to
single-dimensional values.

Specifically, we use a space-filling curve for this pur-
pose. Such a curve is a continuous path which visits every
point in a discrete, multi-dimensional space exactly once
and never crosses itself.

We consider versions of the B 
 -tree that use the Peano
curve (or Z-curve) and the Hilbert curve (see Figure 1). Al-
though other curves may be used, these two are expected
to be particularly good. Analytical and empirical stud-
ies [4, 12] show that for the two-dimensional space we con-
sider, these curves are effective in preserving proximity,
meaning that points close in multidimensional space tend
to be close in the one-dimensional space obtained by the
curve. The Hilbert curve is expected to be (slightly) better
than the Peano curve [4].

Hilbert curve (H−curve)Peano curve (Z−curve)

Figure 1: Space-Filling Curves

In what follows, we term the value obtained from the
space-filling curve the � ��������� ; and for brevity, we use the
Peano curve in most discussions.

To reduce this load, we model point values as linear
functions of time, rather than simply as static points, i.e.,
constant functions. A recent study of GPS logs obtained
from two dozen cars traveling in a semi-urban environment
measures the number of updates needed to ensure that the
values recorded in the database do not differ by more than
some threshold from the real values. For realistic thresh-
olds, the use of linear functions reduces the amount of up-
dates to one third in comparison to constant functions [3].

An object location is thus given by  "!"
�#$ �%�&#$ ' � , a po-
sition and a velocity, and an update time, or timestamp, �)( ,
where these values are valid.

In a leaf-node entry, an object  updated at ��( is repre-
sented by a value *+
��,�-�����.
/ 0���1(.� :* 
 ���������.
2 0���1(3�4!6587:9<;��)= >���?A@27:@27CB�9ED �GF 5 � ?)�H>ED � (1)

where I2�J�LKM� NEOQP,�RIH�RIRS,� is an index partition determined
by the update time, � ?)�H> is obtained using a space-filling
curve, 5 �TD � denotes the binary value of � , and F denotes
concatenation. We proceed to detail this definition.

If we index the timestamped object locations without
differentiating them based on their timestamps, we not only
lose the proximity preserving property of the space-filling
curve; the index will also be ineffective in locating an object
based on its � ��������� . To overcome such problems, we ef-
fectively “partition” the index, placing entries in partitions
based on their update time. More specifically, we denote
by U+�1VW( the time duration that is the maximum duration
in-between two updates of any object location. We then
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partition the time axis into intervals of duration U+��VW( , and
we sub-partition each such interval into � equal-length sub-
intervals, termed phases.

By mapping the update times in the same phase to the
same so-called label timestamp and by using the label
timestamps as prefixes of the representations of the object
locations, we obtain index partitions, and the update times
of updates determine the partitions they go to. In particular,
an update with timestamp � ( is assigned a label timestamp�RXZY\[]!_^�� (]` Ua� VW(Tb �<cMX , where operation ^:��cMX returns the
nearest future label timestamp of � .

For example, Figure 2 shows a B 
 -tree with �d!6� .
Objects with timestamp � ( !fe obtain label timestamp�RXZY\[g! �� Ua� VW( ; objects with eihj� (lk �� U+� VW( obtain
label timestamp �1XZY\[G!mU+� VW( ; and so on.

mu

x

mut ∆ 2 t ∆

 

update insert

update

insert
...

0 time

B −tree

Figure 2: The B 
 -Tree

Next, for an object with label timestamp � XZY&[ , we com-
pute its position at � XZY\[ according to its position and velocity
at �1( . We then apply the space-filling curve to this (future)
position to obtain the second component of Equation 1.

This mapping has two main advantages. First, it en-
ables the tree to index object positions valid at different
times, overcoming the limitation of the B � -tree, which is
only able to index a snapshot of all positions at the same
time. Second, it reduces the update frequency compared to
having to update the positions of all objects at each times-
tamp when only some of them need to be updated. The
two components of the mapping function in Equation 1 are
consequently defined as follows:7:9<;��)= >T�-?A@/7:@27CB�9n!o
C�RXZY\[ b 
2Ua� VW(3b ��� #qp �JrsS��%
C� ` p �� ?��R>n!t� ' O.uCvEK.
1#$ � ` #$ 'mw 
��RXZY\[ # � ( ���

With the transformation, the B 
 -tree will contain data
belonging to � ` p phases, each given by a label timestamp
and corresponding to a time interval. Within each of these,
we apply a space-filling curve to an object position.

