The Polynomial Complexity of Fully Materialized Coalesced
Cubes®

Yannis Sismanis
Dept. of Computer Science
University of Maryland
isis@cs.umd.edu

Abstract

The data cube operator encapsulates all possible
groupings of a data set and has proved to be an
invaluable tool in analyzing vast amounts of data.
However its apparent exponential complexity has
significantly limited its applicability to low di-
mensional datasets. Recently the idea ofdbe
alesced cubewvas introduced, and showed that
high-dimensional coalesced cubes are orders of
magnitudes smaller in size than the original data
cubes even when they calculate and store every
possible aggregation with 100% precision.

In this paper we present an analytical framework
for estimating the size of coalesced cubes. By us-
ing this framework on uniform coalesced cubes
we show that their size and the required computa-
tion time scalepolynomiallywith the dimension-
ality of the data set and, therefore, a full data cube
at 100% precision is not inherently cursed by high
dimensionality. Additionally, we show that such
coalesced cubes scale polynomially (and close to
linearly) with the number of tuples on the dataset.
We were also able to develop an efficient algo-
rithm for estimating the size of coalesced cubes
before actually computing them, based only on
metadata about the cubes. Finally, we comple-

Nick Roussopoulos
Dept. of Computer Science
University of Maryland
nick@cs.umd.edu

ment our analytical approach with an extensive
experimental evaluation using real and synthetic
data sets, and demonstrate that not only uniform
but also zipfian and real coalesced cubes scale
polynomially.

1 Introduction

The data cube operator is an analytical tool which pro-
vides the formulation for aggregate queries over categories,
rollup/drilldown operations and cross-tabulation. Concep-
tually the data cube operator encapsulates all possible mul-
tidimensional groupings and it is an invaluable tool to ap-
plications that need analysis on huge amounts of data like
decision support systems, business intelligence and data
mining. Such applications need very fast query response
on mostly ad-hoc queries that try to discover trends or pat-
terns in the data set.

However the number of views of the data cube increases
exponentiallywith the number of dimensions and most ap-
proaches are unable to compute and store but small low-
dimensional data cubes. After the introduction of the data
cube in [6] an abundance of research followed for dealing
with its exponential complexity. The main ideas can be
classified as either a cube sub-setting (partial materializa-
tion) [7, 8, 18] or storing the full cube but with less pre-
cision (approximation or lossy models) [1, 19]. However,
all these techniques do not directly address the problem of

“This material is based upon work supported by, or in part by, the U.Sexponential complexity. Furthermore, all problems associ-

Army Research Laboratory and the U.S. Army Research Office under conytad with the data cube itself appear to be quite difficult
tract/grant number DAAD19-01-1-0494. Prepared through collaborative, PP q ’

participation in the Communications and Networks Consortium sponsoreérom c_:omputlng It [2’ 4_’ 14,21, 3, 12]’ storing it [9’ 5]'

by the U. S. Army Research Laboratory under the Collaborative Technolduerying and updating it[13]. Even the problem of obtain-
ogy Alliance Program, Cooperative Agreement DAAD19-01-2-0011. Theing estimates on the cube size is actually quite hard and
U. S. Government is authorized to reproduce and distribute reprints foneeds exponential memory and exponential processing per
Government purposes notwithstanding any copyright notation thereon. tuple with respect to the dimensionality [15] in order to ob-
Permission to copy without fee all or part of this material is granted pro- tgin accurate results.

vided that the copies are not made or distributed for direct commercial s :
advantage, the VLDB copyright notice and the title of the publication and Curr.ently. the ”?OSt prom|5|rjg_ approaches for handllng
its date appear, and notice is given that copying is by permission of thejarge hlgh-dlmensmnal cubeslieinthe contexd:oalgsced

Very Large Data Base Endowment. To copy otherwise, or to republishdata cubes[17], where we demonstrate that the size and the
requires a fee and/or special permission from the Endowment. required computation of the dwarf data cube, even when
Proceedings of the 30th VLDB Conference, every possible aggregate is computed, stored and indexed,

Toronto, Canada, 2004 is orders of magnitudes smaller than expected. The coa-

540

lescing discovery [17], completely changed the perception whered is the number of dimension€,is the cardinal-
of a data cube from a collection of distinct views into a net-ity of the dimensions an@ is the number of tuples. This
work of interleaved groupings that eliminates both prefixresult shows that, unlike the case of non-coalesced cubes
andmost importantly suffix redundancidsis these suffix ~ which grow -in terms of size and computation time- ex-
redundancies and their elimination that fuse and dramatiponentially fast with the dimensionality, the 100% accu-
cally condense the exponential growth of high dimensionatate and complete (in the sense that it contains all possible
full cubes, without any loss in precision. aggregates) coalesced representation only gpmlysiomi-

To help clarify the basic concepts, let us consider adlly fast. In other words, if we keep the number of tuples
cube with three dimensions. In Table 1 we present suchn the fact table constant and increase the dimensionality
a toy dataset for the dimensioSsore, Customer, and Of the fact table (by horizontally expanding each tuple with

Product with one measurerice. new attributes) then the required storage and corresponding
computation time for the coalesced cube scales only poly-
Store | Customer | Product || Price nomially. The first form of the complexity shows that the
S1 C2 P2 $70 dimensionalityd is raised to log T, which does not depend
S1 C3 P1 $40 ond and is actually quite small for real datasets
52 C1 P1 $90 The second form of the complexity shows that the coa-
s2 Cc1 p2 $50 lesced size and corresponding computation time is polyno-
mial w.r.t to the number of tuples of the data $etwhich
Table 1: Fact Table for Cube Sales is raised to - 1/logyC (and is very close to 1 for very

