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Abstract

In this paper, we address the problem of design-
ing a scalable, accurate query processor for peer-
to-peer filesharing and similar distributed keyword
search systems. Using a globally-distributed mon-
itoring infrastructure, we perform an extensive
study of the Gnutella filesharing network, charac-
terizing its topology, data and query workloads.
We observe that Gnutella’s query processing ap-
proach performs well for popular content, but
quite poorly for rare items with few replicas. We
then consider an alternate approach based on Dis-
tributed Hash Tables (DHTs). We describe our
implementation of PIERSearch, a DHT-based sys-
tem, and propose a hybrid system where Gnutella
is used to locate popular items, and PIERSearch
for handling rare items. We develop an analytical
model of the two approaches, and use it in con-
cert with our Gnutella traces to study the trade-
off between query recall and system overhead of
the hybrid system. We evaluate a variety of local-
ized schemes for identifying items that are rare and
worth handling via the DHT. Lastly, we show in a
live deployment on fifty nodes on two continents
that it nicely complements Gnutella in its ability to
handle rare items.

1 Introduction
Distributed query processing has been a topic of database
research since the late 1970’s. In recent years, the problem
has been revisited in the setting of peer-to-peer (P2P) file-
sharing systems, which have focused on a point in the de-
sign space that is quite different from traditional database
research. P2P filesharing applications demand extreme
scalability and federation, involving orders of magnitude
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more machines than even the most ambitious goals of dis-
tributed database systems proposed in the literature. P2P
filesharing networks knit together hundreds of thousands of
unmanaged computers across the globe into a unified query
system. The data in filesharing consists of simple files
stored at the end-hosts; the names of the files are queried
in situ without transmitting them to any centralized repos-
itory. A P2P filesharing network typically runs thousands
of concurrent keyword queries over the names of the files
in the network. Separately, it supports point-to-point down-
loads of actual file content between peers.

Popular P2P filesharing systems like Gnutella [7] and
Kazaa [13] are based on very simple designs, and there is
controversy over their effectiveness. These systems con-
nect peer machines into an ad-hoc, unstructured network.
Query processing proceeds in a very simple fashion known
as “flooding”: a node transmits a keyword query to its P2P
network neighbors, who forward the query on recursively
for a finite number of hops known as the “time-to-live”
(TTL) of the query. Any node with a matching filename
reports back to the query source, which displays a list of
matching file locations and properties. Given the scale of
these networks, flooding-based schemes are not exhaustive;
a given query will visit only a small fraction of nodes in
the network. As a result, these networks provide no guar-
antees on query recall, and often fail to return matches that
actually exist in the network.

Recently, researchers have been focusing significant at-
tention on alternative structured P2P networks that can sup-
port content-based routing. These networks are able to en-
sure that all messages labeled with a given “key” are routed
to a particular machine. This allows the network to coordi-
nate global agreement on the location of particular items1

to be queried: keyed items are routed by the network to a
particular node, and key-based lookups are routed to that
same node. This functionality is provided without any need
for centralized state, and works even as machines join and
leave the P2P network. Content-based routing is akin to the
“put()/get()” interface of hash tables, and these networks
have thus been dubbed Distributed Hash Tables (DHTs).
DHTs have matured rapidly in recent years via both theoret-
ical results and system prototypes [2]. Unlike the popular
unstructured P2P networks, DHTs can in principle provide

1In this paper, we will use the terms “files” and “items” interchangeably

432



full recall from a network of connected peers.
To date, there has been little agreement on the best de-

sign for query processing in P2P filesharing systems. In
this paper we attempt to address the question on a num-
ber of fronts. First, we highlight the strengths and weak-
nesses of unstructured P2P networks via an extensive em-
pirical analysis of the Gnutella network. We performed live,
distributed monitoring of the Gnutella network via multiple
machines spread across the two continents in the PlanetLab
testbed [19]. We gathered extensive traces of the network’s
graph structure, its query workload, and its file contents.
One of our key observations is that replication of files in
the network follows a long-tailed distribution with a mod-
erate number of “popular” files containing many replicas in
the network, and a long tail of many “rare” files contain-
ing few replicas. Given that observation, we observe that
the flooding-based approach in unstructured networks is an
efficient, simple solution for finding copies of popular files,
but has poor latency and result quality for queries that focus
on rare items.