The choice of the value of � affects query performance
and storage space. A large � results in smaller enlargements
of query windows (covered in Section 3.2), but also results
in more partitions and therefore a looser relationship among
object locations. In addition, a large � yields a higher space
overhead due to more internal nodes. When � is larger than

� , the storage space is a little more than that of the TPR-tree.
When � is p , query windows must be enlarged more than
the enlargements of MBRs in the TPR-tree (enlargement
details are covered in Section 3.2.1). Therefore, we choose�x!m� .

To exemplify, let �y!z� , U+� VW( ! p �-e , and assume a
Peano curve of order 3 (i.e., the space domain is {}|s{ ).

Object positions  � !~
�
2�3�)���\��
 # eT� p ��e�� eL����� ,  � !
�
Ce����Q�\��
/eT���3� # e�� �L��� , and  ���!�
�
 p �)�Q�A�M
CeT� p �)eT� p ��� are in-
serted at times 0, 10, and 100, respectively. We calculate
the *a
��,�-����� for each as follows.

Step 1: Calculate label timestamps and index partitions.� �X�Y\[ !�^1
Ce ` p ��e b ���Hc X !m��e , 7:9E;��)= >T�-?A@/7:@27CB�9 � !�ea!y
/e�eQ� �� �X�Y\[ !�^1
 p e ` p ��e b �Q�HcMXE! p �-e , 7:9E;��)= >T�-?A@/7:@27CB�9 � ! p!i
Ce p � �� �X�Y\[ !�^1
 p e�e ` p �-e b �Q�Hc X ! p {�e , 7:9<;��)= >T�-?A@/7:@27CB�9 � !��!i
 p eQ� �
Step 2: Calculate positions � � ��� � and �E� at � �XZY\[ , � �XZY&[ , and� �XZY\[ , respectively.�E�� !o
 p ����� , ���� !o
/�3�)�Q� , ���� !i
���� p � .
Step 3: Calculate Z-values.5�� �����8���.
����� �HD � !o
Ce p e�e p�p � �5�� �����8���.
����� �HD � !o
Ce�e p�p e p � �5�� �����8���.
����� �HD � !o
 p eQe�eQe p � �
Step 4: Calculate *+
��,�-����� .*+
T���������L
2 � ��eL��!o
/e�e�e p eQe p�p � � ! p��* 
 ���������L
2 � � p eQ��!y
/e p e�e pQp e p � � !��Q�*+
T���������L
2 � � p e�eQ��!i
 p e p eQe�eQe p � � ! p � p

It is worth noting that at most three ranges exist at a
single point in time. As time passes, repeatedly the first
range expires (shaded area), and a new range is appended
(dashed line). This use of rolling ranges enables the B 
 -tree
to handle time effectively.

3.2 Querying

In the following, we outline the search strategies for the
B 
 -tree.

3.2.1 Range Query

A range query retrieves all objects whose location falls
within the rectangular range ��!�
�5 �,� X � �)�,� ( � D2�M5 �,� X� �)�,� (� D��
at time ��� not prior to the current time (“ u ” denotes lower
bound, and “ v ” denotes upper bound).

A key challenge is to support predictive queries, i.e.,
queries that concern future times. Traditionally, indexes
that use linear functions handle predictive queries by means
of MBR enlargement (e.g., the TPR-tree); to the best of
our knowledge, no algorithm for the predictive queries has
been proposed for indexes that use snapshots of moving ob-
jects (e.g., the LUR-tree). We present a generic approach
to processing such queries that is not constrained by the
base structure. Figure 6 outlines the range query algorithm,
which we proceed to explain.
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To handle queries on the anticipated near future posi-
tions of objects, the B 
 -tree uses query-window enlarge-
ment instead of MBR enlargement. This is done through
the TimeParameterizedRegion function call in the algo-
rithm. Because the B 
 -tree stores an object’s location as of
some time after its update time, the enlargement involves
two cases: a location must either be brought back to an ear-
lier time or forward to a later time.

3

tq1

1v
u v1

l

uv2

q2

q1 q2

q’1 q’2

timecurrent t

2

3p’

4

1

p 1

v l
1 v1

v2l

2
l

u

v2u

2p

v

t

p’
p4

p’
p’

p

ref

Figure 3: Query Window Enlargement

Consider the example in Figure 3, where ���H�Z� denotes the
time when the locations of four moving objects are updated
to their current value index, and where predictive queries� � and � � (solid rectangles) have time parameters �)�1� and���H� , respectively. The figure shows the stored positions as
solid dots and positions of the two first objects at �)�1� and the
positions of the two last at � � � as circles. The two positions
for each object are connected by an arrow.