large real datasets In other words, if we keep the dimen-

The size of the cube is defined as the number of the tusionality of the fact table constant and start appending new
ples it contains, which essentially corresponds to the surftlPles, then the coalesced cube scales polynomially (and
of the tuples of all its views —in our cas@ giews—. The almost linearly). These results change the current state of
size of the coalesced cube is defined as the total number g€ art in data-warehousing because it allows to scale up
tuples it containsafter coalescing. For example, for the @nd be applicable to a much wider area of applications.
fact table in Table 1 and the aggregate functioa: sum In addition we extend our analysis to cubes with vary-
we have a cube size of 23 tuples, while the coalesced cubdgg cardinalities per dimension and we provide an effi-
size is just 9 tuples as depicted in Table 2. The redundancgient polynomial —w.r.t to the dimensionality— algorithm
of the cube is eliminated by storing the coalesced area@hich can be used to provide close estimates for a coa-
just once. For example, the aggregate $70 appears in téesced cube size based only on these cardinalities without
tal of five tuples, (SIALL,C2,P2ALL) and (S1,ALL,P2), actually computing the cube. Such estimates are invalu-
in the cube and it is coalesced in just one tuple. Althoughable for data-warehouse/OLAP administrators who need
[11, 20] attempt to exploit similar suffix redundancies, theyto preallocate the storage for the cube before initiating its
are based on a bottom-up computation[3] and require expgcomputation. Current approaches [15] cannot be applied
nential computation time; only Dwarf’s computation algo- to high-dimensional data cubes, not only because they re-
rithm eliminates these redundancies frooththe required ~ quire an exponential amount of work per tuple and expo-

storageand the required computation time. nential amount of memory but mostly because they cannot
be extended to handle coalesced cubes.

] no H Coalesced \ f(Price) ‘ Although our algorithm is based on uniform and inde-
1 | (STALL,C2,P2ALL) (S1,ALL,P2) $70 pendencg assumptions, it provides.v.ery accurate results fpr
2 || (SIALL,C3,PLALL) (S1,ALL,P1) $40 both zipfian and real datasgts requiring as input c_)r_1ly basic
3 ’ (S'1 ALLALL) T $110 metadata about the cube —it's dimension cardinalities—.
4 (SZ]ALL,Ci,Pl)’ (S2,ALL,P1) $90 I_n particular in this paper we make the following contri-
5 | (S2ALL.CLP2) (S2,ALL,P2) $50| putions:
6 (SJALL.CLALL) $140 1. We formalize and categorize the redundancies found
! (ALL,ALL,P1) $130 in the structure of the data cube into sparsity and im-
8 (ALL,ALL,P2) $120 plication redundancies.
9 (ALL,ALL,ALL) $250

2. We provide an analytical framework for estimating the
size of the coalesced cube and show that for uniform
data sets it scales only polynomially w.r.t to the num-
ber of dimensions and number of tuples.

Table 2: Coalesced Cube Tuples for= sum

In this paper we provide a framework for estimating the
size of a coalesced cube and show that for a uniform cube
the expected size and computation time complexity is:

1For example for a data set of 100 million tuples and a cardinality of
log T 41 10,000, log T =2
olT d°% -0 (d.-l-]_+]_/logdc) 2|.e., for a dimensionality of 30 and a cardinality of 5,000+ 1
(|0gCT)I 1/logyC~ 1.4

541

3. We complement our analytical contributions with anexample to prefixb, which appears to one fourth of the
efficient algorithm and an experimental evaluation us-views) we can reduce the amount of storage required to
ing both synthetic and real data sets and we show thadtore the tuples of the cube.
our framework not only provides accurate results for

zipfian distribution but most importantly that real co- | emma 1 The total number of tuples of the cube is not
alesced cubes scadeen bettethan polynomially due affected by prefix redundancy, only the storage required to
to implication redundancies. store each tuple is reduced.

Our work provides thdirst analytical and experimen-
tal results showing that a full (i.e. containing all possible ~ This lemma essentially says that the prefix-reduced cube
groupings and aggregates) and 100% accurate (no approﬁﬂ" suffers from the dimensionality curse, since we have to
imation) data cube isiot inherently exponential both in deal with every single tuple of the cube. The benefits of the
terms of size and computation tiraed that an effective co- prefix-reduction are therefore quickly rendered impractical
alescing data cube model can reduce it to realistic valuegven for medium dimensional cubes.
Therefore, we believe it has not only theoretical but also
very practical value for data warehousing applications. 2.2 Suffix Redundancy

The remainder of the paper is organized as follows: In
Section 2 we differentiate between prefix and suffix redundn this section we formally define the suffix redundancy and
dancies and show that suffix redundancies are by far thwe give examples of different suffix redundancies.
most dominant factor that affects coalesced cubes. Sec-]
tion 3 categorizes suffix redundancies based on the spaREFINITION 1 Suffix Redundancyoccurs when a set of
sity of the fact table or the implications between values oftuples of the fact table contributes the exact same aggre-
the dimensions. In Section 4 we introduce the basic pardates to different groupings. The operation that eliminates
titioned node framework and we use it to analyze the coasuffix redundancies is call@alescing The resulting cube
lesced cube structure. In Section 5 we present an algorithi§ calledcoalesced cuband we refer to its tuples ama-
that can be used to estimate the size of a coalesced culsced tuples
given only the cardinalities of each dimension. The related
work is presented in Section 6 and in Section 7 we show aEXAMPLE 1 Suffix redundancy can occur for just a sin-
evaluation on both synthetic and real data sets. Finally thgle tuple: In the fact table of Table 1, we observe that the
conclusions are summarized in Section 8. tuple:

(SLC2 P2 $70)

2 Redundancies contributes the same aggrega$¥0 to two group-bys:

In this section we formalize the redundancies found in the(Store,Customer) and (Customer). The corresponding tu-
structure of the cube and explain their extend and signifiples are:
cance.

| (Store,Customer) (Customer)|
2.1 Prefix Redundancy [(sIc1s$70) [(C2%70) |

[abe)
EXAMPLE 2 We must point out that suffix redundancy
(o) does not work only on a per-tuple basis, but most impor-

Cav) () tantly it extends tavhole sub-cubes, for example the sub-
"‘ cube that corresponds to the tuples:

G (S2C1P1 $90), (S2C1 P2 $50)