Second, we describe PIERSearch, our implementation of
DHT-based keyword querying. PIERSearch is an applica-
tion built on top of PIER [12], a DHT-based Internet-scale
relational query engine we have built in our group. The
DHT-based approach does provide better answers in terms
of query recall, but can require more network overhead to
“publish” files by keyword into the DHT, and to perform
distributed joins of keyword lists at query processing time.

Based on our analysis of the workload and solutions,
we propose a simple hybrid approach for high-quality P2P
search, in which PIERSearch is used to build a partial in-
dex [23] over only the rare items in the Gnutella network.
Queries are handled in a hybrid manner: popular items are
found via the native Gnutella protocol, and rare items are
found via PIERSearch.

We provide an analytical model to study the potential
benefits of a universal deployment of PIERSearch bundled
with Gnutella. Using this model together with our Gnutella
traces, we study the trade-off between query recall and sys-
tem overhead of the hybrid system. In addition, we pro-
pose and compare a variety of techniques for one of the key
challenges in the hybrid solution: correctly identifying the
“rare” files that should be indexed in the DHT.

Finally, we implemented this solution by modifying
the open-source LimeWire Gnutella software, combining
it with PIERSearch. We ran our implementation on fifty
PlanetLab nodes across two continents, participating live in
the Gnutella network; the addition of PIERSearch along-
side Gnutella – even on a limited subset of Gnutella nodes
– demonstrates notable benefits in both latency and recall
for queries that focus on rare items.

2 Background: DHTs and PlanetLab
There have been many proposals for DHT designs in the last
few years; we briefly describe their salient features here. An
overview of DHT research appears in [2]. As its name im-
plies, a DHT provides a hash table abstraction over multiple
distributed compute nodes. Each node in a DHT can store
data items, and each item is indexed via a lookup key. At the

heart of the DHT is an overlay routing scheme that delivers
requests for a given key to the node currently responsible
for the key. This is done without global knowledge or per-
manent assignment of the mappings of keys to machines.
Routing proceeds in a multi-hop fashion; each node keeps
track of a small set of neighbors, and routes messages to
the neighbor that is in some sense “nearest” to the correct
destination. Most DHTs guarantee that routing completes
in O(log N) P2P message hops for a network of N nodes.
The DHT automatically adjusts the mapping of keys and
neighbor tables when the set of nodes changes.

The DHT forms the basis for communication in PIER.
With the exception of query answers, all messages are sent
via the DHT routing layer. PIER also stores all temporary
tuples generated during query processing in the DHT. The
DHT provides PIER with a scalable, robust messaging sub-
strate even when the set of nodes is dynamic.

Realistic assessments of peer-to-peer systems can be
difficult to achieve without machines spread around the
world. In our work, we made heavy use of the PlanetLab
testbed [19], both to analyze Gnutella from multiple van-
tage points, and to test our implementation of PIERSearch
in a truly distributed setting. PlanetLab is an open, glob-
ally distributed platform for developing, deploying and ac-
cessing planetary-scale network services. PlanetLab today
consists of over 350 machines located at 148 sites in five
continents. In our experiments, we utilized machines from
different parts of North America (including Canada) and
Europe.

PlanetLab enabled us to achieve serious experimental re-
sults: as we report later, we injected 63,000 queries into
Gnutella, we crawled 100,000 Gnutella nodes in only 45
minutes, and we deployed the PIERSearch engine on fifty
sites distributed on two continents. In fact, one of our chal-
lenges with PlanetLab was to use its power carefully: early
on, our experiments raised warning flags among system ad-
ministrators because they resembled malicious network be-
havior.

