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Abstract

Large string datasets are common in a number
of emerging text and biological database applica-
tions. Common queries over such datasets include
both exact and approximate string matches. These
queries can be evaluated very efficiently by using
a suffix tree index on the string dataset. Although
suffix trees can be constructed quickly in mem-
ory for small input datasets, constructing persis-
tent trees for large datasets has been challenging.
In this paper, we explore suffix tree construction
algorithms over a wide spectrum of data sources
and sizes. First, we show that on modern proces-
sors, a cache-efficient algorithm with O(n2) com-
plexity outperforms the popular O(n) Ukkonen
algorithm, even for in-memory construction. For
larger datasets, the disk I/O requirement quickly
becomes the bottleneck in each algorithm’s per-
formance. To address this problem, we present a
buffer management strategy for the O(n2) algo-
rithm, creating a new disk-based construction al-
gorithm that scales to sizes much larger than have
been previously described in the literature. Our
approach far outperforms the best known disk-
based construction algorithms.

1 Introduction
Querying large string datasets is becoming increasingly
important in a number of emerging text and life sciences
applications. Life science researchers are often inter-
ested in explorative querying of large biological sequence
databases, such as genomes and large sets of protein se-
quences. Many of these biological datasets are growing
at exponential rates — for example, the sizes of the se-
quence datasets in GenBank have been doubling every six-
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teen months [31]. Consequently, methods for efficiently
querying large string datasets are critical to the success of
these emerging database applications.

Suffix trees are versatile data structures that can help
execute such queries very efficiently. In fact, suffix trees
are useful for solving a wide variety of string based prob-
lems [17]. For instance, the exact substring matching prob-
lem can be solved in time proportional to the length of the
query, once the suffix tree is built on the database string.
Suffix trees can also be used to solve approximate string
matching problems efficiently. Some bioinformatics ap-
plications such as MUMmer [10, 11, 22], REPuter [23],
and OASIS [25] exploit suffix trees to efficiently evaluate
queries on biological sequence datasets. However, suffix
trees are not widely used because of their high cost of con-
struction. As we show in this paper, building a suffix tree
on moderately sized datasets, such as a single chromosome
of the human genome, takes over 1.5 hours with the best
known existing disk-based construction technique [18]. In
contrast, the techniques that we develop in this paper re-
duce the construction time by a factor of 5 on inputs of the
same size.

Even though suffix trees are currently not in widespread
use, there is a rich history of algorithms for constructing
suffix trees. A large focus of previous research has been on
linear-time suffix tree construction algorithms [24, 32, 33].
These algorithms are well suited for small input strings
where the tree can be constructed entirely in main memory.
The growing size of input datasets, however, requires that
we construct suffix trees efficiently on disk. The algorithms
proposed in [24,32,33] cannot be used for disk-based con-
struction as they have poor locality of reference. This poor
locality causes a large amount of random disk I/O once the
data structures no longer fit in main memory. If we naively
use these main-memory algorithms for on-disk suffix tree
construction, the process may take well over a day for a
single human chromosome.

Large (and rapidly growing) size of many string datasets
underscores the need for fast disk-based suffix tree con-
struction algorithms. A few recent research efforts have
also considered this problem [4,18], though neither of these
approaches scales well for large datasets (such as a large
chromosome, or an entire eukaryotic genome).

In this paper, we present a new approach to efficiently

36



construct suffix trees on disk. We use a philosophy similar
to the one in [18]. We forgo the use of suffix links in return
for a much better memory reference pattern, which trans-
lates to better scalability and performance for large trees.

The main contributions of this paper are as follows:

1. We introduce the “Top Down Disk-based” (TDD)
approach to building suffix trees efficiently for a
wide range of sizes and input types. This tech-
nique, includes a suffix tree construction algorithm
called PWOTD, and a sophisticated buffer manage-
ment strategy.

2. We compare the performance of TDD with the popu-
lar Ukkonen’s algorithm [32] for the in-memory case,
where all the data structures needed for building the
suffix trees are memory resident (i.e. the datasets are
“small”). Interestingly, we show that even though
Ukkonen has a better worst case theoretical complex-
ity, TDD outperforms Ukkonen on modern cached
processors, since TDD incurs significantly fewer pro-
cessor cache misses.

3. We systematically explore the space of data sizes and
types, and highlight the advantages and disadvantages
of TDD with respect to other construction algorithms.

4. We experimentally demonstrate that TDD scales
gracefully with increasing input size. Using the TDD
process, we are able to construct a suffix tree on the
entire human genome in 30 hours (on a single proces-
sor machine)! To our knowledge, suffix tree construc-
tion on an input string of this size (3 billion symbols
approx.) has yet to be reported in literature.

The remainder of this paper is organized as follows:
Section 2 discusses related work. The TDD technique is
described in Section 3, and we analyze the behavior of this
algorithm in Section 4 . Section 5, presents the experimen-
tal results, and Section 6 presents our conclusions.

2 Related Work
Linear time algorithms for constructing suffix trees have
been described by Weiner [33], McCreight [24], and Ukko-
nen [32]. Ukkonen’s is a popular algorithm because it
is easier to implement than the other algorithms. It is
an O(n), in-memory construction algorithm based on the
clever observation that constructing the suffix tree can be
performed by iteratively expanding the leaves of a partially
constructed suffix tree. Through the use of suffix links,
which provide a mechanism for quickly traversing across
sub-trees, the suffix tree can be expanded by simply adding
the i+1 character to the leaves of the suffix tree built on the
previous i characters. The algorithm thus relies on suffix
links to traverse through all of the sub-trees in the main tree,
expanding the outer edges for each input character. How-
ever, they have poor locality of reference since they traverse
the suffix tree nodes in a random fashion. This leads to
poor performance on cached architectures and when used
to construct on-disk suffix trees.