The relationship between the two positions for each ob-
ject is NE��4! N � ` #$ '¡w 
�� � # � �H�Z� � . The first two of the four
objects thus are in the result of the first query, and the last
two objects are in the result of the second query. To obtain
this result, query rectangle � � needs to be enlarged to �-��
(dashed). This is achieved by attaching maximum speeds
to the sides of � � : ' X� , ' X� , ' (� , and

' (� . For example,
' (� is

obtained as the largest projection onto the x-axis of a ve-
locity of an object in �-�� . (As we do not yet know �-�� , a
conservative approximation is used; more on this shortly.)

For � � , the enlargement speeds are computed similarly.
For example,

' (� is obtained by projecting all velocities of
objects in ���� onto the y-axis;

' (� is then set to the largest
speed multiplied by #]p .

The enlargement of query �¢!z
�5 �,� X � ���,� ( � DH�E5 �,� X� ���,� (� D:�
is given by query �-�E!o
�5 K,�,� X � ��K,�,� ( � DH�35 K,�,� X� ��K,�,� (� D�� :K,�,� X� ! £ �,� X �E` ' X� w 
�� �R�Z� # � � � if � � hq� �H�Z��,� X �E` ' (� w 
�� � # � �H�Z� � otherwise

(2)

K,�,� (� ! £ �,� (�¤` ' (� w 
�� �H��� # � � � if � � hq� �H�Z��,� (�¤` ' X� w 
C� � # � �H��� � otherwise
(3)

The implementation of the computation of enlargement
speeds proceeds in two steps. We first set them according
to the maximum speeds of all objects, thus obtaining a pre-
liminary � � . Then, with the aid of a two-dimensional his-
togram (e.g., a grid) that captures the maximum and min-
imum projections of velocities onto the axes of objects in

each cell, we obtain the final enlargement speed in the area
where the query window resides. Such a histogram can eas-
ily be maintained in main memory.

The time argument of a query exceeds the reference time
of any object by at most U+��VW( . This is reasonable, as it is
of little use to query so far into the future that all the values
on which the result is based will have been updated before
that time is reached. Considering the example in Figure 4,
suppose a query is issued between

�� U+�1VW( and U+�1VW( and
that ¥<¦ , ¥ � , and ¥ � are the partitions corresponding to the
label timestamps

�� U+� VW( , Ua� VW( , and �� U+� VW( , respectively.
Partition (or subtree) ¥§¦ may need to be extended to U+� VG(

2

2 T3

T2

0T T1

T1

0T

t mu∆

 

time

query
interval

0

time length
enlargement

mut ∆

T

Figure 4: Time Length Enlargement

at most, and after that, ¥§¦ expires; the ¥ � may be extended
backward to

�� Ua� VW( and forward to U+� VG( ; ¥ � may be ex-
tended backward to

�� U+�1VW( and forward to �� U+�1VW( . For
either subtree, we can see that the maximum enlargement
length is U+� VW( .

Index pagesI
2

I
1 I

3

I
4

Data pages... ...

I
1

I
m

jump

Figure 5: “Jump” in the Index

Next, we traverse the partitions of the B 
 -tree with label
timestamp no less than ^:� � # U+� VG( w 
�� #¨p � b �<c (i.e., they
should be valid at � � ) to find objects falling in the enlarged
query window �-� . For example, if Ua� VW( h©� �%k �� Ua� VW( ,
Partition ¥<¦ needs not be searched. In each partition, the use
of a space-filling curve means that a range query in the na-
tive, two-dimensional space becomes a set of range queries
in the transformed, one-dimensional space—see Figure 5.
Hence multiple traversals of the index result. We optimize
these traversals by calculating the start and end points of
the one-dimensional ranges and traverse the intervals by
“jumping” in the index (as in [17]).

Let us step through the entire algorithm in detail. For
each partition of the B 
 -tree, we check whether it is valid at
the query time ��� according to its label timestamp (lines 1–
2). If it is valid, we enlarge query window � to ��� by
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function TimeParameterizedRegion (line 3) and calculate
all start and end points I � ��I � �&�&���\��I � V�ª � ��I � V in ascending
order of their � ���������\« , where r is the number of intervals
(line 4). The pair of points 
�I �1¬ ª � ��I �R¬ � start and end interval­ ¬ ( p k¯®°k r ).

We locate the leaf node containing the first point I � , then
traverse its right siblings using the B-link sibling pointers
until we reach the next point I � , where interval

­ � ends
(lines 5–10).

To find IR� , the start point of interval
­ � , we backtrack to

a higher level where one “jumping” occurs, upon which we
proceed to retrieve the objects with positions in interval

­ � .
This takes place in line 6 of the algorithm, where traversal
from the root is avoided as much as possible. When all
the intervals have been checked in this manner, we have
obtained the set of all objects that may possibly belong to
the result of range query � . For each object, we compute its
position at � and return only those objects whose positions
are actually in the query window � (lines 11–14).