3 Overview of PIERSearch
PIERSearch is a DHT-based search engine implemented us-
ing PIER. Figure 1 shows the design of PIERSearch on a
single node. PIERSearch supports a class of queries based
on keyword search, which enables us to query for all items
containing a given set of keywords (or terms). Items with
filenames that contain all search terms will satisfy the query.
PIERSearch consists of two main components: the Pub-
lisher and Search Engine, described in detail below.

3.1 Publisher

To support these queries, PIERSearch maintains an inverted
file, which is an index structure that enables fast retrieval of
all items that contain a search term. For each term, the index
maintains an inverted list or posting list of all file identifiers
(fileIDs) of items that contain the indexed term. In order to
quickly find the inverted list for a search term, all possible
query terms are organized in an index structure such as a B+
tree or hash index. In the case of PIERSearch, the indexing
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Figure 1: PIERSearch on a single
node.
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Figure 2: Relational query plan for
a two-term keyword query “T1 AND
T2”.
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Figure 3: Query Plan of Inverted-
Cache Option for a two-term query
“T1 AND T2”. The corresponding
filename is cached on every Inverted
tuple.

mechanism is provided by the DHT itself. In summary, for
each item, the Publisher generates tuples conforming to the
following schema (primary keys are underlined):

• Item(fileID, filename, filesize,
ipAddress, port). The Item table contains a
tuple for each item that is being shared. It stores the
filename, filesize, the location (IP Address and port)
of the host sharing the file and any other additional
fields describing the item. The fileID is a unique file
identifier of the item, generated by applying a hash on
the other fields, and is used as the publishing (index)
key for the DHT.

• Inverted(keyword, fileID). Each item has
a set of keywords that describes itself. Typically
in file-sharing, this comprises the terms in the file-
name. Stop-words such as “MP3” and “the” are usu-
ally not considered. For each keyword, we generate
an Inverted tuple, which contains the keyword and the
fileID of the item. The fields keyword and fileID form
the primary key, but only the keyword field is used as
the publishing (index) key for the DHT. This ensures
that Inverted tuples with the same keyword are hosted
by the same node.

3.2 Search Engine

For a given search query, the Search Engine forms a query
which its local PIER engine executes on its behalf. Figure 2
shows an example query plan for a two-term query T1, T2.
Conceptually, the query plan retrieves two sets of Inverted
tuples, one for keyword = T1 and another for keyword =
T2, and executes a join of the two sets of tuples by fileIDs.
Item tuples with the resulting fileIDs form the answer set.
This query plan can be extended for queries with more than
two search terms simply by adding an extra self-join with
the Inverted relation for each additional keyword.

When this query is executed, PIER routes the query plan
via the DHT to all sites that host a keyword in the query,
and executes a distributed join of the posting list entries of
matching Inverted tuples. Using our example query plan,
the node that hosts the first keyword (T1) in the query plan
will send (rehash) the matching Inverted tuples to the node
that hosts for the next keyword (T2). The receiving node
will perform a symmetric hash join (SHJ) between the in-

coming tuples and its local matching tuples, and send the
results to the next node (if there are more keywords). On the
node hosting the last keyword in the query plan, the match-
ing fileIDs are streamed back to the query node, which
fetches the Item tuples from the DHT based on the incom-
ing fileIDs.

In addition to this distributed join algorithm,
PIERSearch also provides an alternative approach that we
call the InvertedCache option. In the InvertedCache option,
the schema is modified, replacing the Inverted table with
a new table InvertedCache(keyword, fileID,
fulltext). This table stores the full text (i.e. the
filename) redundantly with each (keyword, fileID) pair.
Figure 3 shows the query plan. The InvertedCache option
essentially “caches” the file text with each inverted file
entry. Consequently, the matching fileIDs for the search
query can be resolved without distributed joins: the query
can be sent to a single node hosting any one of the search
terms (T1 in the example), and the remaining search terms
are filtered locally using substring selection operators.
Hence, the communication cost of computing the matching
fileIDs is greatly reduced since no Inverted tuples need
to be shipped. However, this technique incurs extra
publishing overheads, which are prohibitive for typical
full text document search, but tolerable for indexing short
filenames. We quantify this overhead experimentally for
typical filenames in Section 7.