X contributes the same aggregates to sub-cubes of

(Store,Product), (Customer,Product), (Store), (Customer) :
Figure 1: Lattice for the ordering, b, c

This redundancy is the first that has been identified and ’ (Store,Product) (Customer,Product}
can be used to build indexes over the structure of the cube. (S2P1$90) (C1P1$90)
The idea is easily visualized in the lattice representation (S2P2$50) (C1P2$50)
of the cube. For example, in Figure 1, one can observe
that half the group-by’s share the prefix We can ex-
ploit this by just storing the corresponding values just once | (Store) [(Customer)]
and avoid replicating the same values over all views(prefix-] (2 $140) \ (C1 $140) \
reduction). By generalizing this to other prefixes (like for

542

The reason that whole sub-cubes can be coalesced f the redundancies. In the rest of the paper we will elabo-
the implication between values of the dimensions. In our rate using this visualization.
example,C1 implies 2, in the sense that customéd
only buys products from stor®. Dwarf is the only tech- 3.1 Sparsity Coalescing
nigue that manages to identify such whole sub-cubes as
redundant and coalesce the redundancy fomth storage
and computation timeyithout calculating any redundant
sub-cubes. For comparison, the condensed cube[20] can
only identify redundant areas only tuple-by-tuple, and QC-
Trees[11] have to compute first all possible sub-cubes and
then check if coalescing can occur.

Such suffix redundancies demonstrate that there is sig-
nificant overlap over the aggregates of different groupings.
The number of tuples of the coalesced cube, where coa-
lesced areas are only stored once is much smaller than the
size of the cube, which replicates such areas over different “j “j\
groupings.

Tail Coalescing

DEFINITION 2 The size of a cube is the sum of the tuples
of all its views. The size of a coalesced cube is the total Coalesced Tuples
number of tuples after the coalescing operation.
Figure 3: Sparsity Coalescings

C T ‘ T
F |- Prefix-Only Reduction
3-8 Prefix-Suffix Reduction

g In Figure 3 we depict two types of suffix redundancies

i due to the sparsity of the dataset. Lets assume that a path
(P) leads to a sparse area and that for the pé&ehs and

(P X) there is only one tuple due to the sparsity of the cube.
We differentiate between two different types of coalescing
based on the nature of the p&h

10

10*

DEFINITION 3 Tail coalescinghappens on all group-
ings that have(P X) as a prefix, where patP x) leads

to a sub-cube with only one fact tuple and patddes not
follow any ALL pointers

Compression Ratio

101;) 15 20 25 30 EXAMPLE 3 In Figure 3, since there is only one tuple in
#Dimensions the area(P x...) then all the group-bys that hay® x) as
a prefix (i.e.(PxALL z..), (P xy ALL...) etc.) share the
Figure 2: Compression vs. Dimensionality same aggregate.

Prefix redundancy works in harmony with suffix redun- DEFINITION 4 Left coalescingoccurs on all groupings
dancy by eliminating common prefixes of coalesced arWith prefix(P ALL YY), where pathP ALL y) leads to a sub-
eas. A comparison between these redundancies is demofube with only one tuple. In this case, P folloatsleast
strated in Figure 2, where we depict the compression rati®€ALL pointer.

achieved by storing all the tuples of a cube exploiting in the

first case just the prefix redundancies and in the second bo{‘ﬁxp"\/”:’l‘E 4 Left coalescing complements tail coalesc-

prefix and suffix redundancies w.r.t to the dimensionality of "9 and in Figure 3 we depict the case WheRALL y. .)

: : dundant and corresponds @ x y...). The same is
the dataset. We used a dataset with a varying number of dis e
mensions, a cardinality of 10,000 for each dimension anc?bserved fofP ALL ALL 2 and (P ALL ALL 2).

a uniform fact table of 200,000 tuples. It is obvious that Areas with just one tuple (likéP x) and(P X)) therefore
in high-dimensional datasets the amount of suffix redunproduce a large number of redundancies in the structure of

dancies is many orders of magnitudes more important thghe cube. The difference between tail and left coalescing is
prefix redundancies. two-fold:

e Paths that tail coalesce have a prefix thags not fol-

low any ALL pointers while paths that left coalesce
In this section we categorize suffix redundanciespar- have a prefix that follows at least odd.L pointer -
sity and implication redundancies. We use the Dwarf the one immediately above the point where coalescing
model[17] in order to ease the definition and visualization happens-.

3 Coalescing Categories

543

e Tail coalescing introduces one coalesced tuple in theontains cells that get no tuples at all, gra@p contains
coalesced cube, while left introduces no coalesced tueells that get exactly one tuple, gro@p contains cells that
ples. each one gets exactly two tuples, etc.

In our analysis we consider these two types of coalesc- G, G, G, G,
ing (tail and left) and we show that their effect is so over- V ‘ ‘ ‘ ‘ ‘ ‘ ‘

whelming that the exponential nature of the cube reduces
into polynomial. Lm

3.2 Implication Coalescing - 1]

The sparsity-coalescing types defined in Section 3.1 work

only in sparse areas of the cube where a single tuple exists.

The implication-coalescingomplements these redundan- Figure 5: Node partitioned in groups where each cell in
cies by coalescingrhole sub-cubesFor example, for the groupG, gets exactly tuples

fact table in Table 1 we observe that impliesS2 -in the
sense that custom@l only buys products from®2. This
fact means thagverygrouping that involve€1 and<? is
essentially exactly the same with the groupings that involv
C1. This redundancy can be depicted in Figure 4.