Algorithm Range query( �.��� � )
Input: � is the query range and � � is the query time

1. for ®0± e to �
2. if partition ¥ ¬ of the B 
 -tree is valid at ��� then
3. ��� ±_²W³Z´}µM¶�·-¸�·-´}µ\¹)µ&¸)³Zº�µ�»T¼½µ�¾�³�¿�À 
C�.�����&�
4. calculate start and end points I � ���&���&��I � V for � �
5. for � ± p to r do
6. locate leaf node containing point I �)Á ª �
7. repeat
8. store candidate objects in Â
9. follow the right pointer to the sibling node
10. until node with point I �)Á is reached
11. for each object in Â do
12. if the object’s position at � � is inside � then
13. add the object to the result set
14. return result set

Figure 6: Range Query Algorithm

3.2.2 � Nearest Neighbor Query

Assuming a set of ÃÅÄ�� objects and given a query object
with position �a!l
C�,� � ���,� � � , the � nearest neighbor query
( � NN query) retrieves � objects for which no other objects
are nearer to the query object at time � � not prior to the
current time.

We compute this query by iteratively performing range
queries with an incrementally enlarged search region until� answers are obtained. The algorithm is outlined in Fig-
ure 7. We first construct a range Æ]� � centered at � and with
extension P,�a!oÇ Á b � , where Ç Á is the estimated distance
between the query object and its � ’th nearest neighbor; Ç Á
can be estimated by the equation [23]:

Ç Á ! �È ÉgÊ p½#qË p½#"Ì �Ã Í ���Î
We compute the range query with range ÆÏ� � at time ��� ,

by enlarging it to a range Æ]�� � and proceeding as described
in the previous section. If at least � objects are currently
covered by Æ]�� � and are enclosed in the inscribed circle ofÆ � � at time � � , the � NN algorithm returns the � nearest
objects and then stops. It is safe to stop because we have
considered all the objects that can possibly be in the result.

Otherwise, we extend Æ � � by P � to obtain Æ � � and an
enlarged window Æ]�� � . This time, we search the regionÆ¤�� � # Æ¤�� � and adjust the neighbor list accordingly. This
process is repeated until we obtain an ÆÏ� � so that there are� objects within its inscribed circle.

Algorithm � NN query 
/�3
C�,� � ���,� � �\�)�<�����\�
Input: a query point �3
C�,� � �)�,� � � , a number � of neighbors,

and a query time ���
1. construct range Æ � � with � as center and extension P �
2. Æ¤�� � ±_²W³�´}µ�¶�·�¸)·�´0µ&¹�µ�¸�³�º&µM»T¼½µ&¾Q³Z¿QÀ 
/Æ � � ��� � �
3. flag ±Ð¹)¸�ÑTµ // not enough objects
4. I ± p // first query region is being searched
5. while ÒW��Ó
6. if IÔ! p then
7. find all objects in region Æ]�� �
8. else
9. find all objects in region Æ]�� � # Æ¤�� � ª �
10. if � objects exist in inscribed circle of Æ � � then
11. flag ±ÖÕC·-×ÙØ�µ
12. else
13. I ± I ` p
14. Æ¤� � ±_Ú�À�×�·�¸�¾Qµ 
CÆ¤� � ª � ��P,�&�
15. Æ¤�� � ±_²W³�´0µM¶�·-¸�·-´}µ\¹)µ&¸)³Zº�µ�»T¼Ûµ&¾�³�¿�À 
CÆ¤� � �����\�
16.return � NNs with respect to �

Figure 7: � NN Query Algorithm

In some B � -tree implementations, leaf nodes are not
only chained left to right, but also right to left. The � NN
search algorithm can exploit right to left sibling pointers to
avoid always having to traverse the tree from the root when
an interval is extended for a next iterative range search.
This reduces the search cost but increases the update cost.

3.2.3 Continuous Queries

The queries considered so far in this section may be con-
sidered as one-time queries: they run once and complete
when a result has been returned. Intuitively, a continuous
query is a one-time query that is run at each point in time
during a time interval. Further, a continuous query takes a9<B�Ü -relative time 9<B�Ü ` U+��� as a parameter instead of the
fixed time ��� we have used so far. The query then main-
tains the result of the corresponding one-time query at time9<B�Ü ` U+� � from when the query is issued at time �)Ý8Þ/Þ2ß � and
until it is deactivated.