4 Gnutella Measurements
In order to motivate the need for PIERSearch to enhance
existing unstructured networks, we first analyze Gnutella, a
file-sharing network based on an unstructured network de-
sign. Unlike a DHT-based search scheme, data need not be
published in an unstructured network. Each node that joins
the network shares its local files, and queries are flooded in
the network. Whenever a node receives a query, it checks
its local files and returns a query response containing infor-
mation on any matches in its local files.

The current Gnutella network uses several optimizations
to improve the performance over the original “flat” flood-
ing design described above. Some of the most notable op-
timizations include the use of ultrapeers [10] and dynamic
querying techniques [8]. We describe these informally here;
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a more thorough description of the Gnutella protocol today
is available in the Gnutella 0.6 protocol specification [1].

When a node starts up a Gnutella client it joins as a
“leaf” node of the Gnutella network: it can issue queries to
the network, but will not answer or forward query requests
for any other nodes. Upon joining the network, the leaf
node selects a small number of nodes that have been elected
“ultrapeers”, and then it publishes its file list to those ultra-
peers. Ultrapeers perform query processing on the behalf
of their leaf nodes. A query from a leaf node is sent to an
ultrapeer, which floods the query to its ultrapeer neighbors,
recursing up to the query TTL. Nodes regularly determine
whether they are eligible to become ultrapeers (“ultrapeer
capable”) by looking at their uptime, operating system and
bandwidth. Once nodes decide they are ultrapeer capable,
they express their capabilities to other connecting hosts via
the Gnutella connection headers.

Dynamic querying is a search technique whereby queries
that return few results are re-flooded deeper into the net-
work. While this scheme is used in Gnutella today, we will
have more to say about the efficacy of “deep flooding” for
small results in Section 4.3.

To analyze the Gnutella network, we modified the popu-
lar LimeWire client software [15]. Our modified client can
participate in the Gnutella network either as an ultrapeer or
leaf node, and can log all incoming and outgoing Gnutella
messages. In addition, our client has the ability to inject
queries into the network and gather the incoming results.
The client software was deployed on multiple PlanetLab
nodes, and participated directly in the Gnutella network.

4.1 Gnutella Topology

To estimate the size of the Gnutella network and confirm
Gnutella’s topology, we began our study by performing a
“crawl” of the Gnutella network graph; to do this we re-
cursively invoke a Gnutella API call that returns a node’s
current list of neighbors. A P2P network like Gnutella is
subject to noticeable “churn” of nodes joining and leaving,
so an elongated crawling process does not provide an accu-
rate “snapshot”. To increase the accuracy of our estimation,
we performed a distributed, parallel crawl, starting from 30
ultrapeers running on PlanetLab for about 45 minutes on 11
Oct 2003. Based on these measurements, the network size
of Gnutella during the crawl was around 100,000 nodes,
and there were roughly 20 million files in the system. Note
that the size of the network is a lower bound since not all
nodes respond to our crawler.

Our crawl also revealed that most ultrapeers today sup-
port either 30 or 75 leaf nodes. This is confirmed by
the development history of the LimeWire software: newer
LimeWire ultrapeers support 30 leaf nodes and maintain 32
ultrapeer neighbors, while the older ultrapeers support 75
leaf nodes and 6 ultrapeer neighbors2.

2As a side note, in newer versions of the LimeWire client, leaf nodes
publish Bloom filters of the keywords in their files to ultrapeers [9, 8].
There have also been proposals to cache these Bloom filters at neighbor-
ing nodes. Bloom filters reduce publishing and searching costs in Gnutella,
but preclude substring and wildcard searching (which are similarly unsup-
ported in DHT-based search schemes.).
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Figure 4: Correlating Query Results Size vs. Average Replication
Factor.

