

Towards an Internet-Scale XML Dissemination Service

Yanlei Diao, Shariq Rizvi, Michael J. Franklin

University of California, Berkeley
{ diaoyl, rizvi, franklin} @cs.berkeley.edu

Abstract

Publish/subscribe systems have demonstrated the ability
to scale to large numbers of users and high data rates
when providing content-based data dissemination ser-
vices on the Internet. However, their services are limited
by the data semantics and query expressiveness that they
support. On the other hand, the recent work on selective
dissemination of XML data has made significant progress
in moving from XML filtering to the richer functionality
of transformation for result customization, but in general
has ignored the challenges of deploying such XML-based
services on an Internet-scale. In this paper, we address
these challenges in the context of incorporating the rich
functionality of XML data dissemination in a highly
scalable system. We present the architectural design of
ONYX, a system based on an overlay network. We iden-
tify the salient technical challenges in supporting XML
filtering and transformation in this environment and pro-
pose techniques for solving them.

1 Introduction

A large number of emerging applications, such as mobile
services, stock tickers, sports tickers, personalized newspaper
generation, network monitoring, traffic monitoring, and elec-
tronic auctions, has fuelled an increasing interest in Content-
Based Data Dissemination (CBDD). CBDD is a service that
delivers information to users (equivalently, applications or
organizations) based on the correspondence between the
content of the information and the user data interests. Figure
1 shows the context in which a data dissemination system
providing this service operates. Users subscribe to the service
by providing profiles expressing their data interests. Data
sources publish their data by pushing messages to the system.
The system delivers to each user the messages that match her

data interests; these messages are presented in the format
required by the user.

Over the past few years, XML has rapidly gained popu-
larity as the standard for data exchange in enterprise intranets
and on the Internet. The ability to augment data with seman-
tic and structural information using XML-based encoding
raises the potential for more accurate and useful delivery of
data. In the context of XML-based data dissemination, user
profiles can involve constraints over both the structure and
value of XML fragments, resulting in potentially more pre-
cise filtering of XML messages. In many emerging applica-
tions, the relevant XML messages also need to be trans-
formed for data and application integration, personalization,
and adaptation to wireless devices.

While XML filtering and transformation has aroused sig-
nificant interest in the database community [2][8][12][16]
[20][22][26], little attention has been paid to deploying such
XML-based dissemination services on an Internet-scale. In
the latter scenario, services are faced with high data rates,
large profile population, variable query life span, and tre-
mendous result volume. Distributed publish/subscribe sys-
tems developed in the networking community [1][4][9][10]
[29] have demonstrated their scalability in applications such
as sports tickers at the Olympics [21]. Integrating XML
processing into such distributed environments appears to be a
natural approach to supporting large-scale XML dissemina-
tion.

1.1 Challenges

Distributed pub/sub systems partition the profile population
to multiple nodes and direct the message flow to the nodes
hosting profiles based on the content of messages (referred to
as content-driven routing). Integrating XML into content-
driven routing, however, brings the following key challenges.
� As XML mixes structural and value-based information,

content-driven routing needs to support constraints over
both. The inherent repetition and recursion of element
names in XML data also defeats well-known routing

This work was funded in part by the NSF under ITR grants IIS-0086057
and SI-0122599, by the IBM Faculty Partnership Award program, and
by research funds from Intel, Microsoft, and the UC MICRO program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

Data User profiles

Results
returned

C
B
D
D

Data Source

Data Source

Data Source

Fig. 1. Overview of content-based data dissemination

612

techniques (e.g., the counting algorithms [10][19]) de-
signed for simpler data models. New techniques for
XML-based content-driven routing are needed.

� When XML transformation is introduced to a distributed
system, the best venue to perform such transformation is
another issue to address.

� The criteria used to partition user profiles have an impact
on the effectiveness of content-driven routing. The mix-
ture of structure and value-based constraints in profiles
and the repetition of element names in XML data compli-
cate the profile partitioning problem.

� As the verbosity of XML results in large messages and
these large messages need to be parsed at each routing
step, alternative formats should be considered for effi-
cient XML transmission.
A number of XML query processors are available for

providing XML processing in this environment. Among
them, YFilter [16][17], a multi-query processor that we built
previously, represents a set of profiles using an operator net-
work on top of a Non-Deterministic Finite Automaton (NFA)
to share processing among those profiles. Using YFilter for
distributed XML dissemination raises the issues of distribut-
ing the NFA-based operator network, and efficient schedul-
ing of the operators for both profile processing and content-
driven routing.

1.2 Contr ibutions

In this paper, we present the initial design of ONYX (Opera-
tor Network using YFilter for XML dissemination), a large-
scale dissemination system that delivers XML messages
based on user specifications for filtering and transformation.
The contributions of our work include the following.
� We leverage the YFilter processor for content-driven

routing. In particular, we use the NFA-based operator
network to represent routing tables, and provide an initial
solution to constructing the routing tables from the dis-
tributed profile population.

� We address the issue of how to perform incremental mes-
sage transformation in the course of routing.

� In order to boost the effectiveness of routing, we provide
an algorithm that partitions the profile population based
on exclusiveness of data interests.

� We develop holistic message processing for sharing the
work among various processing tasks at a node (i.e., con-
tent-driven routing, incremental transformation and user
profile processing). Dependency-aware priority schedul-
ing is used to support such sharing while providing a fast
path for routing.

� We investigate various formats for efficient XML trans-
mission.

� Last but not least, we provide an architectural design of
the system and mechanisms for building such a system.
The paper proceeds as follows. Section 2 details the re-

quirements and motivation. Section 3 describes our system
model. Core techniques addressing the various challenges are
presented in Section 4, followed by a detailed broker archi-
tecture design in Section 5. Section 6 includes extended re-
lated work. Section 7 concludes the paper.

2 Requirements and Motivation

In this section, we present the requirements for large-scale
XML dissemination, and provide a brief survey of existing
solutions, which motivates our work presented in this paper.

2.1 Expressiveness

A starting point for our requirements is the use of XML as
the data model and a subset of XQuery [7] as the profile
model. User profiles can contain constraints over both struc-
ture (using path expressions) and value (using value-based
predicates) of XML fragments. For example, if a user is in-
terested in stock information distributed in San Francisco and
under the subject “Stock” , she can express her interest using
the query below (based on the NITF DTD [23]). It specifies
that the root element nitf must (1) have a child element head
that in turn contains a child element pubdata whose attribute
edition.area has the value “SF” , and (2) have a descendant
element tobject.subject whose attribute tobject.subject.type
has the value “Stock” .

 $msg/nitf [head/pubdata[@edition.area = “SF”]]
 [.//tobject.subject[@tobject.subject.type = “Stock”]]

User profiles can also contain specifications for result cus-
tomization. For example, a user can use the query below to
specify that for each NITF article that matches the for and
where clauses (which are equivalent to the query above),
transform it to a new article with the root element stock_news
containing elements selected from the original article using
path expressions “body/body.head/hedline” , and “body/body.
content” .

for $n in $msg/nitf
where $n/head/pubdata/@edition.area = “SF”
 and $n//tobject.subject/@tobject.subject.type = “Stock”
return <stock_news>
 { $n/body/body.head/hedline}
 { $n/body/body.content}
 </stock_news>

As the profile model is based on the XQuery language, in the
sequel, we use the terms profile and query interchangeably.

2.2 Scalability

The second dimension of requirements is scalability. More
specifically, the service must scale along the following di-
mensions.