Such a query can be supported by a query �MX with time
interval 5 � ��à1à (,á½` Ua� � ��� �Ùà1à (�áÛ` U+� �½` u�D (“l” is a time in-
terval) [2]. Query �&X can be computed by the algorithms we
have presented previously, with relatively minor modifica-
tions: (i) we use the end time of the time interval to perform
forward enlargements, and we use the start time of the time
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interval for backward enlargements; (ii) we store the an-
swer sets during the time interval. Then, from time � �Ùà1à (�á
to ��Ý�Þ2Þ/ß �G` u , the answer to �&X is maintained during update
operations. At �)Ý�Þ2Þ/ß �â` u , a new query with time interval5 ��Ý�Þ/Þ2ß ��` U+� ��` u�����Ý�Þ2Þ/ß ��` U+� ��` �-u:D is computed.

To maintain a continuous range query during updates,
we simply add or remove the object from the answer set if
the inserted or deleted object resides in the query window.
Such operations only introduce CPU cost.

The maintenance of continuous � NN queries is some-
what more complex. Insertions also only introduce CPU
cost: an inserted object is compared with the current an-
swer set. Deletions of objects not in the answer set does
not affect the query. However, if a deleted object is in the
current answer set, the answer set is no longer valid. In this
case, we issue a new query with a time interval of length u at
the time of the deletion. If the deletion time is ��ã �Hä , a query
with time interval [ �&ã �2ä\` U+� � ���\ã �2ä\` U+� ��` u ] is triggered at�\ã �2ä , and the answer set is maintained from ��ã �2ä to �\ã �Hä3` u .

The choice of the “optimal” u value involves a trade-off
between the cost of the computation of the query with the
time interval and the cost of maintaining its result. On the
one hand, we want to avoid a small u as this entails frequent
recomputations of queries, which involves a substantial I/O
cost. On the other hand, a large u introduces a substantial
cost: Although computing one or a few queries is cost ef-
fective in itself, we must also take into account the cost of
maintaining the larger answer set, which may generate ad-
ditional I/Os on each update.

We note that maintenance of continuous range queries
incur only CPU cost. Thus, we compute a range query with
a relatively large u such that u is bounded by U+� VG( # U+� �
since the answer set obtained at � �Ùà1à (�á is no longer valid
at � ��à1à (,á ` Ua�1VW( . For the continuous � NN queries, we
examine the effect of u further in the experiments.

3.3 Update, Insertion, and Deletion

The insertion algorithm is straightforward. Given a new ob-
ject, we calculate its index key according to Equation 1, and
then insert it into the B 
 -tree as in the B � -tree. To delete
an object, we assume that the positional information for the
object used at its last insertion and the last insertion time
are known. Then we calculate its index key and employ the
same deletion algorithm as in the B � -tree. Therefore, the
B 
 -tree directly inherits the good properties of the B � -tree,
and we expect efficient update performance.

time0 t 2 t 3 t 4 t 5t 1

T4T3T1T0 T2

B −tree
x

B −tree
x

B −tree
x

 

t 

Figure 8: B 
 -Tree Evolution

However, one should note that update in the B 
 -tree

does differ with respect to update in the B � -tree. The B 
 -
tree only updates objects when their moving functions have
been changed. This is realized by clustering updates during
a certain period to one time point and maintaining several
corresponding sub-trees. For example (see Figure 8), ob-
jects updated between �1¦ and � � are stored in partition ¥§¦ ;
objects updated between � � and � � are stored in ¥ � ; etc. ¥<¦ ,¥ � , and ¥ � co-exist before ��� . From �1� to �Rå , ¥ � , ¥ � , and¥§� co-exist, and ¥ ¦ has expired. The total size of the three
sub-trees is equal to that of one tree indexing all the objects.

In some applications, there may be some object posi-
tions that are updated relatively rarely. For example, most
objects may be updated at least each 10 minutes, but a few
objects are updated once a day. Instead of letting outliers
force a large maximum update interval, we use a “maxi-
mum update interval” within which a high percentage of
objects have been updated.

Object positions that are not updated within this interval
are “flushed” to a new partition using their positions at the
label timestamp of the new partition. In the example shown
in Figure 8, suppose that some object positions in ¥J¦ are not
updated at the time when ¥§¦ expires. At this time, we move
these objects to ¥ � . Although this introduces additional up-
date cost, the (controllable) amortized cost is expected to
be very small since outliers are rare.

The forced movement of an object’s position to a new
partition does not cause any problem with respect to lo-
cating the object, since the new partition can be calculated
based on the original update time. Likewise, the query effi-
ciency is not affected.

4 Performance Studies

4.1 Experimental Settings

Two versions of the B 
 -tree were implemented: B 
 (Z-
curve) and B 
 (H-curve), denoting the B 
 -tree using the
Peano and the Hilbert curve, respectively. Both B 
 -trees
and the TPR-tree were implemented in C, and all the ex-
periments were conducted on a 2.6G PentiumIV Personal
Computer with 1 Gbyte of memory.