4.2 Gnutella Search Quality

Next, we turn our attention to analyzing the search qual-
ity of Gnutella, both in terms of recall and response time.
There are two possible definitions of recall that we will use.
• Query Recall (QR) is defined as the percentage of

available results in the network returned. In this case,
each replica of a file is counted as a distinct result. Re-
sults can be distinguished by filename, host, and file-
size.

• Query Distinct Recall (QDR) is defined as the per-
centage of available distinct results in the network re-
turned. In this case, there is no gain from having mul-
tiple replicas of a file within a result set. For sim-
plicity in defining this metric, we assume that files
are uniquely distinguished by their filename; files are
grouped by filename in many Gnutella clients as well.

In order to measure recall accurately, we would need to
know about all files in the network at the time of our exper-
iments. Given the difficulty of taking an accurate snapshot
of all files, we approximate the total number of query results
available in the system by issuing the query simultaneously
from all 30 PlanetLab ultrapeers, and taking the union of
the results. We justify our Union-of-30 approach to approx-
imating the true contents of the network in two ways. First,
we experimentally verified that as we increased the num-
ber of PlanetLab ultrapeers beyond 15, we found little in-
crease in the total number of results (see Figure 6). This
suggests that the number of results returned by all 30 ultra-
peers a reasonable approximation of the total number of re-
sults available in the network. Second, because this approx-
imation underestimates the number of total results in the
network, the recall values that we compute for Gnutella’s
search strategy are at worst overestimates of the actual val-
ues.

We deployed our modified LimeWire ultrapeers on Plan-
etLab nodes on two continents to obtain real Gnutella query
traces. We chose 700 distinct queries from these traces to
replay at each of the PlanetLab ultrapeers. To factor out
the effects of workload fluctuations, we replayed queries at
three different times. In total, we injected 63, 000 queries
into Gnutella (700 × 30 × 3). We make three observations
based on the results returned by these queries.

First, as expected, there is a strong correlation between
the number of results returned for a given query, and the
number of replicas in the network for each item in the query
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result set. The replication factor of an item is defined as the
total number of identical copies of the item in the network.
Again, to approximate this number, we count the number
of items with the same filename in the union of the query
results obtained by the 30 ultrapeers for the same query.
We then compute the average replication factor of a query
by averaging the replication factors across all distinct file-
names in the query result set. Figure 4 summarizes our re-
sults, where the Y-axis shows query results set size, and the
X-axis shows the average replication factor averaged across
all queries for each results set size. In general, queries with
small result sets return mostly rare items, while queries with
large result sets return both rare and popular items, with the
bias towards popular items.

Second, our results demonstrate the effectiveness of
Gnutella in finding highly replicated content. We present
our analysis for the QR metric here; since the QDR results
are similar, we omit them. Figure 5 plots the Cumulative
Distribution Function (CDF) of the number of results re-
turned by all queries (the Results curve), and the “Union-
of-30” results, which provide a lower bound on the total
number of matching items in the network. Note that there
are queries returning as many as 1,500 results to a single
client, which would seem more than sufficient for most file-
sharing uses. In addition, Figure 7 shows that the queries
with large result sets also have good response times. For
queries that return more than 150 results, we obtain the first
result in 6 seconds on average.

Third, our results show the ineffectiveness of Gnutella
in locating rare items. Figure 7 shows that the average re-
sponse time of queries that return few results is poor. For
queries that return a single result, 73 seconds elapsed on
average before receiving the first result.

An important point to note is that queries that return few
items are quite prevalent. Figure 6 shows the results of the
same experiment as Figure 5, limited to queries that return
at most 20 results, for unions of 5, 15 and 25 ultrapeers.
Note that 41% of the standard (single-node) queries receive
10 or fewer results, and 18% of standard queries receive no
results. For a large fraction of queries that receive no re-
sults, matching results are in fact available in the network
at the time of the query. By comparison, the Union-of-30
results are considerably better: only 27% of queries receive
10 or fewer results, and only 6% of queries receive no re-
sults. This means that there is an opportunity to reduce the

percentage of queries that receive no results from 18% to at
most 6%, or equivalently to reduce the number of queries
that receive no results by at least 66%. We say “at least”
because the Union-of-30 results are an underestimation of
the total number of results available in the network.