Recently, Bedathur et al. developed a buffering strat-
egy, called TOP-Q, which improves the performance of the
Ukkonen’s algorithm (which uses suffix links) when con-
structing on-disk suffix trees [4]. A different approach was
suggested by Hunt et al. [18] where the authors drop the use
of suffix links and use an O(n2) algorithm with a better lo-
cality of reference. In one pass over the string, they index
all suffixes with the same prefix by inserting them into an
on-disk subtree managed by PJama [3], a Java based object
store. Construction of each independent subtree requires a
full pass over the string.

Several O(n2) and O(n log n) algorithms for construct-
ing suffix trees are described in [17]. A top-down approach
has been suggested in [1, 14, 16]. In [15], the authors ex-
plore the benefits of using a lazy implementation of suffix
trees. In this approach, the authors argue that one can avoid
paying the full construction cost by constructing the subtree
only when it is accessed for the first time. This approach
is useful only when a small number of queries are posed
against a string dataset. When executing a large number of
queries, most of the tree must be materialized, and in this
case, this approach will perform poorly.

Previous research has also produced theoretical results
on understanding the average sizes of suffix trees [5, 30],
and theoretical complexity of using sorting to build suf-
fix trees for different computational models such as RAM,
PRAM, and various other external memory models [12].

Suffix arrays have also been used as an alternative to suf-
fix trees for specific string matching tasks [8, 9, 26]. How-
ever, in general, suffix trees are more versatile data struc-
tures. The focus of this paper is only on suffix trees.

Our solution uses a simple partitioning strategy. How-
ever, a more sophisticated partitioning method has been
proposed recently [6], which can complement our existing
partitioning method.

3 The TDD Technique
Most suffix tree construction algorithms do not scale due
to the prohibitive disk I/O requirements. The high per-
character overhead quickly causes the data structures to
outgrow main memory and the poor locality of reference
makes efficient buffer management difficult.

We now present a new disk-based construction tech-
nique called the “Top-Down Disk-based” technique, here-
after referred to simply as TDD. TDD scales much more
gracefully than existing techniques by reducing the main-
memory requirements through strategic buffering of the
largest data structures. The TDD technique consists of a
suffix tree construction algorithm, called PWOTD, and the
related buffer management strategy described in the follow-
ing sections.

3.1 PWOTD Algorithm

The first component of the TDD technique is our suffix
tree construction algorithm, called PWOTD (Partition and
Write Only Top Down). This algorithm is based on the wot-
deager algorithm suggested by Kurtz [15]. We improve on
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Figure 1: Suffix Tree Representation

this algorithm by using a partitioning phase which allows
one to immediately build larger, independent sub-trees in
memory. Before we explain the details of the algorithm,
we briefly discuss the representation of the suffix tree.

The suffix tree is represented by a linear array, as in wot-
deager. This is a compact representation using an average
of 8.5 bytes per symbol indexed. Figure 1 illustrates a suf-
fix tree on the string ATTAGTACA$ and the tree’s corre-
sponding array representation in memory. Shaded entries
in the array represent leaf nodes, with all other entries rep-
resenting non-leaf nodes. An R in the lower right-hand cor-
ner of an entry denotes a rightmost child. A branching node
is represented by two integers. The first is an index into the
input string; the character at that index is the starting char-
acter of the incoming edge’s label. The length of the label
can be deduced by examining the children of the current
node. The second entry points to the first child. Note that
the leaf nodes do not have a second entry. The leaf node
requires only the starting index of the label; the end of the
label is the string’s terminating character. See [15] for a
more detailed explanation.

The PWOTD algorithm consists of two phases. In
phase one, we partition the suffixes of the input string into
|A|prefixlen partitions, where |A| is the alphabet size of
the string and prefixlen is the depth of the partitioning. The
partitioning step is executed as follows. The input string
is scanned from left to right. At each index position i the
prefixlen subsequent characters are used to determine one
of the |A|prefixlen partitions. This index i is then written
to the calculated partition’s buffer. At the end of the scan,
each partition will contain the suffix pointers for suffixes
that all have the same prefix of size prefixlen.

To further illustrate the partition step, consider the fol-
lowing example. Partitioning the string ATTAGTACA$
using a prefixlen of 1 would create four partitions of suf-
fixes, one for each symbol in the alphabet. (We ignore
the final partition consisting of just the string terminator
symbol $.) The suffix partition for the character A would

Algorithm PWOTD(String,prefixlen)
Phase1:
Scan the String and partition Suffixes based
on the first prefixlen symbols of each suffix
Phase2: Do for each partition:
1. START BuildSuffixTree
2. Populate Suffixes from current partition
3. Sort Suffixes on first symbol using Temp
4. Output branching and leaf nodes to the Tree
5. Push the nodes pointing to an unevaluated range

onto the Stack
While Stack is not empty

6. Pop a node
7. Find the Longest Common Prefix (LCP) of

all the suffixes in this range by checking
the String

8. Sort the range in Suffixes on the first
symbol using Temp

9. Write out branching nodes or leaf nodes to Tree
10.Push the nodes pointing to an unevaluated range

onto the Stack
11. END

Figure 2: The TDD Algorithm

be {0,3,6,8}, representing the suffixes {ATTAGTACA$,
AGTACA$, ACA$, A$}. The suffix partition for the
character T would be {1,2,5} representing the suffixes
{TTAGTACA$, TAGTACA$, TACA$}. In phase two, we
use the wotdeager algorithm to build the suffix tree on each
partition using a top down construction.

The pseudo-code for the PWOTD algorithm is shown in
Figure 2. While the partitioning in phase one of PWOTD is
simple enough, the algorithm for wotdeager in phase two
warrants further discussion. We now illustrate the wotdea-
ger algorithm using an example.

3.1.1 Example Illustrating the wotdeager Algorithm

The PWOTD algorithm requires four data structures for
constructing suffix trees: an input string array, a suffix ar-
ray, a temporary array, and the suffix tree. For the discus-
sion that follows, we name each of these structures String,
Suffixes, Temp, and Tree, respectively.