Data volume. The data volume is determined by the
number of messages per second arriving at the system and
the message size. Depending on the application, the number
of messages per second ranges from several to thousands.
For example, NASDAQ real-time data feeds include 3,000 to
6,000 messages per second in the pre-market hours [43];
Network and application monitoring systems such as Net-
Logger can also receive up to a thousand messages per sec-
ond [44]. The message size can vary from 1 KB (e.g., XML
encoded stock quote updates) to 20 KB (e.g., XML news
articles).

Query population. The query population in a dissemina-
tion system can also span a wide range, reaching millions of

613

queries for applications such as personalized newspaper gen-
eration and mobile operators providing stock quote updates.

Frequency of query updates. A third scalability issue is
the frequency with which users update their data interests.
While in some applications queries change on a daily basis,
in some others they can change much more frequently.

Result Volume. When result customization is supported,
the volume of results to be delivered can be tremendous. This
is because for each message, point-to-point delivery is
needed for every query matched by the message. Take, for
example, a stock quote update service. Suppose that the peak
message rate from a data source is 5000 per second, each
message is 1 KB, the user population is 10 million, and the
average query selectivity is as low as 0.001%. A back-of-the-
envelope calculation gives an estimation of the result volume
as 4 Gb per second. Disseminating this volume of data from
a central server can be prohibitively expensive.

Having outlined the problem of large-scale XML-based
data dissemination, we next present the position of our work
within the large body of related work.

2.3 Related Systems

Publish/subscribe systems such as TIBCO Rendezvous [29],
Gryphon [1][4], and Siena [9][10] provide distributed sub-
ject/content-based data dissemination. Distributed processing
spreads the processing load and has the potential of scaling
up for both service inputs and outputs. These systems, how-
ever, support limited expressiveness in message filtering.
Earlier Publish/subscribe systems are subject-based [29]. In
such systems, publishers label each message with a subject
from a pre-defined set, and users subscribe to all the mes-
sages in a specific subject. The expressiveness of this service
is restricted by the opaqueness of the message content in its
data model. More recent publish/subscribe systems model
messages as attribute-value pairs, and allow user profiles to
contain a set of predicates over the values of those attributes
[1][9][10][19][30]. The expressiveness of these systems
amounts to filtering tuple-like messages based on the con-
stituent attributes. Combining low expressiveness and high
scalability, distributed pub/sub systems are represented by
the upper left corner of the matrix shown in Figure 2.

More recently, a large number of XML filtering ap-
proaches have been developed [2][8][12][16][20][22][26]
[38]. These approaches typically support a subset of XPath
1.0 [15]. XML filtering provides more expressiveness in
specifying data interests, resulting in more accurate filtering
of messages. YFilter [17], a multi-query processor that we
built previously, also supports result customization using a
subset of XQuery. Although these XML filtering and trans-
formation systems provide higher levels of expressiveness,
their centralized style of processing limits their scalability.
Revisiting Figure 2, today’s XML filtering and transforma-
tion systems can be best described by the lower right corner
of the matrix combining lower scalability and higher expres-
siveness.

Our work on content-based data dissemination adopts the
paradigm of distributed processing to exploit aggregated
bandwidth and processing power. As indicated in Figure 2,
our system ONYX incorporates the high level of expressive-

ness of XML filtering and transformation into a distributed
data dissemination service.

3 System Model

In this section, we present the operational features of ONYX.
ONYX provides content-based many-to-many data dissemi-
nation from publishers to end users. It consists of an overlay
network of nodes. Most of the nodes serve as information
brokers (or brokers, for short) that handle messages and user
queries, while a few of them collaborate to provide a regis-
tration service. The overview is illustrated in Figure 3.

3.1 Service Inter face

The service interface provided by ONYX consists of several
methods (some of which are similar to those in [3]):

Register a data source: A data source registers with
ONYX by contacting the registration service and providing
information about its location, the schema used, the expected
message rate and message size, etc. (as illustrated by mes-
sage 1 in Figure 3). The registration service assigns an ID to
the data source, and chooses a broker as the root broker for
the data source. The choice of the root broker is based on its
topological distance to the data source, the bandwidth avail-
able, and the data volume expected from that source. After
the service forwards the information about the new data
source to the root broker (message 2), it returns the assigned
ID and the address of the root broker to the data source (mes-
sage 3).

Publish data: After registration, a data source publishes
its data by attaching its ID to each message and pushing the
message to its root broker (message 4).

Register a data interest: To subscribe, the user contacts
the registration service, and provides his profile and network
address (message 5). The registration service assigns an ID to
this profile, and chooses a broker as the host broker for this
profile based on the user’s location and/or the content of the
profile. At the end of the registration, the service forwards
the profile and related information to the host broker (mes-
sage 6), and returns the profile ID and host broker address to
the user (message 7). Thereafter, the host broker will deal
with all the user requests concerning that profile.

Update a data interest: Subsequent changes to a profile
(including updates and deletion) are sent directly to the host
broker (message 8).

Fig. 2. Combining expressiveness and scalability

ONYX

YFilter
XML

filtering
systems

distributed pub/sub

su
bj

ec
t-

ba
se

d

pr
ed

ic
at

e-
ba

se
d X
M

L
fil

te
rin

g

X
M

L
fil

te
rin

g
an

d
tra

ns
-

fo
rm

at
io

n

Expressive
-ness

scalability

low

high

614

Note that users do not need a method to retrieve the mes-
sages matching their interests, because those messages are
pushed to them from the system (e.g., message 9). Additional
methods are provided for data sources to update the schema
and other information sent previously.

Fault-tolerance can be achieved by having backup nodes
for the registration service and the brokers or using other
techniques. That discussion is beyond the scope of this paper.

3.2 Two Planes of Content-Based Processing

ONYX is an application-level overlay network. It consists of
two layers of functionality. The lower layer, called the con-
trol plane, deals with application-level broadcast trees and
gives each broker a broadcast tree rooted at that broker that
reaches all other brokers in the network. Figure 4 shows such
a tree in a network consisting of six brokers. Algorithms for
constructing broadcast trees have been provided elsewhere
(e.g., [14]).

In this section, we focus on the higher layer of function-
ality in ONYX – content-based processing, which is the pri-
mary concern of this paper. We decompose the operations in
this layer into two planes of processing - the data plane and
the query plane. The data plane captures the flow of mes-
sages in the system while the query plane captures the flow
of queries and query-related updates in the system. As we
will see, the duality of data and query is a pervasive feature
of ONYX. We now discuss the three tasks performed in this
layer – content-driven routing, incremental transformation,
and user query processing.

Content-dr iven routing is necessary to avoid the flood-
ing of messages to all brokers in the network. It builds on top
of the broadcast tree described above. The routing is content-
driven because instead of forwarding a message to all the
children in the broadcast tree, a broker sends it to only the
subset that is “ interested” in the message. This routing
scheme, which matches a message’s content with routing
table entries (or routing queries) representing the interests of
child brokers, is in sharp contrast to the address-based IP
routing scheme.

Figure 4 shows an example of routing a message based
on its content. The routing tables for Broker 1 and 4 are
shown conceptually. The table at Broker 1 specifies a routing
query “ /nitf/head/pubdata[@edition.area= “NY”]” for Bro-
ker 2, and a similar one “ /nitf/head/pubdata[@edition.area=
“SF”]” for Broker 4. The matching of a new message arriv-
ing at Broker 1 with either routing query results in routing

the message to the corresponding child. The building of such
routing tables by summarizing the queries of downstream
brokers is a subtask in the query plane. The matching of mes-
sages against routing queries occurs in the data plane.