Path P (12-) —T/C

P,(C,T) = e
(C-17
=R

[Proof: The probability that we will pick one item exactly
I- I I ztimes is:

] -] e = (] Jyea-1o -

_ (T> 1/CHC— 1) %/C (1 1/C)T

z

Lemma 2 From a collection of C items, if we uniformly
ick an item and repeat T times, then the probability that
e pick one item exactly z times is:

Figure 4: Implication Coalescing, whetd — 2

The implication coalescing is the generalization of left-where the quantity1 —1/C)T can be approximated by
coalescing when implications between the values of die=T/C and the binomia@) corresponds to the number of
mension occur. Such implications are very apparent inyitferent ways the product/C#(1— 1/C)T~Z can be writ-
real datasets and —since we do not consider those in oyg,
gnalysis— they_are the reason that in the experiments sec- By applying lemma 2 to the basic partitioned node we
tion weoverestimatehe size of the coalesced cube for real gt py substituting” = C:

data sets. . .
Lemma 3 A group G of a basic partitioned node, where

4 Basic Partitioned Node Framework zI: 0... Lh— 1, contains~ %e*l cells that get exactly z tu-

ples eac

In this section we formulate the coalesced cube structur

by first introducing théasic partitioned nodand then by ?Pm()f: The expected number of cells inside a gregips:

building the rest of the coalesced cube around it —taking (c) c
into account both tail and left coalescing—. Although in this C-P(C,C)=C% 1y el
paper we focus on uniform datasets our framework is ap- (C-17 2
plicable to more general distributions by properly adjusting

. B e
the probability that is used in lemma 2. gﬁg?;ufiig (]ZIS atmost —1, and by definitioC =)

Assume a uniform fact table witth dimensions, where
each dimension has a cardinality ©fand that there are Lemma 4 The expected number of duplicate keys in a node
T = C tuples. For ease of analysis and without loss ofpointed by a cell in group &is zero.
generality we assume thafl : C = L!. The root node of
the corresponding coalesced cube is depicted in Figure
where the node has been partitioh@tto L groups. We re-
fer to such a node as thmsic partitioned nodeGroupGy

Proof: From lemma 3 we know that exactiytuples are
ssociated with each cell of gro@y and from the inde-

pendence assumption we have that the probability that a

key is duplicated for these tuples i with an expected

3for this analysis we relax the property of the dwarf, where the cellsnumber of duplicated ke}@/cz- Even forz=L -1, we
inside a node are lexicographically sorted expect(L —1)/(L!)? ~ 0 duplicate cells.]

544

P with at least one ALL pointer

G, G,
2
Left Coalescing One new Coalesced Tuple per root cell Left Coalescing One new Coalesced Tuple per root cell
Figure 6: Left-Coalesced partitioned node with=C
4.1 Left Coalesced Areas =Cd/e(1/2!+1/314+..)+1=

In this section we deal with areas of the coalesced cube =2 C-d+1

that are reachable through paths that follow ALL pointers.
These areas have the possibility of left coalescing and as
we’'ll show they are dominated by such redundancies.

In Figure 6 we show a basic partitioned node for a path
P that follows at least one ALL pointer and corresponds tO (Lt Coatesced) (Left Coalesced
a subset of the fact table with= C tuples. We refer to the [area M e }

corresponding sub-cube kt-coalesced sub-cutand we

show that it introduces a “small” number of new coalesced \ [Lef‘ ij’:f““‘} [LEft Sf:;e“ed]
tuples. For the purposes of this section we refer to the root Tuples: C

of the left-coalesced sub-cube as root. Since cells in group #Dims: d—1 \/

Go get no tuples, they offer no aggregates at all. Cells in

groupGy, that get only a single tuple, left-coalesce to other Tuples: C
tuples in the structure and offer no aggregation. This is the #Dims: d-2

reason we differentiate between paths that follow at least
one ALL pointer and paths that do not. Cells in groups Figure 7: Left-Coalesced partitioned node witk= CX
Gy, Gs,...,GL_; introduce only a single aggregate per cell. _

To help clarify this, consider a cell in group,. Since Wekcan extend our analysis to the general case where
there are two fact tuples associated with this cell (by def-T = C*, k=10gc T in the way that is depicted in Figure 7.
inition) there are two path4® x) and (P X) that corre- ~ BY induction we prove that:
spond to these two tuples. Additionally, the p&Hfol-
Io?/vs at least one ALL pF:)inter, therefore ¥breact I[s)ame - Lemmas The number ?(f coalesced tuples of a left
plesappear with another paid that does not follow any C°a'_e5°.ed arfag with = C tuples, dimensionality d and
ALL pointer, and path¢P x) and (P x) coalesce tqQ %) cardinality C is:
and (Q X). The only aggregate that this sub-cube intro- NLe f{(T —ck g C) =
duces corresponds to the aggregation of these two tuples T
(located at the leaf nodes). The same holds for all groups
Gz,Gs,...,GL_1 and the number of new coalesced tuples
that a left-coalesced sub-cube withlimensions an@ =C

fact tuples introduces is (by using lemma 3): — a,CF (d) n kile—i (d) i1
k i; k—i
NLef{(T =C,d,C) = a-C-d+1

d-1
=C- ziNLeft(T —Cc*ld-iC)+1=
i=

where @ = (e—2)/e
whereap = (e—2)/e. ()/
[Proof: As depicted in Figure 6 a left-coalesced parti- 4 o Tail Coalesced Areas
tioned node introduces:
In this section we deal with areas that are reachable through

dc/2let+c/3let+..)+1= paths that do not follow any ALL pointers. These areas

545

P with no ALL pointers

Tail Coalescing

i

1 coalesced tuple 3 coalesced tuples L coalesced tuples
per root cell per root cell per root cell

LefiCoalescing ﬁ / ﬁ_] |ﬁ
N Y

Left Coalescing One new Coalesced Tuple per root cell

Figure 8: Tail-Coalesced partitioned node with=C

have less chances for left-coalescing but as will show thevhere g = (e—2)/eand lp = (2e—2)/e
amount of coalescing is still very significant.