The Suffixes array is first populated with suffixes from a
partition after discarding the first prefixlen characters. Us-
ing the same example string as before, ATTAGTACA$,
consider the construction of the Suffixes array for the T-
partition. The suffixes in this partition are at positions 1,
2, and 5. Since all these suffixes share the same prefix, T,
we add one to each offset to produce the new Suffix array
{2,3,6}. The next step involves sorting this array of suf-
fixes based on the first character. The first characters of
each suffix are {T, A, A}. The sorting is done using an
efficient algorithm called count-sort in linear time (for a
constant alphabet size). In a single pass, for each character
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in the alphabet, we count the number of occurrences of that
character in the first character of each suffix, and copy the
suffix pointers into the Temp array. We see that the count
for A is 2 and the count for T is 1; the counts for G, C, and
$ are 0. We can use these counts to determine the character
group boundaries: group A will start at position 0 with two
entries, and group T will start at position 2 with 1 entry. We
make a single pass through the Temp array and produce the
Suffixes array sorted on the first character. The Suffixes ar-
ray is now {3, 6, 2}. The A-group has two members and is
therefore a branching node. These two suffixes completely
determine the sub-tree below this node. Space is reserved
in the Tree to write this non-leaf node once it is expanded,
then the node is pushed onto the stack. Since the T-group
has only one member, it is a leaf node and will be imme-
diately written to the Tree. Since no other children need to
be processed, no additional entries are added to the stack,
and this node will be popped off first.

Once the node is popped off the stack, we find the
longest common prefix (LCP) of all the nodes in the group
{3, 6}. We examine position 4 (G) and position 7 (C) to
determine that the LCP is 1. Each suffix pointer is incre-
mented by the LCP, and the result is processed as before.
The computation proceeds until all nodes have been ex-
panded and the stack is empty. Figure 1 shows the complete
suffix tree and its array representation.

3.1.2 Discussion of the PWOTD Algorithm

Observe that phase 2 of PWOTD operates on subsets of
the suffixes of the string. In wotdeager, for a string of n
symbols, the size of the Suffixes array and the Temp ar-
ray needed to be 4 × n bytes (assuming 4 byte integers are
used as pointers). By partitioning in Phase 1, the amount
of memory needed by the suffix arrays in each run is just

4×n
|A|prefixlen . This is an important point: partitioning de-
creases the main-memory requirements for suffix tree con-
struction, allowing independent sub-tree to be built entirely
in main memory. Suppose we are partitioning a 100 mil-
lion symbol string over an alphabet of size 4. Using a
prefixlen = 2 will decrease the space requirement of the
Suffixes and Temp arrays from 400 MB to 25 MB each, and

the Tree array from 1200 MB to 75 MB. Unfortunately, this
savings is not entirely free. The cost to partition increases
linearly with prefixlen. For small input strings where we
have sufficient main memory for all the structures, we can
skip the partitioning phase entirely. It is not necessary to
continue partitioning once the Suffixes and Temp arrays fit
into memory. For even very large datasets, such as the hu-
man genome, partitioning beyond 7 levels is not beneficial.

3.2 Buffer Management

Since suffix trees are an order of magnitude larger in size
than the input data string, suffix tree construction algo-
rithms require large amounts of memory, which may ex-
ceed the amount of main memory that is available. For
such large data sets, efficient disk-based construction meth-
ods are needed that can scale well for large input sizes.
One strength of TDD is that it transitions the data struc-
tures gracefully to disk as necessary, and uses individual
buffer management polices for each structure. As a result,
TDD can scale gracefully to handle large input sizes.

Recall that the PWOTD algorithm requires four data
structures for constructing suffix trees: String, Suffixes,
Temp, and Tree. Figure 3 shows each of these structures
as separate, in-memory buffer caches. By appropriately
allocating memory and by using the right buffer replace-
ment policy for each structure, the TDD approach is able
to build suffix trees on extremely large inputs. The buffer
management policies are summarized in Figure 3 and are
discussed in detail below.

The largest data structure is the Tree buffer. This array
stores the suffix tree during its intermediate stages as well
as the final computed result. The Tree data structure is typ-
ically 8-12 times the size of the input string. The reference
pattern to Tree consists mainly of sequential writes when
the children of a node are being recorded. Occasionally,
pages are revisited when an unexpanded node is popped off
the stack. This access pattern displays very good temporal
and spatial locality. Clearly, the majority of this structure
can be placed on disk and managed efficiently with a sim-
ple LRU (Least Recently Used) replacement policy.

The next largest data structures are the Suffixes and the
Temp arrays. The Suffixes array is accessed as follows:
first a sequential scan is used to copy the values into the
Temp array. The sort operation following the scan causes
random writes from the Temp array back into the Suffixes
array. However, there is some locality in the pattern of
writes, since the writes start at each character-group bound-
ary and proceed sequentially to the right. Based on the
(limited) locality of reference, one expects LRU to perform
reasonably well.

During the sort, the Temp array is referenced in two lin-
ear scans: the first to copy all of the suffixes in the Suf-
fixes array, and the second to copy all of them back into the
Suffixes array in sorted order. For this reference pattern,
replacing the most recently used page (MRU) works best.

The String array has the smallest main-memory require-
ment of all the data structures, but the worst locality of ac-
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cess. The String array is referenced when performing the
count-sort and to find the longest common prefix in each
sorted group. During the count-sort all of the portions of
the string referenced by the suffix pointers are accessed.
Though these positions could be anywhere in the string,
they are always accessed in left to right order. In the func-
tion to find the longest common prefix of a group, a similar
pattern of reference is observed. In the case of the find-
LCP function, each iteration will access the characters in
the string, one symbol to the right of those previously ref-
erenced. In the case of the count-sort operation, the next
set of suffixes to be sorted will be a subset of the current
set. Based on these observations, one can conclude that the
LRU policy would be the best management policy.

We summarize the choice of buffer management poli-
cies for each of the structures in Figure 3. As shown in
the figure, the String, Suffixes, and Tree arrays should use
the LRU replacement policy; the Temp array should use an
MRU replacement policy. Based on experiments in Sec-
tion 5.3, we confirm that these are indeed good choices.