Incremental transformation is the second task in the
content-based processing layer. Interesting cases of trans-
forming messages during routing include (1) early projection,
i.e., removal of data, and (2) early restructuring. An example
of early projection is as follows. A data source publishes
messages containing multiple news articles. If all the user
queries downstream of a link are interested only in a subset
of the articles (e.g., those distributed in the area “SF”), mes-
sages can be projected onto the articles of interest before they
are forwarded along that link using the following query:

<batched-nitf>
{ for $n in $msg/batched-nitf/nitf
 where $n/head/pubdata/@edition.area =“SF”
 return $n
}
</batched-nitf>

An example of restructuring is message transcoding based on
the profiles of wireless users, say, when all users downstream
of a link require images and comments to be removed and
tables to be converted to lists. Incremental transformation
helps reduce message sizes and avoids repeated work at mul-
tiple brokers.

We enable incremental transformation by attaching trans-
formation queries to the output links of brokers on the path
of routing. User queries downstream of a link are aggregated
and the commonality in their transformation requirements is
extracted to form the transformation query. These subtasks
happen in the query plane. The corresponding subtask in the
data plane consists of transforming messages using these
queries, before the messages are sent to the output links.

User query processing is the task of matching and trans-
forming messages against individual user queries at their host
brokers. For the user queries resident at a particular broker,
this is the last step of message processing (although the arriv-
ing messages may be routed and transformed for other down-
stream user queries). The subtask in the query plane consists
of issues such as indexing of user queries for which the bro-
ker is a host broker, and the subtask in the data plane consists
of matching messages against these indexes.

Table 1 summarizes the content-based processing tasks in
ONYX and their subtasks over the query and data planes.

Fig. 4. Message routing based on content

Data Source

Broker 2

Broker 3

Broker 1

Broker 4

Broker 5 Broker 6

 Broker 2:
 /nitf/head/pubdata[@edition.area=“NY”]
 Broker 4:
 /nitf/head/pubdata[@edition.area=“SF”]
 [transformation plan*]

 Broker 5:
 /nitf//tobject.subject[@tobject.subject.type=“Stock”] or
 /nitf//tobject.subject[@tobject.subject.matter=“ fishing”]
 Broker 6:
 /nitf//series[@series.name =“Tide Forecasts”]

message
flow

query
flow

Fig. 3. Architecture of ONYX

Data Source Data Source Data Source

U5
U1 U2 U3 U4

9

registration
service

1
4

5 7

3

8

6

2
Broker

Broker

Broker

Broker
Broker Broker

615

System Task Query Plane Data Plane

Content-driven routing
build routing
tables

lookup in routing
tables

Incremental transformation
build transforma-
tion plans

execute transforma-
tion plans

User query processing build query plans execute query plans

Table 1: System tasks over the two planes of processing

4 Core Techniques

In this section, we describe three key aspects of ONYX, the
query plane, the data plane, and the query partitioning strat-
egy. YFilter serves as a basis for these components, so we
first present some YFilter basics.

4.1 YFilter Basics

YFilter [16][17] is an XML filtering and transformation en-
gine that processes multiple queries in a shared fashion. In
the core of YFilter, a Non-Deterministic Finite Automaton
(NFA) is used to represent a set of simple linear paths and
support prefix sharing among those paths. YFilter provides a
fast algorithm for running the NFA on an input message to
match the contained paths simultaneously, and an incre-
mental approach for maintaining the NFA when some of the
paths change.

While the structural components of path expressions are
handled by the NFA, for the remaining portions of the que-
ries, YFilter builds a network of operators starting from the
accepting states of the NFA. Each operator performs a spe-
cific task, such as evaluation of value-based predicates,
evaluation of nested paths, or transformation. The operators
residing at an accepting state of the NFA can be executed
when that accepting state is reached. Downstream operators
in the network are activated when all their preceding opera-
tors are finished. In addition, some accepting states and op-
erators are annotated with query identifiers. These identifiers
specify that if an annotated accepting state is reached or an
annotated operator is successfully evaluated, the queries cor-
responding to the identifiers are satisfied.

Figure 5 shows three example queries and their represen-
tation in YFilter. Take Q1 for example. It contains a root
element “ /nitf” with two nested paths applied to it. YFilter
decomposes the query into two linear paths “ /nitf/head/
pubdata[@edition.area=“SF”]” , and “ /nitf//tobject.subject

[@tobject.subject.type=“Stock”]” . The structural part of
these paths is represented using the NFA (see Figure 5(b)),
with the common prefix “ /nitf” shared between the two
paths. The accepting states of these paths are state 4 and state
6, where the network of operators (represented as boxes) for
the remainder of Q1 starts. At the bottom of the network,
there is a selection (σ) operator below each accepting state to
handle the value-based predicate in the corresponding path.
For example, the box below state 4 specifies that the predi-
cate on the attribute edition.area should be evaluated against
the element that drove the transition to state 4. To handle the
correlation between the two paths (e.g., the requirement that
it should be the same nitf element that makes these two paths
evaluate to true), YFilter applies a join (��) operator after the
two selections. This operator realizes the correct semantics of
the nested paths. In Figure 5(b), the left most join operator is
annotated with the query identifier Q1. This means that if the
join is successfully evaluated, then Q1 is satisfied.

The representation of Q2 follows the same two paths in
the NFA as Q1 and uses the same selection at state 4 to proc-
ess the common predicate with Q1, but it contains a separate
selection at state 6 to evaluate the different predicate in the
second path. A distinct join operator is built on these two
selections. The representation of Q3 is similar to that of Q1
and Q2 for the for and where clauses, but contains an addi-
tional box for transformation using the return clause. For
more details on YFilter, the interested reader is referred to
[16][17].

4.2 Query Plane

In this subsection, we focus on two issues on the query plane:
routing table construction and the generation of incremental
transformation plans. Our solutions are based on an exten-
sion of the YFilter processor. Note that we do not discuss
user query processing, as it is completely handled by YFilter.

4.2.1 Routing Table Construction

As stated previously, a routing table conceptually consists of
routing query-output link pairs, where each routing query is
aggregated from user queries downstream of the correspond-
ing output link. In our work, we decided to implement rout-
ing tables using YFilter for three reasons: (1) fast structure
matching of path expressions using the NFA, (2) the small
maintenance cost of an NFA for query updates (e.g., com-

 Q1: $msg/nitf[head/pubdata[@edition.area=“SF”]]
 [.//tobject.subject[@tobject.subject.type=“Stock”]]

 Q2: $msg/nitf[head/pubdata[@edition.area=“SF”]]
 [.//tobject.subject[@tobject.subject.matter=“fishing”]]

 Q3:
 <nitf>
 { for $n in $msg/nitf
 where $n/head/pubdata/@edition.area =“SF”
 and $n//series/@series.name =“Tide Forecasts”
 return { $n/body/body.content}
 }
 </nitf>

Fig. 5. Example queries and their representation in YFilter

σ: (state 4,
 @edition.area=“SF”)

σ: (state 6, @tobject.
 subject.type=“Stock”)

σ: (state 6, @tobject.
 subject.matter=“ fishing”)

Q1 Q2

2

nitf
1

4

pubdata

head

3

tobject.
subject

6

ε
* 5

series

7

σ: (state 7, @series.
 name=“Tide Forecasts”)

transformation

Q3 (a)
(b)

616

pared to deterministic automata), and (3) extensibility for
supporting new operations using operator networks. Here, we
present the representation of routing tables and mechanisms
to construct them. For the purpose of routing, we only con-
sider the matching part of a query, i.e., the for and where
clauses of a query written in XQuery. This part can be con-
verted to a single path expression with equivalent semantics,
which we refer to as the matching path of a query.