In Figure 8 we show a basic partitioned node which cor-
responds to a path thatdoes nofollow any ALL pointers — UL = T
and that it corresponds to a subset of the fact table with
T = C tuples. We refer to the corresponding sub-cube afran cOalesced} [Tan Coalesced}
tail-coalesced sub-cuband we count the number of coa- e e
lesced tuples it introduces. As in the left-coalesced case,
cells in groupGq that get no tuples offer no tuples at all.
Cells in groupG; that get only a single tuple, offer just Tuples: C
a single aggregate, due to tail coalescing. Cells in groups #Dims: d—1 \/
Gz, wherez=2,...,L — 1 introducez+ 1 coalesced tuples,
the z tuples of the fact table plus their aggregation. The Tuples: C
number of coalesced tuples a tail-coalesced sub-cube with #Dims: d—2
d dimensions and = C fact tuples introduces is:

Left Coalesced || Left Coalesced
area area

1

) Figure 9: Tail-Coalesced partitioned node with= CX
NTail(T =C,d,C) =boC+aC(d—1)+1

whereap = (e—2)/eandbg = (2e—2)/e.

[Proof: The new tuples under the root taiI—coaIesced4'3 Coalesced Size and Time Complexity

node (ignoring the all cell) are: The analysis for the tail coalesced areas gives the total num-
ber of coalesced tuples for the full coalesced cube with
C/1l/e+C/3!/e+C/4l/e+...=bC dimensions, cardinalit€ per dimension an@ fact table

. . . tuple$. Lemma 6 gives that:
while the all cell points to a left-coalesced node with: P g

apC(d —1) + 1 new tuples (as explained in Section 4.1) | dlogc T

We can extend our analysis to the general case whergCoalescedTuples O (T ITI> = O(T1+1/|ogdc>
T =CK, k=log: T in the way that is depicted in Figure 9. (loge T)!
Using induction we prove that: with the surprising result that, even if we consider only two
out the three coalesces, the size of the coalesced cube is
polynomial w.r.t to the dimensionality of the fact table and
polynomial (and very close to linear) w.r.t to the number of
tuples in the fact table.

Lemma 6 The number of coalesced tuples of a tail-
coalesced area with = CX tuples, dimensionality d and
cardinality C is:

NTail(T =C¥,d,C) = Additionally, if we consider the number of nodes or
41 cells, that are introduced in the coalesced structure, the ex-
=C-NTail(C¥1,d—1,C)+ $ NLeft(Cx1,d—i,C) = pected complexity is multiplied bg (i.e. the polynomial
i; power increases by one), since we netdanost dnodes
= aock [(d> - 1] + : ok [(d) _ 1} T boCk 4When we start creat[ng thg root nogie of the coalesced cube there is
k i; k—i no chance of left-coalescing, since nothing has been created

546

and cellsignoring any prefix reductionn order to repre- Algorithm 1 NCT Algorithm - Num of Coalesced Tuples
sent each tuple. Therefore the expected complexity for thenput: d: Number of Dimensions

number of cells (or the full size of the structure) is: Card: array of dimension cardinalities
logeT-+1 FactT_: current no of fact tuples
#TotalCells= O (T d) nc: tail coalesce flag(0 or 1)
(logcT)! 1: if FactT=0then
return O

It is very important to point out that from the current 3: else ifFactT=1then
algorithms that eliminate such suffix redundancies like [17, 4: return nc{here tail or left-coalescing happéns
11, 20], only the suffix coalescing algorithm of Dwarf visits 5: else ifd=0then

the cells of the structurpist onceand therefore the time 6: return1
complexity for constructing dwarfs is: 7: end if
8: coalesced® 0
_— dloge T+1 9: mC — Card[d
Dwarf ComputationTime= O (T (IogcT)!) 10: zeroT— mc[_ .]B—FactT/mC

11: oneT« FactT/(mC—1)-zeroT

On the contrary, the algorithms in [11, 20] are based oni2: if oneT> 1then

a bottom-up computation[3], which requires exponential13: x«1

computation time on the number of dimensions. 14: while there are still fact tupledo
15: xT (P3N /(mc— 1)X . zeroT

5 Algorithm for Coalesced Cube Size Esti- 16: coalescedT += NCT(d-1,Card,xTuples,d¢il or left-
coalescing may happen hére

mation 17: FactT -= xT

In this section we extend our analytical contribution to the18f X+t
general case of varying cardinalities per dimensionality.}% end while
Algorithm 1 can be used to estimate the number of coa??: €/ lescedT += NCT(d-1 Card. FactTimC. ridilld
lesced tuples for sparse uniform data sets given the card?® tcoa escedl += (d-1,Card,FactT/mC,ngyrill-down
nalities of each dimension. re_tversa}

Initially the algorithm is called with the tail coalescing 22 "4

niiafly the algorithm 1S called wi € tall coalescing ;. ¢hqjescedT += NCT(d-1,Card,FactT,dyoll-up traversal
flag set to 1, since there is no chance for left-coalescing | .. left-coalescing
(there are no tuples to coalesce to). In line 4 we check if, ,.

L . : - 24: return coalescedT

there is just one tuple in the subcube where tail or suffix

coalescing happens depending on the tail coalescing flagy ihe |attice.
In Ilne_s 12' 19_We traverse the basic partitioned node by o running complexity of the algorithm is derived from
checking iteratively how many cells get one, two, three g pagic partitioned node framework and is polynomial on
etc. tuples until all the available tuples for the subcube arg,» number of dimensions. It only require¢d) memory
exhausted. The quantity: to accommodate the stack for performing a DFSitdi-

FactT, mensions deep.