3.3 Buffer Size Determination

To obtain the maximum benefit from buffer management
policy, it is important to divide the available memory be-
tween the data structures appropriately. A careful appor-
tioning of the available memory between these data struc-
tures can affect the overall execution time dramatically. In
the rest of this section, we describe a technique to divide
the available memory among the buffers.

If we know the access pattern for each of the data struc-
tures, we can devise an algorithm to partition the mem-
ory to minimize the overall number of buffer cache misses.
Note that we only need an access pattern on a string rep-
resentative of each class, such as DNA sequences, protein
sequences, etc. In fact, we have found experimentally that
these access patterns are similar across a wide-range of
datasets (we discuss these results in detail in Section 5.3.)
An illustrative graph of the buffer cache miss pattern for
each data structure is shown in Figure 4. In this figure,
the X-axis represents the number of pages allocated to the
buffer as a percentage of the total size of the data structure.

The Y-axis shows the number of cache misses. This fig-
ure is representative of biological sequences derived from
actual experiments in Section 5.3.

As we will see at the end of section 3.3.1, our buffer
allocation strategy only needs to estimate the relative mag-
nitudes of the slopes of each curve, and the position of the
“knee” towards the start of the curve. The full curve as
shown in Figure 4 is not needed for the algorithm. How-
ever, it is useful to facilitate the following discussion.

3.3.1 TDD Heuristic for Allocating Buffers

We know from Figure 4 that the cache miss behavior for
each buffer is approximately linear once the memory is al-
located beyond a minimum point. Once we identify these
points, we can allocate the minimum buffer size necessary
for each structure. The remaining memory is then allocated
in order of decreasing slopes of the buffer miss curves.

We know from arguments in Section 3.2 that references
to the String have poor locality. One can infer that the
String data structure is likely to require the most buffer
space. We also know that the references to the Tree ar-
ray have very good locality, so the buffer space it needs is
likely to be a very small fraction of its full size. Between
Suffixes and Temp, we know that the Temp array has more
locality than the Suffixes array, and will therefore require
less memory. Both Suffixes and Temp require a smaller
fraction of their pages to be resident in the buffer cache
when compared to the String. We exploit this behavior to
design a heuristic for memory allotment.

We suggest the minimum number of pages allocated to
the Temp and Suffixes arrays to be |A|. During the sort
phase, we know that the Suffixes array will be accessed
at |A| different positions which correspond to the character
group boundaries. The incremental benefit of adding a page
will be very high until |A| pages, and then one can expect
to see a change in the slope at this point. By allocating at
least |A| pages, we avoid the penalty of operating in the
initial high miss-rate region. The TDD heuristic chooses to
allocate a minimum of |A| pages to Suffixes and Temp first.

We suggest allocating two pages to the Tree array. Two
pages allow a parent node, possibly written to a previous
page and then pushed onto the stack for later processing, to
be accessed without replacing the current active page. This
saves a large amount of I/O over choosing a buffer size of
only one page.

The remaining pages are allocated to the String array.
If any pages are left over, they are allocated to Suffixes,
Temp, and Tree, in that order.

The reasoning behind this heuristic is borne out by the
graphs in Figure 4. The String, which has the least locality
of reference, has the highest slope and the largest magni-
tude. Suffixes and Temp have a lower magnitude and a
more gradual slope, indicating that the improvement with
each additional page allocated is smaller. Finally, the Tree,
which has excellent locality of reference, is nearly zero. All
curves have a knee at the initial point which we estimate by
choosing minimum allocations.
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Figure 5: Scaling Buffer Allocation

3.3.2 An Example Allocation
The following example demonstrates how to allocate the
main memory to the buffer caches. Assume that your sys-
tem has 100 buffer pages available for use and that you
are building a suffix tree on a small string that requires 6
pages. Further assume that the alphabet size is 4 and that
4 byte integers are used. Assuming that no partitioning is
done, the Suffixes array will need 24 pages (one integer for
each character in the String), the Temp array will need 24
pages, and the Tree will need at most 72 pages. First we
allocate 4 pages each to Suffixes and Temp. We allocate 2
pages to Tree. We are now left with 90 pages. Of these, we
allocate 6 pages to the String, thereby fitting it entirely in
memory. From the remaining 84 pages, Suffixes and Temp
are allocated 20 and fit into memory, and the final 44 pages
are all given to Tree. This allocation is shown pictorially in
the first row of Figure 5.

Similarly, the second row in Figure 5 is an allocation
for a medium sized input of 50 pages. First, the heuristic
allocates 4 pages each to Suffixes and Temp, and 2 pages to
Tree. The String is given 50 pages. The remaining 40 pages
are given to Suffixes, producing the second allocation in
Figure 5. The third allocation corresponds to a large string
of 120 pages. Here, Suffixes, Temp, and Tree are allocated
their minimums of 4, 4, and 2 respectively, and the rest of
the memory (90 pages) is given to String. Note that the
entire string does not fit in memory now, and portions will
be swapped into memory from disk when they are needed.

It is interesting to observe how the above heuristic allo-
cates the memory as the size of the input string increases.
This trend is indicated in Figure 5. When the input is small
and all the structures fit into memory, most of the space
is occupied by the largest data structure: the Tree. As the
input size increases , the Tree is pushed out to disk. For
very large strings that do not fit into memory, everything
but the String is pushed out to disk, and the String is given
nearly all of the memory. By first pushing the structures
with better locality of reference onto disk, TDD is able to
scale gracefully to very large input sizes.

Note that our heuristic does not need the actual utility
curves to calculate the allotments. It estimates the “knee”
of each curve using the algorithm, and assumes that the
curve is linear for the rest of the region.

4 Analysis

In this section, we analyze the advantages and the dis-
advantages of using the TDD technique for various types
and sizes of string data. We also describe how the design
choices we have made in TDD overcome the performance
bottlenecks present in other proposed techniques.