We use synthetic datasets of moving objects with posi-
tions in the space domain of p eQe�eæ| p eQe�e . In most ex-
periments, we use uniform data, where object positions are
chosen randomly, where the objects move in a randomly
chosen direction, and where a speed ranging from 0 to 3 is
chosen at random. One may think of the unit of space being
kilometer and the unit of speed being kilometer per minute.

Other datasets were generated using an existing data
generator, where objects move in a network of two-way
routes that connect a given number of uniformly distributed
destinations [19]. Objects start at random positions on
routes and are assigned at random to one of three groups of
objects with maximum speeds of 0.75, 1.5, and 3. When-
ever an object reaches one of the destinations, it chooses
the next target destination at random. Objects accelerate
as they leave a destination, and they decelerate as they ap-
proach a destination.
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For each dataset, we constructed the index at time e , and
measured the average query cost after the index ran for p e
time units. The parameters used are summarized in Table 1,
where values in bold denote default values used.

Parameter Setting

Page size 4K
Node capacity 200
Max update interval 120
Max predictive interval 60, 120
Query window size 10, . . . , 50, . . . , 100ç

(
ç

NN query) 10, 20, 30, 40, 50
Number of queries 200
Dataset size 100K, . . . , 500K, . . . , 1M
Space-filling curve Z, H
Dataset Uniform, Network-based

Table 1: Parameters and Their Settings

4.2 Storage Requirement

Storage requirement is an important issue in moving ob-
ject databases since some applications may choose to cache
the whole index in main memory to improve performance.
Figure 9 shows the storage requirement of both indexes, in
which the B 
 -trees require less storage space than the TPR-
tree. The TPR-tree requires slightly more storage space as
its fanout is slightly less than that of the B 
 -tree.
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Figure 9: Storage Requirement

4.3 Range Query

4.3.1 Effect of Data Sizes

In the first set of experiments, we study the range query per-
formance of the TPR-tree and the B 
 -trees while varying
the number of uniformly distributed moving objects from
100K to 1M. Figure 10 shows the average number of I/O
operations and the CPU time per range query for each in-
dex.

We observe that both B 
 -tree variants scale very well
and maintain consistent performance, while the TPR-tree
degrades linearly with the increase of the dataset size.

When the dataset reaches 1M objects, the B 
 -trees are
nearly 5 times better than the TPR-tree. This behavior may
be explained as follows. In the B 
 -trees, every object has a
linear order, which is determined by the space domain and
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Figure 10: Effect of Data Sizes on Range Query Perfor-
mance

is relatively independent of the number of moving objects.
As the dataset grows, the range query cost of the B 
 -trees
increases mainly due to the increase of the number of ob-
jects inside the range. However, the structure of the TPR-
tree is affected more by the dataset size. When the number
of objects increases, the MBRs in the TPR-tree have higher
probabilities of overlapping; this is consistent with earlier
findings for the R-tree [18].

The B 
 -tree(H-curve) achieves better performance than
the B 
 -tree(Z-curve) because the Hilbert curve generates a
better distance-preserving mapping than the Peano curve,
and hence yields fewer search intervals on the B 
 -tree, i.e.,
less disk access.

4.3.2 Effect of Data Distribution

This experiment uses the road network dataset to study the
effect of data distribution on the indexes. The dataset con-
tains 500K data points. Figure 11 shows the range query
cost when the number of destinations in the simulated net-
work of routes is varied. The term “uniform” in the figure
indicates the case where the objects can choose their mov-
ing directions freely.
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Figure 11: Effect of Data Distribution on Range Query Per-
formance

Observe that the query cost in the TPR-tree increases
slightly with the number of destinations, i.e., as the datasets
becomes increasingly “uniform.” This is consistent with
previous results [19]. In contrast, the performance of the
B 
 -trees is not affected by the data skew because objects are
stored using space-filling curves, meaning that the density
has less of an effect on the index.
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4.3.3 Effect of Speed Distribution

Figure 12 shows the effect of speed of moving objects on
the TPR-tree and the B 
 -trees, by varying the è value of the
Zipf distribution from 0 (uniform distribution) to 2 (skewed,
80% objects have speed lower than 20% of the maximum
speed). All the indexes yield better performance when the
number of fast moving objects decreases because MBRs in
the TPR-tree obtain smaller expanding speeds and because
the enlargements made to query windows for the B 
 -trees
also become smaller. The results for � NN queries exhibit
similar performance trends, so we omit the results due to
space constraints.
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Figure 12: Effect of Speed on Range Query Performance