(X) .mcC. e Fact/mC

X
(mC-1) 6 Related Work

where FactT is the number of fact tuples for the current subThe data cube operator is introduced in [6] and its potential
dwarf and mC is the cardinality of the current dimension,has generated a flurry of research on a wide-variety of top-
returns the number of cells that get exactly x tuples. ics. Its exponential complexity on almost every aspect first
The algorithm works in a depth-first manner over theguided to the rediscovery of materialized views and their
lattice and estimates recursively the number of coalesceddaptation. For example view selection algorithms can be
tuples that its sub-dwarf generates. For example, for dound in [7, 8, 18]. However the general problem is shown
three-dimensional cub&bg, the algorithm in line 21 starts to be NP-Complete [10] and even greedy algorithms are
thedrill-down to all subcubes with prefia and recursively polynomial on the number of views that need to consider
it proceeds to those with prefab and finally reaches pre- which is actually exponential on the dimensionality of the
fixesabg by estimating appropriately the number of tuples datasets, rendering these approaches to a certain degree im-
that each subdwarf gets. When (lines 1-7) there are no mongractical for high-dimensional datasets.
dimensions to drill-down (or a tail or left coalescing can be Estimating the size of the data cube given its fact table
identified), the drill-down over the subdwarfs with prefixes is only addressed in [15] by using probabilistic techniques,
in abc stops and the algorithnolls-up to the subdwarfs however that approach cannot be extended to work with
with prefixesabin line 23 by setting the nC flag to 0 -since coalesced cubes.
now there is possibility of left-coalescing with the subcubes The problem of just computing the data cube appears
in abc. The process continues recursively to all the viewsespecially interesting. Various techniques that try to bene-

547

fit from commonalities between partitions or sorts, partial7.1.1 Scalability vs dimensionality

sorts and intermediate results are proposed in [2, 4, 14].

Other techniques that use multidimensional array represefdniform Distributions In Figure 10 we demonstrate how
tations [21] suffer as well from the dimensionality curse.the number of coalesced tuples scales w.r.t to the dimen-

Techniques that try to exploit the inherent sparsity of theSionality, for a uniform dataset. The number of fact table
cube like [3, 12] seem to perform better. tuples was set to 100,000. We used two different cardi-

Several indexing techniques have been devised for stoff@lities of 1,000 and 10,000. We see that our analytical

ing data cubes. Cube Forests [9], exploit prefix redundanc?pproaCh provides extremely accurate results for large car-

when storing the cube. In the Statistics Tree [5] prefix re_dmalmes. The reason that the error decreases as the cardi-

dundancy is partially exploited. Unique prefixes are stored'@llty increases is the approximation in lemma 3, where we

just once, but the tree contains all possible paths (even noSSume thal — 1~ C. The second observation has to do

existing paths) making it inappropriate for sparse dataseté’f"th the scala_blllty W.rt. to the d|menS|onaI|ty._The quan-

Cubetrees[13] use packed R-trees to store individual viewlt 109c T which determines the exponent dfis much

and exhibit very good update performance. smaller in the case d@ = 10,000 and therefore this data
set scales better.

Recently compressed cubes are introduced which try to

exploit the inherent redundancies in the structure of the Uniform Distribution
cube. In [20] the notion of dase single tuplés intro- ‘ ‘ ‘
duced. Such a tuple is “shared” between different group- [8- Butimated C=1.000
bys and is similar to the coalesced tuples discussed in this 9= Eotinzied 5?386000

paper. However its applicability is limited since such tuples

are discovered one at a time. QC-trees[11] use a bottom-

up approach in discovering redundancies which checks if

every grouping is redundant or not with every other group-

ing that it is possible to coalesce with. Both Condensed

Cubes[20] and QC-Trees are based on BUCJ[3] and require

exponential computation time.

Dwarf[17] provides a much more efficient method for

the automatic discovery of all types of suffix redundan-

cies, since whole sub-cubes can be coalesmfdre any 10%s ‘ o ‘ s ‘ 0

re-computatiorand is therefore the only method where the

computation time is also fused by the coalescing properFigure 10: Size Scalability v.s. dimensionality for varying

ties and is polynomial to the number of dimensions as thisardinalities

paper demonstrates. Dwarf additionally not only indexes

the produced cube but is designed to work in secondary |n Figure 11 we depict the time scalability —w.r.t to

memory and is the only method that provides for clusterthe dimensionality— required to compute and store the co-

ing, partial materialization and hierarchies[16]. alesced cubes using the Dwarf approach for the uniform
datasets. We must point that the y-axis are logarithmic and
that the graphs —for both #coalesced tuples and computa-

=

&

100k = -

#Coalesced Tuples

7 Experiments tion time— correspond to a polynomial scaling.
In this section we provide an extensive experimental evalu- Uniform Distribution

ation of our approach based on synthetic and real data sets. ‘ ‘

We compare the results of our analytical approach with 55 el C=000)

=]

actual results taken from our implementation of Dwarf.
The experiments were executed on a Pentium 4, clocked
at 1.8GHz with 1GB memory. The buffer manager of our
implementation was set to 256 MB.

- | 3-8 Actual (C=10,000)

7.1 Synthetic Datasets

=
T T

In this section we use the following formalism. The graph
entitled “Actual” in the legend corresponds to numbers
taken from our implementation, while the graph entitled
“Estim” corresponds to the estimates our analytical frame-
work and algorithm provides. We use the symbaob refer)) _ -])
to the number of dimension§, to the cardinality an to Figure 11: Computation Time Scalability v.s. dimension-
the zipfian parameter (skewness). ality for varying cardinalities

Computation Time (sec)

I | I | I
5 10 15 20

10

Zipfian Distributions In Figure 12 we depict the size Zipfian Distribution
scalability w.r.t to the dimensionality for zipfian datasets 1000 ‘ ‘
for various values for the zipfian parameterthat con- E S0 et (1000 0.2y
trols the skew. The number of fact table tuples was set to o e 0000 o)
100,000. The cardinalities were again 1,000 and 10,000
respectively. We observe that our estimation algorithm ap-
proximates better the zipfian coalesced cube size for large
values of cardinalities than it does for smaller values of car-
dinalitie®. On the other side, we observe that the skew
parameter affects more the dataset W@tk 1,000 than the
dataset witlC = 10,000. The reason for these two observa-
tions is that the zipfian parameter directly affects the spar-
sity of the cube. For lower values of cardinalities the per-]
centage of sparsity coalesces is significantly less than the ‘ m ‘ i5 ‘ 20
case of higher cardinality values. However it is evident that
the zipfian distribution scales polynomially and that our es-Figure 13: Computation Time Scalability v.s. dimension-
timation algorithm can be used to get good estimates abouwtlity for varying cardinalities and zipf parameters
zipfian coalesced cubes. We must point out that from the
graphs it can be derived that the zipfian distribution affectghe zipfian distributions affects sparsity coalescing in a neg-
the scalability —w.r.t to the dimensionality— in a multiplica- ative way and increases the corresponding coalesced cube
tive way. In other words, it increases the complexity factorSize and computation time. For completeness we also de-
but not the polynomial power. pict the required computation time for the same cubes in
Figures 14 and 15.