4.1 I/O Benefits

Unlike the approach of [4] where the authors use the best
in-memory O(n) algorithm (Ukkonen) as the basis for their
disk-based algorithm, we use the theoretically less efficient
O(n2) wotdeager algorithm [15]. A major difference be-
tween the two algorithms is that the Ukkonen algorithm
sequentially accesses the string data and then updates the
suffix tree through random traversals, while our TDD ap-
proach accesses the input string randomly and then writes
the tree sequentially. For disk based construction algo-
rithms, random access is the performance bottleneck as on
each access an entire page will potentially have to be read
from disk; therefore, efficient caching of the randomly ac-
cessed disk pages is critical.

On first appearance, it may seem that we are simply trad-
ing random disk I/Os for more random disk I/Os, but the
input string is the smallest structure in the construction al-
gorithm, while the suffix tree is the largest structure. TDD
can place the suffix tree in very small buffer cache as the
writes are almost entirely sequential, which leaves the re-
maining memory free to buffer the randomly accessed, but
much smaller, input string. Therefore, our algorithm re-
quires a much smaller buffer cache to contain the randomly
accessed data. Conversely, for the same amount of buffer
cache, we can cache much more of the randomly accessed
pages, allowing us to construct suffix trees on much larger
input strings.

4.2 Main-Memory Analysis

When we build suffix trees on small strings, where data
structures fit in memory, no disk I/O is incurred. For the
case of in-memory construction, one would expect that a
linear time algorithm such as Ukkonen would perform bet-
ter than the TDD approach which has an average case com-
plexity of O(nlog|A|n). However, one must consider more
than just the computational complexity to understand the
execution time of the algorithms.

Traditionally, all accesses to main memory were consid-
ered equally good, as the disk I/O was the performance bot-
tleneck. But, for programs that require little disk I/O, the
performance bottleneck shifts into the main-memory hier-
archy. Modern processors typically employ one or more
data caches for improving access times to memory when
there is a lot of spatial and/or temporal locality in the access
patterns. The processor cache is analogous to a database’s
buffer cache, the primary difference being that the user
does not have control over the replacement policy. Reading
data from the processor’s data cache is an order of magni-
tude faster than reading data from the main memory. And
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as the speed of the processor increases, so does the main-
memory latency; as a result, the latency of random memory
accesses will only grow with future processors.

Linear time algorithms such as Ukkonen require a large
number of random memory accesses due to linked list
traversals through the tree structure. A majority of cache
misses occur after traversing a suffix link to a new sub-
tree and then examining each child of the new parent. The
traversal of the suffix link to the sibling sub-tree and the
subsequent search of the destination node’s children re-
quire random accesses to memory over a large address
space. Because this span of memory is too large to fit in
the processor cache, each access has a very high probability
of incurring the full main-memory latency. Using an array
based representation [21], where the pointers to the chil-
dren are stored in an array with an element for each symbol
in the alphabet, can reduce the number of cache misses.
However, this representation uses up a lot more space and
could therefore lead to a higher run time anyway.

Observe that as the alphabet size of the input string
grows, the number of children for each non-leaf node will
increase proportionately. As more children are examined
to find the right position to insert the next character, the
more cache misses will be incurred. Therefore, the Ukko-
nen method will incur an increasing number of processor
cache misses with an increase in alphabet size.

For TDD, the alphabet size has the opposite effect. As
the branching factor increases, the working set of the Suf-
fixes and Temp arrays quickly decreases, and can fit into
the processor cache sooner. The majority of read misses in
the TDD algorithm occur when calculating the size of each
character group (in Line 8 of Figure 2). This is because the
beginning character of each suffix must be read, and there
is little spatial locality in the reads. While both algorithms
must perform random accesses to main memory which in-
cur very expensive cache misses, there are three properties
about the TDD algorithm that make it more suited for in-
memory performance: (a) the access pattern is sequential
through memory, (b) each random memory access is in-
dependent of the others accesses, and (c) the accesses are
known a priori. Because the accesses to the input data
string are sequential through the memory address space,
hardware-based data prefetchers may be able to identify
opportunities for prefetching the cache lines [19]. In addi-
tion, recently proposed techniques for overlapping execu-
tion with main-memory latency, such as software pipelin-
ing [7], can easily be incorporated in TDD.

4.3 Effect of Alphabet Size and Data Skew

There are two properties of the input string that can affect
the execution time of suffix tree construction techniques:
the size of the alphabet and the skew in the string. The
average case running time for constructing a suffix tree on
uniformly random input strings is O(n log|A| n), where |A|
is the size of the input alphabet and n is the length of the
input string. The intuition behind this average case time
is as follows. There are log|A| n levels in the tree, and at
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each level i the suffixes array is divided into i|A| parts. On
each part, the count-sort and the find-LCP functions have
to be run. The running time of count-sort is linear. To find
the longest common prefix for a set of suffixes from a uni-
formly distributed string, the expected number of suffixes
compared before a mismatch is slightly over 1. Therefore,
the find-LCP function would return after just one or two
comparisons most of the time. In some cases, the actual
LCP is more than 1 and a scan of all suffixes is required.
Therefore, in the case of uniformly distributed data, the
find-LCP function is expected to run in constant time. This
gives rise to the overall running time of O(n log|A| n).

Interestingly, the longest common prefix is actually the
label on the incoming edge for the node that corresponds
to this range of suffixes. The average of all the LCPs com-
puted while building a tree is equal to the average length of
the labels on each edge ending in a non-leaf node.

Real datasets, such as DNA strings, have a skew that is
particular to them. By nature, DNA often consists of large
repeating sequences; different symbols occur with more or
less the same frequency and certain patterns occur more
frequently than others. As a result, the average LCP is
higher than that for uniformly distributed data. Figure 6
shows a histogram for the longest common prefixes gener-
ated while constructing suffix trees on the SwissProt [2]
and a 50 MB Human DNA sequence [13]. Notice that
both sequences have a high probability that the LCP will
be greater than 1. Even among biological datasets, the dif-
ferences can be quite dramatic. From the figure, the DNA
sequence is much more likely to have LCPs greater than 1
compared with the protein sequence (70% versus 50%). It
is important to note that the LCP histograms for the DNA
and protein sequences shown in the figure do not represent
all strings, but these particular results do highlight the dif-
ferences one can expect between input sets.