In our current design, routing queries are represented us-
ing a Disjunctive Normal Form (DNF) of absolute linear path
expressions. If a matching path contains n nested paths, it is
decomposed into n+1 absolute linear paths (possibly with
value-based predicates). The routing query constructed for
this matching path is the conjunction of the resulting n+1
paths. Multiple routing queries can be connected using or
operators to create a new routing query. Note that an alterna-
tive could be to allow any matching path to be a routing
query and use or operators to connect them. In comparison,
DNF relaxes the semantics of nested paths. The motivation
of using DNF is that join operators used to evaluate nested
paths are relatively expensive, whereas logical and operators
between path expressions can be evaluated much more effi-
ciently. Investigation of alternative forms is one direction of
our future work.

Routing table construction from a distributed query popu-
lation consists of applying three functions, Map(), Collect(),
and Aggregate(), to create routing queries in the chosen
form.
� Map() maps the matching path of a user query to the ca-

nonical form of a routing query;
� Collect() gathers routing queries sent from the child bro-

kers into the routing table of a broker;
� Aggregate() merges the routing queries in the routing

table of a broker with those mapped from the user queries

at the broker, and generates a new routing query to repre-
sent the broker in its parent broker.
These three functions are illustrated for Brokers 4 and 5

in Figure 6(a). Broker 5 is a host broker with matching paths
Q1 and Q2. It uses function Map() to create a routing query
for each of them. Then it applies Aggregate() to those rout-
ing queries to generate a new one that will represent it in its
parent (Broker 4). Note that as a leaf, Broker 5 does not con-
tain a routing table. Broker 4 has child brokers Broker 5 and
Broker 6, but no user queries. It uses function Collect() to
merge the routing queries sent from the child brokers into a
routing table, and then applies Aggregate() to the routing
table to generate a routing query that will represent it in its
parent.

Construction operations. Next we present the imple-
mentation of the three functions using YFilter.

Map() takes as input a YFilter operator network repre-
senting a set of matching paths. To create the DNF represen-
tations of their routing queries, Map() simply replaces each
join operator in the operator network with an and operator.

Collect() merges routing queries sent from downstream
brokers into a routing table of a parent broker. This operation
simply merges the YFilter operator networks that represent
those routing queries.

Aggregate() performs re-labeling on a YFilter operator
network. It changes all the identifier annotations (for queries
or brokers) to the identifier of this broker, so that the anno-
tated places become marks for routing to this broker. It es-
sentially adds “or” semantics to those annotated places, as
encountering any one of them can cause routing of messages
to this broker. YFilter treats broker identifiers the same as
query identifiers, so these identifiers are simply called “ tar-
gets” in the sequel.

An example is shown in Figure 6(b). Box (a) in this fig-
ure shows the YFilter operator network built for queries Q1

 (d)
nitf

1

4

pubdata
3

2
head

σ: (…)

Broker4

Fig. 6. Examples of constructing routing tables using a disjunctive normal form

 (b)

pubdata tobject.
subject

nitf
1

4

ε head

* 3

2

6

5

σ: (…) σ: (…)

σ: (…)

AND AND
Broker5 Broker5

 (a)

pubdata tobject.
subject

nitf
1

4

ε head

* 3

2

6

5

σ: (…) σ: (…)

σ: (…)

Q1 Q2

 (c)

tobject.
subject

6

nitf
1

4

ε head

* 3

2

5
series

7

pubdata

σ: (…) σ: (…)

AND
Broker5

AND
Broker5

σ: (…)

σ: (…)

AND
Broker6

 Broker 5

 Q1: /nitf[head/pubdata/@edition.area=“SF”]
 [.//tobject.subject/@tobject.subject.type=“Stock”]
 Q2: /nitf[head/pubdata/@edition.area=“SF”]
 [.//tobject.subject/@tobject.subject.matter=“ fishing”]

Routing queries

A new routing query

Map()

Aggregate()

(a)

(b)

 Broker 4

from Broker 5

Routing Table
(routing query-output link pairs)

A new routing query

Aggregate()

Collect()

from Broker 6

(c)

(d)

Broker 6

……

Q3: ……

(a) (b)

617

and Q2 from Broker 5. Box (b) represents the routing query
created for Broker 5 after applying Map() and Aggregate()
to box (a). Box (c) depicts the result of merging box (b) with
the routing query sent from Broker 6 (assumed to be the rout-
ing query created for query Q3 in Figure 5(a)). Box (d), the
result of applying Aggregate() to box (c), will be explained
shortly below.

Shar ing among routing quer ies. It is important to note
the difference between the conceptual representation of a
routing table (i.e., routing query-output link pairs) and our
implementation of it. Instead of creating a separate operator
network for each routing query, we represent all the routing
queries in a routing table using a single combined operator
network. As a result, the common portions of the routing
queries will be processed only once. As an example, box (c)
in Figure 6(b) shows that the path leading to accepting state 4
and the selection operator attached to that state can be shared
between the routing query for Broker 5 and that for Broker 6.
When the commonality among routing queries is significant,
the benefit of sharing can be tremendous.

The or semantics introduced to routing queries, however,
complicates the issue of sharing. When using separate opera-
tor networks for routing queries, a short-cut evaluation strat-
egy can be applied in the evaluation of each routing query.
Consider box (b) in Figure 6(b) as an operator network cre-
ated for the routing query for Broker 5. If during execution,
one of the two targets labeled as Broker 5 is encountered, the
processing for this routing query can stop immediately. In
contrast, when using the combined operator network shown
in box (c), after a target for Broker 5 is encountered, the
processing of the combined operator network has to continue
as the target for Broker 6 has not been reached. If care is not
taken, some future work may be performed which only leads
to the targets for Broker 5. In other words, naïve ways of
executing a combined operator network for shared process-
ing may perform wasteful work.

To solve this problem, our solution is to have a runtime
mechanism that instructs YFilter to ignore the processing for
duplicate targets but not the processing for different targets.
This mechanism is based on a dynamic analysis of the opera-
tor network which reports the portions of the combined op-
erator network that will only lead to the targets that have
already been reached.

Content generalization. Another issue to address in
routing table construction is the size of routing tables (i.e.,
the size of their operator network representation). Larger
routing tables can incur high overhead for routing table
lookup, thus slowing the critical path of message routing.
They may also cause memory problems in environments with
scarce memory. For these reasons, we introduce content gen-
eralization as an additional step that can be performed in
Collect() or Aggregate(). Generalizing the routing table
essentially trades the filtering power of the routing table for
processing or space efficiency.

We propose an initial set of methods for content gener-
alization. Some of methods generalize individual path ex-
pressions with respect to their structural or value-based con-
straints. Some other methods generalize all the disjuncts in a
routing query. For instance, one such method preserves only
the path expressions common to all the disjuncts in the new

routing query. Consider the routing table shown in box (c) in
Figure 6(b). When applying Aggregate() to this routing ta-
ble, calling this method after re-labelling the identifiers will
result in an operator network containing a single path, as
shown in box (d). This generalized operator network will be
used to represent Broker 4 in its parent.