In this series of experiments our estimation algorithm,
“““““ e although based on a uniform assumption, provides very ac-

[| &-< Actual (C=1,000 a=0.4)

100 4

Computation Time (sec)

Zipfian Distribution

[-0 Actual (C=1.0002=02) 1 curate results over all the range of the parameters (cardinal-
<3—< Estimated (C=1,000)
M| A Actual (C=10,000 2=0.4) ity, number of dimensions, skewness) that we experimented

- Actual (C=10,000 a=0.2)
I M G Estimated (C=10,000)

R on.

,,0"’"‘11:—;’//// Uniform Distribution

10M g T

OO Actual (d=5 C=1,000)
3-8 Actual (d=5 C=10,000)
&—6 Estim (d=5 C=1,000)
A4\ Estim (d=5 C=10,000)
-« Actual (d=10 C=1,000)
-7 Actual (d=10 C=10,000)
B—p> Estim (d=10 C=10,000)
“+—+ Estim (d=10 C=1,000)

#Coalesced Tuples
T
1

=
R e e

okl e [[100k

5 10 15 20

#Coalesced Tuples

Figure 12: Size Scalability v.s. dimensionality for varying
cardinalities and zipf parameters

5
-
T

A
Ar T

In Figure 13 we depict that the scalability of the required
computation time for varying dimensionalities, cardinali-
ties and skew parameters is again polynomial. We observe
that the skew parameter affects proportionally the compuFigure 14: Size Scalability v.s. #Tuples for varying cardi-
tation time as it affects the coalesced cube size. nalities

Scalability vs #TuplesiIn Figures 14, 15 and 16 we de-
pict the coalesced size scalability w.r.t to the number of tu-
ples for uniform and Zipfian datasets for a variable num-7.2 Real Datasets

ber of dimensions, cardinalities and skew. We observe thal£orthis experiment we use a real eight-dimensional data set
in all cases both the number of coalesced tuples and the. P 9

computation time scale almost linearly w.r.t to the num-Ven to us by an OLAP company. The data set has vary-

e of tples 1 th fct abe. We must pont tat a value S RAILES D Amenion, e vt veions b
C = 10,000 for the cardinality offers more chances for Y

. : : and study its effect on the accuracy. For this experiment
sparsity coalescing and therefore the required storage a'ﬁe fact table had 672,771 tuples and two measures. Table
time is lower than the case 6f= 1,000. The skewness of : ’ L y

3 summarizes the parameters of each projection. Column
5This behavior is observed (to a lesser degree) for uniform datasets ag>rojection” denotes the name of the data set, colairtire
well number of dimensions and column “Cardinalities” the car-

¥
. Lol Lo
1k 10k 100k

549

Zipfian Distribution (d=5)

7

I M E | ©-O Actual (C=1,000 a=0.2)

E | 3-8 Actual (C=10,000 a=0.2)

F | &< Actual (C=1,000 a=0.4)

[|A--A Actual (C=10,000 a=0.4)
<4—< Estim (C=1,000)

[| == Estim (C=10,000)

100k |

10k £

#Coalesced Tuples

B L !

Ly L
Ik 10k 100 k

Figure 15: Size Scalability v.s. #Tuples for varying cardi- Figure 17: Computation Time Scalability v.s. #Tuples for

nalities and zipf parameters

Zipfian Distribution (d=10)

Computation Time(sec)

Uniform Distribution

1000 £

100 &

0.1

G—O Actual (d=5 C=1,000)
EH1 Actual (d=5 C=10,000)
&— Actual (d=10 C=1,000)
A4 Actual (d=10 C=10,000)

L
10k

varying cardinalities (uniform)

Zipfian Distribution

L
100 k

- 1000 £ —— T
E | 3O Actual (d=5 C=1,000 a=0.2)
©--O Actual (C=1,000 a=0.2) [| 3-8 Actual (d=5 C=10,000 a=0.2)
3-43 Actual (C=10,000 a=0.2) ~ [| &—© Actual (d=5 C=1,000 a=0.4)
IME | ©-< Actual (C=1,000 a=0.4) 7 8 100 E | A—A Actual (d=5 C=10,000 a=0.4)
8 E A--A Actual (C=10,000 a=0.4) = 2 E | <4< Actual (d=10 C=1,000 a=0.2)
=, <4 Estim (C=1,000) 1) [| v Actual (d=10 C=10,000 a=0.2) g
= v—v Estim (C=10,000) g [| >— Actual (d=10 C=1,000 a=0.4) g
= e g 10 | +— Actual (d=10 C=10,000 a=0.4) /
S 100k E £ ~ &
3 g ~ E = r °
2 g r
)]I E
o y E E
< ~ «5 E E
o o, p
%i:) 10kE 7 4 g r -
7 8 0.1F 3
| | L 0.01 | |
Thx 10k 100 k 1k 10k 100 k

Figure 16: Size Scalability v.s. #Tuples for varying cardi- Figure 18: Computation Time Scalability v.s. #Tuples for
nalities and zipf parameters varying cardinalities and zipf parameters

dinalities of each dimension. In Figure 19 we depict the esobservation is in contrast to what happens with zipfian
timates of our approach compared with the actual numberdatasets, which affect the sparsity of the coalesced cube in
taken, when the dwarf is computed and stored. In Figure 2@ negative wayvithout creating any implications between
we depict —for completeness— the time scalability w.r.t thethe dimensions. However real datasets are not only skewed
dimensionality of the real datasets. but present a large number of implications between values
of their dimensions, that affect in a positive way the coa-
lesced cube size.