For data with a lot of repeating sequences, the find-LCP
function will not be able to complete in a constant amount
of time. It will have to scan at least the first l characters of
all the suffixes in the range, where l is the actual LCP. In
this case, the cost of find-LCP becomes O(l× r) where l is
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the actual LCP, and r is the number of suffixes in the range
that the function is examining. As a result, the PWOTD
algorithm will take longer to complete. However, note that
the average case complexity remains O(nlog|A|n).

Inputs with a lot of repeated sequences, such as DNA,
decrease the performance of TDD but may perform well for
algorithms similar to Ukkonen’s. Ukkonen’s algorithm can
exploit the repeated subsequences by terminating an insert
phase when the duplicate suffix is already in the tree. This
will happen more frequently in the case of input string like
DNA which often have long repeating sequences, thereby
providing a computational savings to the Ukkonen algo-
rithm. Unfortunately, this advantage is offset by the ran-
dom reference pattern which makes it a poor choice for
larger input string on cached architectures.

The size of the input alphabet also has an important ef-
fect. Larger input alphabets are an advantage for TDD be-
cause the running time is O(n log|A| n), where |A| is the
size of the alphabet. A larger input alphabet implies a
larger branching factor for the suffix tree. This in turn im-
plies that the working size of the Suffixes and Temp arrays
shrinks more rapidly - and could fit into the cache entirely
at a lower depth. For Ukkonen, a larger branching factor
would imply that on an average, more siblings will have to
be examined while searching for the right place to insert.
This leads to a longer running time for Ukkonen. There
are hash-based and array based approaches that alleviate
this problem [21], but at the cost of consuming much more
space for the tree. A larger representation naturally implies
that we are limited to building trees on smaller strings. We
experimentally demonstrate these effects in Section 5.

Note that the case where Ukkonen will have an advan-
tage over TDD is for short input strings over a small alpha-
bet with high skew (repeat sequences). TDD is a better bet
in all other cases.

4.4 Summary of the Analysis

In this section, we discussed why the O(n2) construction
algorithm used in the TDD technique is more amenable to
disk-based suffix tree construction than the O(n) algorithm
of Ukkonen. Because the PWOTD algorithm trades ran-
dom accesses into the input string (of size n) for sequential
accesses into the Tree data structure (of size 12n), we can
manage the Tree structure with only a fraction of the main
memory required by other techniques. This property pro-
vides a fundamental advantage over other disk-based ap-
proaches since our disk I/O performance is primarily de-
pendent on the smallest data structure, instead of being
dependent on the largest data structure as is the case with
other techniques.

We also argued that even for small strings where all the
structures fit into main memory, using an O(n) algorithm
like Ukkonen might not be the best choice. The behavior
of the algorithm with respect to the processor caches is also
important, and as we show later in Section 5, TDD outper-
forms existing methods even for the in-memory case.

Finally, we explored the effects of alphabet size and the

skew in the input string on TDD. We argue that TDD per-
forms better on larger alphabet sizes, and is disadvantaged
by skew in the string. Algorithms like Ukkonen on the
other hand are poor for larger alphabet sizes and have an
advantage for skewed data. Again, we point to Section 5
for an experimental verification of these claims.

5 Experimental Evaluation

In this section, we present the results of an extensive exper-
imental evaluation of the different suffix tree construction
techniques. In addition to TDD, we compare Ukkonen’s al-
gorithm [32] for in-memory construction performance, and
Hunt’s algorithm [18] for disk-based construction perfor-
mance. Ukkonen’s and Hunt’s algorithms are considered
the best known suffix tree construction algorithms for the
in-memory case and the disk based case respectively.

5.1 Experimental Implementation

Our TDD algorithm uses separate buffer caches for the four
main structures: the string, the suffixes array, the tempo-
rary working space for the count sort, and the suffix tree.
We use fixed-size pages of 8K for reading and writing to
disk. Buffer allocation for TDD is done using the method
described in Section 3.3. If the amount of memory required
is less than the size of the buffer cache, then that structure
is loaded into the cache, with accesses to the data bypass-
ing the buffer cache logic. TDD was written in C++ and
compiled with GNU’s g++ compiler version 3.2.2 with full
optimizations activated.

For an implementation of the Ukkonen’s algorithm, we
use the version from [34]. It is a textbook implementa-
tion of Ukkonen’s algorithm based on Gusfield’s descrip-
tion [17] and written in C. The algorithm operates entirely
in main memory, and there is no persistence. The represen-
tation uses 32 bytes per node.

Our implementation of Hunt’s algorithm is from the
OASIS search tool [25], which is part of the Periscope
project [27]. The OASIS implementation uses a shared
buffer cache instead of the persistent Java object store,
PJama [3], described in the original proposal [18]. The
buffer manager employs the CLOCK replacement policy.
The OASIS implementation performed better than the im-
plementation described in [18]. This is not surprising since
PJama incurs the overhead of running through the Java Vir-
tual Machine.

For the disk based experiments that follow, unless stated
otherwise, all I/O is to raw devices; i.e., there is no buffer-
ing of I/O by the operating system and all reads and writes
to disk are synchronous (blocking). This provides an un-
biased accounting of the performance for disk based con-
struction as operating system buffering will not (positively)
affect the performance. Therefore, our results present the
worst case performance of disk based construction. Us-
ing asynchronous writes is expected to improve the perfor-
mance of our algorithm over the results presented. Each
raw device accesses a single partition on one Maxtor Atlas
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Figure 7: Execution Time Breakdown

10K IV drive. The disk drive controller is an LSI 53C1030,
Ultra 320 SCSI controller.

The experiments were performed on an Intel Pentium
4 processor with 2.8 GHz clock speed and 2 GB of main
memory. This processor includes a two level cache hierar-
chy. There are two first level caches, named L1-I and L1-D,
that cache instructions and data respectively. There is also a
single L2 cache that stores both instructions and data. The
L1 data cache is an 8 KB, 4-way set-associative cache with
a 64 byte line size. The L1 instruction cache is a 12 K trace
cache, 4-way set associative. The L2 cache is a 512 KB,
8-way, set-associative cache, also with a 128 byte line size.
The operating system was Linux, kernel version 2.4.20.