4.2.2 Incremental Message Transformation

Incremental transformation happens in the course of routing.
As mentioned in Section 3, it can be an early projection or an
early restructuring. In this subsection, we briefly describe the
extraction of incremental transformation queries from user
queries and the placement of these transformation queries.

A transformation query for early projection can be at-
tached to an output link at a broker, if (1) its for clause is
shared by all the user queries downstream of the link, (2) its
where clause generalises the where clauses of all those que-
ries, and (3) the binding of its for clause provides all the in-
formation that the return clauses of those queries require.
The last requirement implies that the return clauses of the
user queries downstream cannot contain absolute paths or the
backward axis “ ..” to navigate outside the binding.

Similarly, a transformation query for early restructuring
can be applied to an output link, if conditions (1) and (2)
above are satisfied, and (3) the return clauses of the down-
stream queries all contain a series of transformation steps
(e.g., removing images and then converting tables to lists),
and the first few steps are shared among all those queries.
This transformation query will carry out the common trans-
formation steps on matching messages earlier at this broker.

When opportunities for early transformation are identi-
fied at host brokers based on the above conditions, incre-
mental transformation queries representing them are gener-
ated and propagated to the parent broker. At the parent, these
transformation queries are compared and the commonality
among them is extracted to create a new transformation
query for its own parent and a set of “ remainder queries” for
its output links. A remainder query is one that combined with
the new transformation query constitutes the original trans-
formation query. Each remainder query is attached to the
output link where the corresponding original transformation
query came from. The new transformation query is propa-
gated up, and the above process repeats.

A final remark is that although our algorithms for routing
table construction and incremental transformation plan con-
struction as presented consider all the user queries in a batch,
they can also be applied for incremental maintenance of rout-
ing tables or transformation plans. In that case, “delta” rout-
ing/transformation queries are constructed and propagated,
instead. Details are omitted here due to space constraints.

4.3 Data Plane

Having described the query plane, we now turn to the data
plane that handles the XML message flow. In the following,
we describe two aspects of this plane, holistic message proc-
essing for various tasks and efficient XML transmission.

4.3.1 Holistic Message Processing

In ONYX, a single YFilter instance is used at each broker to
build a shared, “holistic” execution plan for the routing table,

618

incremental transformation queries, and local user queries
(by holistic, we mean that all these processing tasks are con-
sidered as a whole in the data plane). Processing of an XML
message using this shared plan is sketched in this section.

The execution algorithm for holistic message processing
is an extension of the push-based YFilter execution algorithm
[17]. As in that previous work, elements from an XML mes-
sage are used to drive the execution of NFA. At an accepting
state of the NFA, path tuples are created and passed to the
operators associated with the state. The network of operators
is executed from such operators (i.e., right below accepting
states) to their downstream operators. In YFilter, the order of
operator execution is based on a FCFS policy among the
operators whose upstream operators have all been completed.

In contrast to earlier work, however, the holistic plan
contains multiple types of queries, i.e., routing queries, in-
cremental transformation queries, and local user queries. The
first two types are on the critical path of message routing.
They should not be delayed by the processing for local que-
ries. Moreover, incremental transformation is useful only if
the routing query for the corresponding link can be satisfied,
which implies the dependency of transformation queries on
the routing queries in execution. For these reasons, we pro-
pose a dependency-aware priority scheduling algorithm to
support shared holistic message processing.

Dependency-aware pr ior ity scheduling. In this algo-
rithm, operators that contribute to routing queries are as-
signed high priority; among other operators, those that con-
tribute to incremental transformation queries have medium
priority; and the rest of the operators have low priority. The
second priority class, however, is declared to be dependent
on the first class with the following condition: an operator in
the second class is executed only if at least one incremental
transformation query that it contributes to has been necessi-
tated by the successful evaluation of the corresponding rout-
ing query. In our implementation, an FCFS queue is assigned
to each priority class. In addition, a wait queue is assigned to
the dependent class. Priority scheduling works as in a typical
OS, except that operators in the dependent class are first
placed in the wait queue, and then moved to the FCFS queue
when their dependency conditions have been satisfied.

4.3.2 Efficient XML Transmission

Low cost transmission of XML messages is also a paramount
concern in a multi-hop distributed dissemination system.
XML raises two challenges in this context. First, the verbose
nature of XML can cause many redundant bytes in the mes-
sages. Second, XML messages need to be parsed at each
broker, which can be expensive [16][36]. In this section, we
address these two challenges.

The inherent verbosity of XML has led to compression
algorithms such as XMill [27]. Compression, however,
solves only the first of the above challenges but not the pars-
ing problem. A promising approach that we explored to
counter this problem, is using an element stream format for
XML transmission. This format is an in-memory binary rep-
resentation of XML messages that can be input to the YFilter
processor without any pre-processing or parsing. The binary
format is also more space-efficient than raw XML because
the latter has white spaces and delimiters. The “wire size” of

an XML message can be further reduced by compressing this
binary representation.

We also explore schema-aware representation of XML
for transmission. Given that the control plane can be used to
broadcast the schema of a publishing source to all the brokers
in the network, we can perform schema-aware XML encod-
ing of messages for transmission between brokers. In particu-
lar, we use a dictionary encoding scheme that maps XML
element and attribute names from the schema to a more
space-efficient key space. As future work, we would like to
explore more advanced schema-aware optimizations, such as
avoiding storing parent-child relationships in the binary for-
mat, as they can be recovered from the schema.

We experimented with six XML transmission formats:
text, binary (i.e., the element stream format), binary with
dictionary encoding, and their corresponding compressed
versions. Messages were generated using the YFilter XML
Generator [16] based on the NITF DTD. The two parameters
- DocDepth (that bounds the depth of element nesting in the
message) and MaxRepeats (that determines the number of
times an element can repeat in its parent element) allow us to
vary the complexity of messages. All our compression was
performed using ZLIB, gzip’s library, because it outperforms
XMill for the relatively small-sized messages (like ours), as
reported in [27].

Figure 7 summarizes the performance of different XML
formats over our first metric, the wire size, for messages of
different complexities. Although the element stream format
does not remarkably outperform the text format, dictionary
encoding gives promising results. Compression helps reduce
the wire size for all formats significantly.

Figure 8 presents the evaluation of these XML formats
on the complementary metric of message processing delay.
While uncompressed formats require only serializing mes-
sages at the sender and deserializing them at the receiver, the
raw format additionally requires parsing and thus proves to
be expensive. Compressed formats have significant costs of
compression at the sender and decompression at the receiver.

The choice of XML format for transmission must weigh
both the wire size and processing delay metrics to get a com-
bined metric. This decision will invariably be influenced by
implementation details like the transport protocol used. For
example, in the distributed PlanetLab testbed [31], all the
message sizes involved in our experiments gave the same
transmission delay using TCP. This was attributed to the
connection establishment time dominating in TCP for small
message sizes. Thus, the message processing delay turned
out to be a more important concern than the message size,
making compression rather undesirable. On the other hand, if
the DCP protocol [36] that sends data in redundant streams
over UDP can be employed, compression may be useful.

4.4 Query Population Par titioning

Previous work on distributed publish/subscribe [1][4][10]
assumes that queries naturally reside on their nearest brokers,
without considering alternative schemes for partitioning the
query population. In this subsection, we address the effect of
query partitioning on the filtering power of content-driven
routing, which is captured by the fraction of query partitions
that a message can match.