| Projection] d | Cardinalities \
5 1300,2307,2,2,3098

6 1300,2307,3098,130,561,693
7 | 1300,2307,2,3098,130,561,69
8 | 1300,2307,2,2,3098,130,561,693

8 Conclusions

[98)

OO w>

We have presented an analytical and algorithmic frame-
work for estimating the size of coalesced cubes, where suf-
fix redundancies diminish the number of aggregates that
need to be stored and calculated. Our analytical framework
We observe a very interesting pattern. As the dimen-although it uses only sparsity coalescing, derives the sur-
sionality increases our approaaterestimatescreasingly prising result, that a uniform coalesced cube grows —both
more the coalesced size. The reason is that our approacthe required storage and the computation time— polynomi-
currently handlesonly sparsity coalescingand ignores ally w.r.t to the dimensionality. This result changes the es-
the implication coalescinghat is very apparent in high- tablished state that the cube is inherently exponential on the
dimensional data sets. As the dimensionality increaseaumber of dimensions and extend the applicability of data
such implications increase and complement the sparsitwarehousing methods to a much wider area. We were also
implications reducing even further the coalesced size. Thigble to device an efficient algorithm for estimating the size

Table 3: Real data set parameters

550

r] aggregates. Technical Report 1314, University of

amf [Bstimaed . Wisconsin - Madison, 1996.

1 [5] Lixin Fu and Joachim Hammer. CUBIST: A New

M- - Algorithm for Improving the Performance of Ad-hoc

OLAP Queries. IDOLAP, 2000.

. [6] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.

Data Cube: A Relational Aggregation Operator Gen-

1 eralizing Gro up-By, Cross-Tab, and Sub-Totals. In

7 ICDE, pages 152-159, New Orleans, February 1996.

IEEE.

7 [7] H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ull-

man. Index Selection for OLAP. I[HCDE, pages
100k = B c D 208-219, Burmingham, UK, April 1997.

[8] V. Harinarayan, A. Rajaraman, and J. Uliman. Imple-

Figure 19: Size Scalability v.s. dimensionality for real data menting Data Cubes Efficiently. I8IGMOD, pages

set 205-216, Montreal, Canada, June 1996.

[9] T.Johnson and D. Shasha. Some Approaches to Index
Design for Cube Forest®ata Engineering Bulletin
20(1):27-35, March 1997.

[10] H.J. Karloff and M. Mihail. On the Complexity of the

View-Selection Problem. I®ODS pages 167-173,
Philadelphia, Pennsylvania, May 1999.

[11] L. Lakshmanan, J. Pei, and Yan Zhao. QC-Trees: An
Efficient Summary Structure for Semantic OLAP. In
SIGMOD, pages 64-75, San Diego, California, 2003.

[12] K. A. Ross and D. Srivastana. Fast Computation of
Sparse Datacubes. \L.DB, pages 116-125, Athens,
Greece, 1997.

[13] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos.
Cubetree: Organization of and Bulk Incremental Up-
dates on the Data Cube. BIGMOD, pages 89-99,
Tucson, Arizona, May 1997.

[14] S. Sarawagi, R. Agrawal, and A. Gupta. On comput-
ing the data cube. Technical Report RJ10026, IBM
Almaden Research Center, San Jose, CA, 1996.

Figure 20: Time Scalability v.s. dimensionality for real [15] A. Shukla, P. Deshpande, J. Naughton, and K. Ra-

data set masamy. Storage estimation for multidimensional ag-

o .) gregates in the presense of hierarchies. VDB,

of a coalesced cube based only on its dimensions’ cardinal- pages 522-531, Bombay, India, August 1996.

ities and demonstrated that it provides accurate results fqu6] Y. Sismanis, A. Deligiannakis, Y. Kotidis, and

a wide range of distributions. In addition we have demon- N. Roussopoulos. Hierarchical dwarfs for the rollup

strated, using real data, that real coalesced cubesesgzte cube. INDOLAP, 2003.

betterthan our analysis derives. The reason is that the eff17] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and

fects of implication coalescing complement the results of Y. Kotidis. Dwarf: Shrinking the PetaCube. BIG-

sparsity coalescing that we have presented here. MOD, pages 464475, Madison, Wisconsin, 2002.

[18] D. Theodoratos and T. Sellis. Data Warehouse Con-
figuration. InVLDB, pages 126-135, Athens, Greece,

References August 1997.

[1] S. Acharya, P. B. Gibbons, and V. Poosala. Con-[19] J.S Vitter, M. Wang, and B. lyer. Data Cube Approxi-
gressional Samples for Approximate Answering of mation and Histograms via Wavelets.@iKM, 1998.
Group-By Queries. InSIGMOD, pages 487-498, [20] Wei Wang, Hongjun Lu, Jianlin Feng, and Jeffrey Xu
Dallas, Texas, 2000. Yu. Condensed Cube: An Effective Approach to Re-

[2] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, ducing Data Cube Size. IC€DE, 2002.

J .F. Naughton, R. Ramakrishnan, and S. Sarawagi{21] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An

1M}
800k

400 k

#Coalesced Tuples

200 k

» 2
g8
T

=
=]
T

Computation Time (sec)
T

S

On the computation of multidimensional aggregates. ~ array-based algorithm for simultaneous multidimen-

In VLDB, pages 506-521, 1996. sional aggregates. BIGMOD, pages 159-170, 1997.
[3] K. Beyer and R. Ramakrishnan. Bottom-Up Compu-)) o

tation of Sparse and Iceberg CUBEs. $IGMOD, hThe VJZW;an;idconcéum'ons contaczinedm this dqcum;ntz};je Fhlosequ'the

pages 359_370' Philadelphia, PA, USA, 1999, al:lt ors and should not be interpreted as representing the otficial policies,

ther expressed or implied, of the Army Research Laboratory or the U. S.
overnment.

[4] P.M. Deshpande, S. Agarwal, J.F. Naughton, ano@
R. Ramakrishnan. Computation of multidimensional

551