The Pentium 4 processor includes 18 event counters that
are available for recording micro-architectural events, such
as the number of instructions executed [20]. To access
the event counters, the perfctr library was used [28]. The
events measured include: clock cycles executed, instruc-
tions and micro-operations executed, L2 cache accesses
and misses, TLB misses, and branch mispredictions.

5.2 Comparison of In-Memory Algorithms

To evaluate the performance of the TDD technique for in-
memory construction, we chose to compare with the per-
formance of the O(n) time Ukkonen’s algorithm. We do
not evaluate Hunt’s algorithm in this section as it was not
designed as an in-memory technique. For this experiment,
we used five different data sources : chromosome 2 of
Drosophila Melanogaster from GenBank [13], a slice of
the SwissProt dataset [2] having 20 million symbols, and
the text from the 1995 collection from project Gutenberg
[29]. We also chose two strings that contain uniformly dis-
tributed symbols from an alphabet of size four and forty.
This data is summarized in Table 1.

Figure 7 shows the execution time breakdown for both
algorithms, grouped by data source with TDD performance
on the left and Ukkonen performance on the right. Note
that since this is the in-memory case, TDD reduces to

Data Description Symbols
Source (106)
dmelano D.Melanogaster Chr. 2 (DNA) 20
guten95 Gutenberg Project, Year 1995 20

(English Text)
swp20 Slice of SwissProt (Protein) 20
unif4 4-char alphabet, uniform distrib. 20
unif40 40-char alphabet, uniform distrib. 20

Table 1: Main Memory Data Sources

just the PWOTD algorithm. In these experiments, all data
structures fit into memory. The total execution time is
decomposed into the time executing the following micro-
architectural events (from bottom to top): instructions exe-
cuted plus resource related stalls, TLB misses, branch mis-
predictions, L2 cache hits, and L2 cache misses (or main-
memory reads).

From Figure 7, the L2 cache miss component is a large
contributor to the execution time for both algorithms. Both
algorithms show a similar breakdown for the small alpha-
bet sizes of DNA data (unif4 and dmelano). When the al-
phabet size increases from 4 symbols to 20 symbols for
SwissProt and to 40 symbols for unif40, the cache miss
component of Ukkonen’s algorithm increases dramatically
while the cache miss component for the TDD algorithm re-
mains low. The reason for this, as discussed in Section 4.2,
is that Ukkonen’s algorithm incurs a lot of cache misses
while following the suffix link to a new portion of the tree,
and traversing all the children when trying to find the right
position to insert the new entry.

We observe that for each dataset, TDD outperforms
Ukkonen’s algorithm and the performance difference in-
creases with alphabet size. This was expected based on dis-
cussions in Section 4.3. For instance, on the DNA dataset
of dmelano (|A| = 4) , TDD is faster than Ukkonen by a
factor of 2.5. For the swp20 protein dataset (|A| = 20),
TDD is faster by a factor of 4.5. Finally, for the unif40
(|A| = 40), TDD is faster by a factor of 10! These results
demonstrate that, despite having a O(n2) time complexity,
the TDD technique significantly outperforms Ukkonen’s
algorithm on cached architectures.

5.3 Buffer Management with TDD

In this section we evaluate the effectiveness of various
buffer management policies . For each data structure used
in the TDD algorithm, we analyze the performance of the
LRU, MRU, RANDOM, and CLOCK page replacement
polices over a wide range of buffer cache sizes. To facil-
itate this analysis over the wide range of variables, we em-
ployed a buffer cache simulator. The simulator takes as in-
put a trace of the address requests into the buffer cache and
the page size. The simulator outputs the disk I/O statistics
for the desired replacement policy. For all data shown here
except the Temp array, MRU performs the worst by far and
is not shown in the figures that we present in this section.

To generate the traces of address requests, we built suffix
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Data Structure SwissProt Human DNA
(size in pages) (size in pages)

String 6,250 6,250
Suffixes 1,250 6,250
Temp 1,250 6,250
Tree 4,100 16,200

Table 2: Array Sizes

trees on the SwissProt database [2] and a 50 Mbps slice of
the Human Chromosome-1 database [13]. A prefixlen of 1
was used for partitioning in the first phase. The size of each
of the arrays for these datasets is summarized in Table 2.

5.3.1 Page Size

In order to determine the page size to use for the buffers,
we conducted several experiments. We observed that larger
page sizes produced fewer page misses when the alphabet
size was large (protein datasets, for instance). Smaller page
sizes seemed to have a slight advantage in the case of in-
put sets with smaller alphabets (like DNA sequences). We
observed that a page size of 8192 bytes performed well for
a wide range of alphabet sizes. In the interest of space, we
omit the details of our page-size study. For all the experi-
ments described in this section we use a page size of 8KB.

5.3.2 Buffer Replacement Policy

The results showing the effect of the various buffer replace-
ment policies for the four data structures are shown in Fig-
ures 8 to 11. In these figures, the x-axis is the buffer size
(shown as a percentage of the original input string size),
and the y-axis is the number of buffer misses that are in-
curred by various replacement policies.

From Figure 8, we observe that for the String buffer
LRU, RANDOM, and CLOCK all perform similarly. In
fact, RANDOM has a very small advantage over the other
two because there is very limited locality in the reference
pattern in the string. Of all the arrays, when the buffer size
is a fixed fraction of the total size of the structure, the String
incurs the largest number of page misses. This is not sur-
prising since this structure is accessed the most and in a
random fashion.

In the case of the Suffixes buffer (shown in Figure 9), all
three policies perform similarly for small buffer sizes. In
the case of the Temp buffer, the reference pattern consists
of one linear scan from left to right to copy the suffixes
from the Suffixes array, and then another scan from left to
right to copy the suffixes back into the Suffixes array in the
sorted order. Clearly, MRU is the best policy in this case
as shown by the results in Figure 10. It is interesting to
observe that the space required by the Temp buffer is much
smaller than the space required by the Suffixes buffer to
keep the number of misses down to the same level, though
the array sizes are the same.