619

We start with an investigation of the properties of query
partitioning and their effect on content-driven routing. Query
similarity within a partition seems to be an intuitive property,
but is not effective in filtering. For example, in the ideal case
that all the queries in one partition are “ /a/b” and all the que-
ries in the other partition are “ /a/c” , a message can still match
both partitions by containing the two required elements. Dis-
similarity between partitions is another candidate. Consider
one partition with two queries “ //a” and “ //b” , and the other
partition with “ //c” and “ //d” . Though these two partitions
have little in common, it is still quite likely that a message
matches both partitions. Mutual exclusiveness turns out to be
a desired property. For example, if one partition requires
“ /a/b[@id=1]” and the other requests “ /a/b[@id=2]” , the
chance that a message satisfies both can be low. The message
surely cannot satisfy both if it contains only one “b” element.

The next question is what path expressions can establish
such mutual exclusiveness among query partitions. In this
regard, we make three key observations. The first is that
structural constraints alone are not enough (see the first two
examples above). This is because the schema never specifies
that two paths are mutually exclusive in a message. In fact,
path expressions exhibit potential exclusiveness if they in-
volve the same structure, and contain value-based predicates
that address the same target (e.g., an attribute or the data of a
specific element), use the “=” operator, but contain different
values (see the third example above). We call the common
part of these paths an exclusiveness pattern. The second ob-
servation is that repetition of element names in XML mes-
sages limits the exclusiveness of such patterns. Thus, the best
choice of an exclusiveness pattern would be one that can
appear at most once in any message, as dictated by the
schema. The third observation is that in general the coverage
of an exclusiveness pattern in the query population could be
rather limited, due to the diversity of user data interests.
Thus, using a single exclusiveness pattern for query parti-
tioning could cause the majority of queries to be placed in a
partition called “don’ t care” . In that case, a set of exclusive-
ness patterns should be used.

Partitioning based on Exclusiveness Patterns. To
achieve exclusiveness of data interests among query parti-
tions, we propose a query partitioning scheme, called Parti-
tioning based on Exclusiveness Patterns (PEP). Due to space
constraints, we only briefly describe the two steps of this
scheme, assuming for now that this algorithm can be run
over the entire query population in a centralized fashion. (1)

Identifying a set of exclusiveness patterns. PEP first searches
the YFilter representation of the entire query population, and
aggregates the predicates contained in the selection operators
at each accepting state to exclusiveness patterns. These pat-
terns are sorted by their coverage of the query population
(i.e., the number of queries involving them). Then PEP uses a
greedy algorithm to choose a set of patterns such that every
query involves at least one pattern from the set. Heuristics
can be used to perturb this set with other unselected patterns
so that more patterns included in the set can appear at most
once in a message, but the coverage of the query population
is not sacrificed. (2) Partition creation. In the second step, K
query partitions are created using the M patterns selected in
the first step. To do so, the value range of each exclusiveness
pattern is partitioned into K buckets, numbering 1, 2, …, K.
Then queries are assigned to the K*M buckets based on their
values in the contained exclusiveness patterns. As a query
must involve at least one of those patterns, it must belong to
at least one bucket. If the query involves multiple patterns, it
is randomly assigned to one of the matching buckets. Finally,
K query partitions are created by assigning the queries in the
i th bucket of any pattern to query partition i.

In the ideal case, where each exclusiveness pattern ap-
pears at most once in a message, a message can match at
most M query partitions, i.e., one bucket per pattern. Thus
the filtering power of content-driven routing, i.e., the fraction
of query partitions that a message can match, can achieve
M/K (e.g., 10 patterns, 100 partitions, and filtering power ≈
1/10). If some patterns can appear multiple times in a mes-
sage, their repetition degrades the filtering power (in many
cases linearly).

To study the potential benefit of our PEP scheme, we
compared its performance with the random query partition-
ing scheme that randomly assigns queries to partitions. We
considered assigning a population of 1 million queries to 200
partitions. Every query contained two patterns, each chosen
uniformly from a set of 10 exclusiveness patterns. PEP ex-
ploited these 10 patterns for partitioning. Figure 9 shows how
the percentage of the partitions that a random message
matches varies with the amount of repetition of element
names in the XML message. Clearly, the random partitioning
scheme ends up matching almost all partitions with messages
even with a small amount of repetition of element names. In
contrast, PEP leads to many fewer partition matches. Unless
user interests are influenced by geography, a system that
assigns user queries to the closest brokers will end up doing

0

1000

2000

3000

4000

5000

4-1 6-1 4-2 6-2 4-3 6-3

Message complexity (DocDepth-MaxRepeat)

W
ir

e
S

iz
e

(b
yt

es
)

Text

Text-Compressed

Binary

Binary-compressed

Binary-dic

Bin-dic-comp

0

2

4

6

8

10

4-1 6-1 4-2 6-2 4-3 6-3

Message Complexity (DocDepth-MaxRepeat)

M
es

sa
ge

 P
ro

ce
ss

in
g

D
el

ay
 (m

s)

Text

Text-Compressed

Binary

Binary-compressed

Binary-dic

Bin-dic-comp

Fig. 7. Wire size of XML messages

0

20

40

60

80

100

0 10 20 30 40

Number of Repeated XML Elements

P
er

ce
n

ta
g

e
o

f
th

e
M

at
ch

ed

P
ar

ti
ti

o
n

s
(%

) Random

PEP

Fig. 9. Random query partitioning vs. PEP Fig. 8. Processing delay for XML transmission

620

random partitioning of queries, leading to many messages
being exchanged between the brokers of the system.

An important remark is that in ONYX, PEP is a core al-
gorithm for query placement used by the registration service.
In addition to PEP, query placement also involves the deci-
sion of mapping query partitions to brokers, and the use of
distributed protocols to perform the initial query partitioning
and to maintain the partitions as user queries change over
time. These issues will be addressed in our future work.

5 Broker Architecture

Having described the broker functionality in the query and
data planes, we now turn to a discussion of the broker archi-
tecture that implements this functionality. This architecture is
shown in Figure 10. It contains the following components.

Packet Listener. This component listens to each packet
arriving at the broker and based on the header, assigns the
packet to one of the four flows: catalog packets, XML mes-
sages, query packets, and network control packets.

Catalog manager. Catalog packets contain information
about a data source. They may originate from the registration
service concerning a new data source or from a registered
data source to update information sent previously. The cata-
log manager parses these packets, and stores the information
in the local catalog. If the packet is for a new data source, a
new entry is added to the catalog including the ID of the data
source, information on the data rate, the schema used, etc. If
the information relates to a known data source, the existing
entry in the catalog describing this data source is updated by
the new information. The catalog will be used in other com-

ponents for message validation, XML formatting, query
processing, etc.

Message pre-processor. XML messages can come from
data sources as well as other brokers in the system. The mes-
sages from a data source carry the source ID and are in the
text format. On receiving such a message, the root broker of
the data source validates the source ID attached to the mes-
sage using its catalog. It also parses the message to an in-
memory representation for later routing and query process-
ing. If the message comes from an internal broker, source
validation is skipped. Depending on the internal representa-
tion of XML, the message can be in one of several formats
that we discussed earlier, and will need suitable pre-
processing (like decompression, deserialization, etc.).

Query pre-processor. This is analogous to the message
pre-processor in functionality, except that it also maintains a
database of the profiles for which it is the host broker.