4.3.4 Effect of Query Window Sizes

We next study the effect of the query window size, vary-
ing the window length from 10 to 100 for a dataset of size
500K. As expected, the result in Figure 13 shows that the
query cost increases with the query window size. Larger
windows contain more objects and therefore lead to more
node accesses, and the effect is slightly more obvious on
the TPR-tree.
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Figure 13: Effect of Query Window Sizes on Range Query
Performance

4.3.5 Effect of Time

To study the search performance of the indexes with the
passage of time and updates, we compute the query cost
using the same 200 range queries with query window size
50, but after every 50K updates in a 500K dataset. Fig-
ure 14 summarizes the results, showing that the TPR-tree
degrades considerably faster than the B 
 -trees due to con-
tinuous enlargements of the MBRs which are not updated
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Figure 14: Effect of Time Elapsed on Range Query Perfor-
mance

as time passes. In contrast, the B 
 -tree structure is not af-
fected as much by the updates. In fact, the B 
 -trees are
almost time independent.

4.4 � NN Query

We proceed to evaluate the efficiency of � NN queries using
the same settings as for range queries. Figures 15–17 show
in turn the effect of dataset size, data distribution, and time
passed on � NN query performance. The performance dif-
ference between the TPR-tree and the B 
 -tree of the � NN
queries exhibits a behavior similar to that of range queries.
The B 
 -tree’s � NN search algorithm is essentially an in-
cremental range query algorithm; hence, the results exhibit
similar patterns as the results for range queries.
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Figure 15: Effect of Data Sizes on � NN Query Performance
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Figure 16: Effect of Data Distribution on � NN Query Per-
formance

Figure 18 shows the effect on performance of the num-
ber � of required nearest neighbors. As � increases, the
search and CPU costs increase slightly for both indexes.
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Figure 17: Effect of Time Elapsed on � NN Query Perfor-
mance

Due to the data size and side effect of the query and MBR
enlargement, the effect of � is not significant.
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Figure 18: Effect of � on � NN Query Performance

4.5 Continuous Range and � NN Queries

In moving object database applications, continuous queries
are expected to be common, and hence efficient support for
such queries is important. To investigate the maintenance
cost of continuous queries, we perform a series of experi-
ments where we vary the length of the query recomputation
interval u . We evaluate the amortized cost per single update
operation (insertion or deletion) in maintaining one contin-
uous query. Indexes were created at time e , and after run-
ning p e time units, �-e�e queries (with maximum predictive
interval ��e ) were issued. Then the workload was run for
another p ��e time units while maintaining the result set of
the queries.
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Figure 19: Maintenance Cost of Continuous Range Query

Figure 19 shows the continuous range query perfor-
mance. Since the maximum predictive length is ��e and the
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Figure 20: Maintenance Cost of Continuous � NN Query

maximum update interval is p ��e , the maximum recomputa-
tion interval tested is p �-e # �Qe}!y��e . As can be observed,
the maintenance cost decreases with the increase of the re-
computation length in all indexes. This is because the cost
to maintain the answer set under continuous updates is very
small, and the recomputation cost constitutes the major I/O
cost. The smaller the recomputation interval u , the more
number of recomputations.

Figure 20 shows the performance of the continuous � NN
query. We observe that, for all the indexes, the mainte-
nance cost first decreases until a point before it increases
again. The best u is approximately � for the TPR-tree and
approximately � for the B 
 -trees. As the u becomes larger,
the number of recomputation decreases, however, the pos-
sibility to remove objects from the results increases, and
consequently, additional recomputations result.

4.6 Update

We compare the average update cost (amortized over in-
sertion and deletion) of the B 
 -trees against the TPR-tree.
Note that for each update, one deletion and one insertion
are issued, leaving the size of the tree unchanged.

4.6.1 Effect of Data Sizes

First we examine the update performance with respect to
dataset size. We compute the average update cost after the
maximum update interval of 120 time units. From Fig-
ure 21, we can see that the B 
 -trees achieve significant im-
provement over the TPR-tree. In most cases, one update
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Figure 21: Effect of Data Sizes on Update Cost

in the B 
 -tree only incurs several I/O operations. However,
the update cost in the TPR-tree increases significantly as
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the dataset grows in size. This is because in the B 
 -trees,
given the key, an insertion and a deletion needs to traverse
only one path, no matter how large the dataset is. Thus, the
cost of update in the B 
 -tree is only related to the height of
the tree.

In this experiment, the performance of the B 
 -tree(Z-
curve) and the B 
 -tree(H-curve) are comparable, since the
update efficiency is independent of the spatial proximity
preservation. However, in the TPR-tree, traversal of mul-
tiple paths is inevitable due to the overlaps among MBRs.
As the density of values increases due to the increase in data
size, more overlap and hence higher update cost results.