For the Tree buffer (see Figure 11), with very small
buffer sizes, LRU and CLOCK outperform RANDOM.
However, this advantage is lost for even moderate buffer
sizes. The most important fact here is that despite being

Data Description Symbols
Source (106)
swp Entire UniProt/SwissProt

(Protein)
53

H.Chr1-
50

50 Mbps slice of Human
Chromosome-1 (DNA)

50

guten03 2003 Directory of Gutenberg
Project (English Text)

58

trembl TrEMBL (Protein) 338
H.Chr1 Entire Human Chromosome-1

(DNA)
227

guten Entire Gutenberg Collection
(English Text)

407

HG Entire Human Genome (DNA) 3, 000

Table 3: On-Disk Data Sources

Data Symbols Hunt TDD Speedup
Source (106) (min) (min)
swp 53 13.95 2.78 5.0
H.Chr1-50 50 11.47 2.02 5.7
guten03 58 22.5 6.03 3.7
trembl 338 236.7 32.00 7.4
H.Chr1 227 97.50 17.83 5.5
guten 407 463.3 46.67 9.9
HG 3, 000 — 30hrs —

Table 4: Performance Comparison

the largest data structure, it requires the smallest amount
of buffer space, and takes a relatively insignificant number
of misses for any policy. Therefore for the Tree buffer, we
can choose to implement the cheapest policy - the random
replacement policy.

5.4 Comparison of Disk-based Algorithms

In this section we first compare the performance of our
technique with the technique proposed by Hunt et al. [18],
which is currently considered the best disk-based suffix tree
construction algorithm. For this experiment, we used seven
datasets which are described in Table 3. The suffix tree con-
struction times for the two algorithms are shown in Table 4.

From this table, we see that in each case TDD performs
significantly better than Hunt’s algorithm. For example, on
the TrEMBL database, (|A| = 20), TDD is faster by a fac-
tor of 7.4. For Human Chromosome-1 (|A| = 4), TDD is
faster by a factor of 5.5. For a large text dataset like the
Gutenberg Collection (|A| = 60), TDD is nearly ten times
faster! For the largest dataset, the human genome, Hunt’s
algorithm did not complete in a reasonable amount of time.
The reason why TDD performs better is that Hunt’s algo-
rithm traverses the on-disk tree during construction, while
TDD does not. During construction, a given node in the
tree is written over at most once. By careful management
of the buffer sizes, and the buffer replacement policies, the
disk I/O in TDD is brought down further.
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Comparison of TDD with TOP-Q
Very recently, Bedathur and Haritsa have proposed the
TOP-Q technique for constructing suffix trees [4]. TOP-Q
is a new low overhead buffer management method which
can be used with Ukkonen’s construction algorithm. The
goal of these researchers is to invent a buffer manage-
ment technique that does not require modifying an exist-
ing in-memory construction algorithm. In contrast, TDD
and Hunt’s algorithm [18] take the approach of modify-
ing existing suffix tree construction algorithms to produce
a new disk-based suffix tree construction algorithm. Even
though the research focus of TOP-Q is different from TDD
and Hunt’s algorithm, it is natural to ask how the TOP-Q
method compares to these other approaches.

To compare TDD with TOP-Q, we obtained a copy of
the TOP-Q code from the authors. This version of the
code only supports building suffix tree indices on DNA
sequences. As per the recommendation in [4], we used
a buffer pool of 880M for the internal nodes and 800M
for the leaf nodes (this was the maximum memory allo-
cation possible with the TOP-Q code). On 50Mbp of Hu-
man Chromosome-1, TOP-Q took about 78 minutes. By
contrast, under the same conditions, TDD took about 2.1
minutes: faster by a factor of 37. On the entire Human
Chromosome-1, TOP-Q took 5800 minutes, while our ap-
proach takes around 18 minutes. In this case, TDD is faster
by two orders of magnitude!

6 Conclusions and Future Work

Suffix tree construction on large character sequences has
been virtually intractable. Existing approaches have exces-
sive memory requirements and poor locality of reference

and therefore do not scale well for even moderately sized
datasets.

To address these problems and unlock the potential of
this powerful indexing structure, we have introduced the
“Top Down Disk-based” (TDD) technique for disk-based
suffix tree construction. The TDD technique includes a suf-
fix tree construction algorithm (PWOTD), and an accompa-
nying buffer cache management strategy. We demonstrate
that PWOTD has an advantage over Ukkonen’s algorithm
by a factor of 2.5 to 10 for in-memory datasets.

Extensive experimental evaluations show that TDD
scales gracefully as the dataset size increases. The TDD ap-
proach lets us build suffix trees on large frequently used se-
quence datasets such as UniProt/TrEMBL [2] in a few min-
utes. Algorithms to construct suffix trees on this scale (to
our knowledge) have not been mentioned in literature be-
fore. The TDD approach outperforms a popular disk-based
suffix tree construction method (the Hunt’s algorithm) by
a factor of 5 to 10. In fact, to demonstrate the strength
of TDD, we show that using slightly more main-memory
than the input string, a suffix tree can be constructed on
the entire Human Genome in 30 hours on a single proces-
sor machine! These input sizes are one or two orders of
magnitude larger than the datasets that have been used in
previously published approaches.

Others researchers have proposed buffer management
strategies for on-disk suffix tree construction, but our
method is unique in that the larger data structures that are
required during the suffix tree construction can be accessed
efficiently even with a small number of buffer pages. This
behavior leads to the highly scalable aspect of TDD.

As part of our future work, we plan on making TDD
more amenable to parallel execution. We believe that the
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TDD technique is extremely parallelizable due to the parti-
tioning phase that it employs. Each partition is the source
for an independent subtree of the complete suffix tree.
Since the partitions are independent, multiple processors
can simultaneously construct the sub-trees.
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