Control plane: Taking the control messages, the control
plane maintains the broadcast tree for each root broker in the
system. Specifically, it records the parent node and the child
nodes of a broker on a particular root broker’s broadcast tree.
It provides two methods for use of the content layer, one for
forwarding messages along a broadcast tree, the other for
reverse forwarding of queries. The control plane is also re-
sponsible for disseminating catalog information for the pur-
poses of optimizing content-based processing. For example,
the schema information can be used to optimize query proc-
essing and support schema-aware XML encoding.

Data plane. The broker performs three tasks in the data
plane, when receiving an XML message. First, it takes a se-
quence of steps to route the message: (a) if the broker is the
root broker for the message, it attaches its broker identifier to

Fig. 10. Broker Architecture

XML Messages Query packets Catalog packets Control packets

Message Pre-processor

- deserializer

- source validation
- XML parser

- decompressor

Query Pre-processor
- profile validation

- XQuery parser - deserializer

- decompressor

Profiles

Catalog Manager

Catalog

Packet Sender scheduler network manager

Message Post-processor

- XML translator

- compressor

- serializer
Query
Post-processor

- compressor

- serializer

Packet Listener

XML messages Catalog packets Query packets Control packets

Control Plane

maintain
broadcast
trees

broadcast
catalog
informa-
tion

Content Layer

Data plane

routing table lookup

incremental transforma-
tion

query processing
YFilter

Processor

 Query plane

routing table update

query plan update

transformation
plan update

621

the message; (b) it retrieves its output links in the broadcast
tree that is specified by the root broker identifier attached to
the message; and (c) it looks up in the content-based routing
table to filter those output links. Second, for each output link
selected, the broker transforms the message, if a transforma-
tion plan is attached to that link. Last, the broker processes
the message on local queries to generate results. These three
tasks are all realized by the YFilter processor.

Query plane. The query plane exhibits duality with the
data plane. If an arriving query is from a user, the local query
processing plan is updated. If the query comes from another
broker to update the routing table (i.e., it is a routing query)
or the incremental transformation plan (i.e., it is an incre-
mental transformation query), the modification of the routing
table or the transformation plan will cause a new query to be
generated for delivery to its parent broker.

YFilter Processor. YFilter has been described in Section
4.1. In this work, it is leveraged to build a holistic processing
plan for all the processing tasks, so that the shared processing
among the tasks is maximized. For the query plane, it is ex-
tended to support the routing table construction operations
(as described in Section 4.2.1). For the data plane, its sched-
uler is augmented to prioritize the processing for different
types of queries while exploiting the sharing among them
(see Section 4.3.1).

Message and query Post-processor. The results from the
data plane are passed to the message post-processor. Results
of local query processing are translated into XML messages
for delivery to end users, while results of routing and incre-
mental transformation are serialized (and possibly com-
pressed). Queries generated from the query plane also follow
the path of serialization and compression.

Packet Sender. This component attaches a header to each
packet, specifying the type of flow, the identifier of the root
broker (if the packet is an XML message), and the format
used. Then it multiplexes the four types of flows into the
output channel, through a scheduler and a network manager
that sends packets through TCP, UDP, etc.

6 Related Work

Our work is related to a large body of research work in both
database and networking communities. Some areas like XML
filtering have been described in detail already; we now pre-
sent a brief overview of other related work.

Multicast. Multicast allows a source to send the same
content to multiple receivers. Though bandwidth-efficient, IP
multicast [24] is not flexible because of being a network
layer paradigm. This has led to application-layer solutions
such as Overcast [25] and i3 [37]. Proposals for augmenting
IP multicast with content-based routing features have been
presented in [35][30]. However, none of this work gives the
user fine-grained ways of specifying their interests, like a
powerful query language over XML.

Content Distr ibution Networks (CDN). CDNs provide
an infrastructure that delivers static or dynamic Web objects
to clients from nearby Web caches or data replicas [13][40],
thus offloading the main website. Recent work has focused
on allowing the user to specify coherence requirements over
data [1][34]. This differs from our approach as it does not

give the user a powerful query language to specify her inter-
ests. Also, we are dealing with streams of XML messages
rather than Web objects.

Publish/Subscr ibe systems. Publish/Subscribe systems
are event-based and provide many-to-many communication
between event publishers and subscribers. The SIFT system
[41] provided support for matching keyword queries over
large sets of documents and some ideas for building a dis-
tributed filtering system. Many recent systems [1][9][10][19]
[30] model an event as a conjunction of (attribute, value)
pairs and support relational predicates in subscriptions speci-
fying event interests. We are addressing a more challenging
problem as support for rich XML messages and queries leads
to increased complexity of query processing, data forwarding
and routing table construction.

XML-based over lay networks. A mesh-based overlay
network has been proposed in [36] with support for simple
XML queries. However, the authors do not address XML
query processing issues. The query aggregation scheme
given in [11] has been used to perform content-based routing
in [13]. However, they do not support powerful query lan-
guage features like customized transformations.

Transcoding. The transformation functionality in our
system is closely related to the transcoding of Web content to
suit the profiles of heterogeneous end users, like the users of
mobile phones and hand-held computers [42]. However, such
a profile usually does not provide expressiveness in querying
content as much as the subset of XQuery we support.

7 Status and Future Work

In this paper, we presented our initial design of ONYX, a
distributed system providing large-scale XML dissemination.
In particular, we provided a detailed architectural design of
the system, and addressed the various challenges in distrib-
uted XML dissemination in the context of leveraging YFilter,
a state-of-the-art XML processor. While we view this work
as an initial step towards Internet-scale XML dissemination
services, the proposed architecture and solutions to critical
issues such as routing table construction and query popula-
tion partitioning lay the foundation for offering high expres-
siveness and scalability in such services in massively distrib-
uted environments.

As of June 2004, we have implemented the components
for message/query pre-processing and post-processing. A
collaboration with the Berkeley networking group to build
the networking related components, such as the control
plane, is underway. We expect to fully implement the data
and query planes using YFilter over the course of the sum-
mer, and deploy our system on PlanetLab [31] in the fall.

We also plan to extend our research work in the follow-
ing directions. We will explore alternative forms of routing
query representation in addition to DNF and other content
generalization algorithms. Typical workloads of XML rout-
ing will be collected to evaluate these alternative forms and
algorithms to gain insights into the various tradeoffs. We will
also exploit the schema for optimization in routing table con-
struction. Furthermore, we plan to extend the notion of
data/query duality in the context of multi-source routing;
analogous to placing routing queries to filter and direct the

622

message flow, we can place data source descriptions in the
network to prune and forward the query flow from host bro-
kers to root brokers. Last, we will address the networking
issues that occur when using PEP to move queries away from
their closest brokers, and provide distributed protocols to
carry out PEP and to maintain the quality of query partition-
ing as user queries change over time.

8 References
[1] Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., and

Chandra, T.D. Matching Events in a Content-Based Subscrip-
tion System. In Proc. of Principles of Distributed Computing
(PODC’99), May 1999.

[2] Altinel, M., and Franklin, M.J. Efficient Filtering of XML
Documents for Selective Dissemination of Information. In
VLDB 2000, 53-64, Sep. 2000.

[3] Altinel, M., Aksoy, D., Baby, T., Franklin, M.J., Shapiro, W.,
and Zdonik, S.B. DBIS-Toolkit: Adapatable Middleware for
Large Scale Data Delivery. In SIGMOD 1999, 544-546, 1999.