4.6.2 Effect of Time

Next, we investigate performance degradation across time.
We measure the performance of the TPR-tree and the B 
 -
trees after every ��e K updates. Figure 22 shows the update
cost as a function of the number of updates. As before, the
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Figure 22: Effect of the Number of Updates on Update Cost

B 
 -trees are not affected by time, which again illustrates the
efficiency and feasibility of the B � -tree. We observe that
the gap between the TPR-tree and the B 
 -trees widens as
time passes. At the point when the TPR-tree stabilizes after
500K updates, the cost of the TPR-tree is nearly 10 times
that of the B 
 -trees. The reason for the degeneration of the
TPR-tree is that each deletion entails a search to retrieve the
object to be removed, and the cost of this search increases
with the number of updates.

We note that this cost can be reduced by maintaining a
hash-table for quickly locating the object and then perform-
ing a bottom-up update [10]. However, such an auxiliary
structure incurs additional storage overhead and increases
complexity.

4.6.3 Effect of Update Interval Length

In this experiment, we investigate the effect of maximum
update interval length on the indexes, by varying the maxi-
mum update interval from 60 to 240. Figure 23 shows the
average update cost after the indexes run for one maximum
update interval. We observe that the performance of the
TPR-tree degrades fairly quickly as the maximum update
interval increases, whereas the B 
 -trees are not affected.
The main reason is that, as the update interval increases,
the overlap among MBRs becomes more severe and thus
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Figure 23: Effect of Maximum Update Interval

affects the performance of the TPR-tree significantly. In
contrast, the update operation in the B 
 -tree depends only
on the key value which does not change over time.

4.7 Effect of Concurrent Accesses and Buffer Space

In this section, we compare the concurrent performance
of the TPR-tree and the B 
 -tree. We implemented the R-
link technique [8] for the TPR-tree and the B-link tech-
nique [21] for the B 
 -tree.

We used multi-thread programs to simulate multi-user
environments. The number of threads varies from p to { .
Workloads contain an equal number of queries and updates.
We investigated the throughput and response time of search
and update operations. Throughput is the rate at which op-
erations could be served by the system. Response time is
the time interval between issuing an operation and getting
the response from the system when the task was success-
fully completed.

Figure 24 shows throughput and response time for the
three indexes. The throughputs of the B 
 -trees are much
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Figure 24: Effect of Concurrent Operations

higher than that of the TPR-tree, and the response times
of the B 
 -trees are always less than those of the TPR-tree.
The main reason is that the B 
 -trees seldom lock internal
nodes. Recall that, in the query processing, we will first
travel down to the leaf level, then retrieve the leaf nodes for
the answers by following the left-to-right sibling links. We
may occasionally ascend to an internal node for a “jump,”
but this often happens at the lower levels of the index. For
the TPR-tree, a query triggers searching of multiple paths,
which introduces locks on the internal nodes that reduce the
parallelism of concurrent operations.
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We also included an LRU buffer and studied the effects
of different buffer sizes. As with other indexes, both in-
dexes experience reduced I/O’s as the buffer size increases.
Since the B 
 -tree incurs less page reads originally, the ef-
fect of an increasing buffer size on the index is conse-
quently less pronounced than for the TPR-tree. We also
examined the effects of the density of objects over the data
space. The results are as may be expected; due to space
constraints, we do not include the graphs here.

5 Conclusion and Research Directions

Database applications that entail the storage of samples
of continuous, multi-dimensional variables pose new chal-
lenges to database technology. This paper addresses the
challenge of providing support for indexing that is efficient
for querying as well as update.

We proposed a new indexing scheme, the B 
 -tree, which
is based on the B � -tree. This scheme uses a new lineariza-
tion technique that exploits the volatility of the data values,
i.e., moving-object locations, being indexed. Algorithms
are provided for range and � NN queries on the current or
near-future positions of the indexed objects, as well as for
so-called continuous counterparts of these types of queries.
Queries that reach into the future are handled via query
region enlargement, as opposed to the MBR enlargement
used in TPR-trees.

Extensive performance studies were conducted that in-
dicate that the B 
 -tree is both efficient and robust. In fact,
it is capable of outperforming the TPR-tree by factors of
as much as 10. Further, being a B � -tree index, the B 
 -tree
may be grafted into existing database systems cost effec-
tively.

Several promising directions for future work exist, one
being to consider the use of the B 
 -tree for the processing
of new kinds of queries. Another is the use of the B 
 -tree
for other continuous variables than the positions of mobile
service users. Yet another direction is to apply the lineariza-
tion technique to other index structures.
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