[4] Banavar, G., Chandra, T. D., Mukherjee, B., Nagarajarao, J.,
Strom, R. E., and Sturman, D. C. An Efficient Multicast Proto-
col for Content-Based Publish-Subscribe Systems. In Proc. of
the IEEE International Conference on Distributed Computing
Systems (ICDCS), 262-272, May 1999.

[5] Bell, T.C., Cleary, J.G., and Witten, I.H. Text Compression.
Prentice Hall, Englewood Cliffs, New Jersey, 1990.

[6] Bhide, M., Deolasse, P., Katker, A., Panchgupte, A., Ramam-
ritham, K., and Shenoy, P. Adaptive Push Pull: Disseminating
Dynamic Web Data. IEEE Transactions on Computers, 51(6),
652-668, May 2002.

[7] Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Ro-
bie, J., and Siméon, J. XQuery 1.0: An XML Query Language.
W3C Working Draft, Nov. 2003.
http://www.w3.org/TR/xquery/.

[8] Bruno, N., Gravano, L., Doudas, N., and Srivastava, D., 2003.
Navigation- vs. Index-based XML Multi-query processing. In
ICDE 2003, 139-150, Mar. 2003.

[9] Carzaniga, A., Rutherford, M.J., and Wolf, A.L. A Routing
Scheme for Content-Based Networking. In Proc. of IEEE
INFOCOM 2004, Mar. 2004.

[10] Carzaniga, A., and Wolf, A.L. Forwarding in a Content-Based
Network. In SIGCOMM 2003, 163-174, Aug. 2003.

[11] Chan, C.Y., Fan, W., Felber, P., Garofalakis, M.N., and Ras-
togi, R. Tree Pattern Aggregation for Scalable XML Data Dis-
semination. In VLDB 2002, Aug. 2002.

[12] Chan, C., Felber, P., Garofalakis, M., and Rastogi, R. Efficient
Filtering of XML Documents with XPath Expressions. In
ICDE 2002, 235-244, Feb. 2002.

[13] Chand, R., and Felber, P. A Scalable Protocol for Content-
Based Routing in Overlay Networks. In Proc. of the IEEE In-
ternational Symposium on Network Computing and Applica-
tions (NCA’03), Apr. 2003.

[14] Chu, Y. Rao, S.G., and Zhang, H. A Case for End System
Multicast. In Proc. of the 2000 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer
Systems, 1-12, Jun. 2000.

[15] Clark, J., and DeRose, S. XML Path Language (XPath) - Ver-
sion 1.0. Online at http://www.w3.org/TR/xpath.

[16] Diao, Y., Altinel, M., Zhang, H., Franklin, M.J., and Fischer,
P.M. Path Sharing and Predicate Evaluation for High-
Performance XML Filtering. TODS, 28(4), 467-516, Dec.
2003.

[17] Diao, Y., and Franklin, M.J. Query Processing for High-
Volume XML Message Brokering. In VLDB 2003, 261-272,
Sep. 2003.

[18] Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and
Weihl, B. Globally Distributed Content Delivery. IEEE Inter-
net Computing, 50-58, Sep.-Oct. 2002.

[19] Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A.,
and Shasha, D. Filtering Algorithms and Implementation for
Very Fast Publish/Subscribe Systems. In SIGMOD 2001, 2001.

[20] Green, T. J., Miklau, G., Onizuka, M., Suciu, D. Processing
XML Streams with Deterministic Automata. In Proc. of Int’ l
Conf. on Database Theory (ICDT’03), 173-189, Jan. 2003.

[21] Gryphon. http://www.research.ibm.com/gryphon/index.html.
[22] Gupta, A. K., and Suciu, D. Streaming processing of XPath

queries with predicates. In SIGMOD 2003, Jun. 2003.
[23] Internal Press Telecommunications Council. News Industry

Text Format. 2004. http://www.nitf.org/.
[24] Internet Protocol (IP) Multicast. http://www.cisco.com/uni-

vercd/cc/ td/doc/cisintwk/ito_doc/ipmulti.htm.
[25] Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, M.F., and

O'Toole, J.W.Jr. Overcast: Reliable Multicasting with an Over-
lay Network. In Proc. of the 4th Symposium on Operating Sys-
tem Design and Implementation (OSDI’00), Oct. 2000.

[26] Lakshmanan, L.V.S., and Sailaja, P. On Efficient Matching of
Streaming XML Documents and Queries. In EDBT 2002, 142-
160, Mar. 2002.

[27] Liefke, H., and Suciu, D. XMILL: An Efficient Compressor for
XML Data. In SIGMOD 2000, 153-164, May, 2000.

[28] McCanne, S., Jacobson, V., Vetterli, M. Receiver0Driven
Layered Multicast. In SIGCOMM 1996, 117-130, Aug. 2003.

[29] Oki, B., Pfleugl, M., Siegel, A., and Skeen, D. The Information
Bus: an Architecture for Extensible Distributed System. In
SOSP 1993, 58-68, Dec. 1993.

[30] Opyrchal, L., Astley, M., Auerbach, J., Banavar, G., Strom, R.,
and Sturman, D. Exploiting IP Multicast in Content-Based
Publish-Subscribe Systems. In Proc. of IFIP/ACM Int’ l Con-
ference on Distributed Systems Platforms, 185-207, 2000.

[31] PlanetLab. http:// www.planet-lab.org.
[32] Rodriguez, P., Ross, K.W., and Biersack, E.W. Improving the

WWW: Caching or Multicast? Computer Networks and ISDN
Systems, 30(22-23,25), 2223-2243, Nov. 1998.

[33] Segall, B., Arnold, D., Boot, J., Henderson, M., and Phelps, T.
Content Based Routing with Elvin4. In Proc. of AUUG2K,
Canberra, Australia, Jun. 2000.

[34] Shah, S., Dharmarajan, S., and Ramamritham, K. An Efficient
and resilient Approach to Filtering and Disseminating Stream-
ing Data. In VLDB 2003, 57-68, Sep. 2003.

[35] Shah, R., Jain, R., and Anjum, R. Efficient Dissemination of
Personalized Information Using Content-Based Multicast. In
Proc. of IEEE INFOCOM 2002, Jun. 2002.

[36] Snoeren, A.C., Conley, K., and Gifford, D.K. Mesh-Based
Content Routing using XML. In SOSP 2001, Oct. 2001.

[37] Stoica, I., Adkins, D., Zhuang, S., Shenker, S., and Surana, S.
Internet Indirection Infrastructure. In SIGCOMM 2002, 73-88,
Aug. 2002.

[38] Tian, F., DeWitt, D., Pirahesh, H., Reinwald, B., Mayr, T., and
Myllymaki, J. Implementing a Scalable XML Publish / Sub-
scribe System Using a Relational Database System. In Proc. of
SIGMOD 2004, Jun. 2004.

[39] Tolani, P.M., and Haritsa, J.R. XGRIND: A Query-Friendly
XML Compressor. In ICDE 2002, 225-234, Mar. 2002.

[40] WebSphere Application Server Network Deployment.
http://www-306.ibm.com/software/webservers/appserv/was/
network/edge.html.

[41] Yan, T. W., and Garcia-Molina, H. The SIFT Information
Dissemination System. TODS, 24(4), 529-565, Dec. 1999.

[42] WebSphere Transcoding Publisher. http://www-
306.ibm.com/software/pervasive/transcoding_publisher.

[43] NASDAQ Pre-Market Volume. http://dynamic.nasdaq.com/
dynamic/premarket5dayvolume.stm.

[44] The NetLogger Toolkit. http://www-didc.lbl.gov/NetLogger/.

623