When we switch to the QDR metric, while 14% of
queries receive more than 100 distinct results, and 2% of
queries receive more than 200 distinct results, as many as
48% of queries receive 10 or fewer distinct results. This
percentage is reduced from 48% to 33% when we look
at the Union-of-30 results. The improvements for empty
query results remain the same for the QDR metric, since
the emptyset has no duplicates. The QDR graphs are omit-
ted for brevity.

4.3 Increase the Search Horizon?

An obvious technique to locate more rare items in Gnutella
would be to increase the search horizon by using larger
TTLs. While this would not help search latency, it could
improve query recall. As the search horizon increases, the
number of query messages sent will increase substantially,
with decreasing payoffs. Figure 8 shows the the number of
query messages sent on average to reach a number of ultra-
peers in the network. This is based on analyzing the crawl
topology obtained in Section 4.1. As the search horizon
increases, even when we suppress duplicate messages re-
ceived at each node, there is diminishing returns in reaching
more ultrapeers as the number of messages increases. E.g.,
48K messages are required to reach 9,000 ultrapeers, but to
reach the next 9,000 ultrapeers, an extra 94K messages are
required. Hence, even when the search horizon increases
by a single hop, the number of nodes contacted does not
increase at the same rate as the messaging overheads. The
diminishing returns with increasing search horizon is due
to nodes receiving duplicate messages from more than one
neighbor node. The duplicate messages are a result of re-
dundant paths in the network. I.e., a node that has received
a query message may receive the same query message later
from another neighbor as the search horizon increases. To
address this problem, there has been recent proposals in
the research literature [3] for flooding Gnutella nodes via
a DHT overlay that would eliminate redundant paths.

Given that queries that return few results are fairly com-
mon, such aggressive flooding to locate rare items is un-
likely to scale. In future work, we plan to quantify the im-
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Figure 8: Gnutella Flooding Overhead

pact of increasing the search horizon on the overall system
load.

4.4 Summary

Our Gnutella measurements reveal the following findings:
• Gnutella is highly effective for locating popular items.

Not only are these items retrieved in large quantities,
the queries also have good response times.

• Gnutella is less effective for locating rare items: 41%
of all queries receive 10 or fewer results, and 18% of
queries receive no results. Furthermore, the results
have poor response times. For queries that return a
single result, the first result arrives after 73 seconds on
average. For queries that return 10 or fewer results, 50
seconds elapsed on average before receiving the first
result.

• There is a significant opportunity to increase the query
recall for locating rare items. For instance, the number
of queries that return no results can be reduced from
18% to at least 6%.

5 Hybrid Search Infrastructure
In the view of the shortcomings of a flooding-based un-
structured network, we explore the feasibility of using
PIERSearch as an alternative for supporting file-sharing
networks. PIERSearch utilizes DHTs; various research ef-
forts have proposed DHT-based search engines as an alter-
native to unstructured networks like Gnutella, arguing that
the use of DHTs can improve query performance.

While PIERSearch provides perfect recall in the absence
of network failures, a full-fledged implementation where all
nodes run PIERSearch has its own drawbacks. The con-
tent publishing phase can consume large amounts of band-
width compared to queries that retrieve sufficient results via
flooding in an unstructured network. Consider the query
“Britney Spears” that requests all songs from this popular
artist. “Britney” and “Spears” are popular keywords with
large posting lists. The publishing costs of building the in-
verted indexes for these two keywords are high. A “Britney
Spears” query also requires shipping large posting lists to
perform the distributed join. Recent back-of-the-envelope
calculations [14] suggest that shipping large posting lists
over DHTs is bandwidth-expensive. While compression
techniques and Bloom filters would reduce the bandwidth
requirements of publishing, a flooding scheme that does not

incur any publishing overheads is both simpler and more ef-
ficient for such queries.

On the other hand, queries over rare items are less
bandwidth-intensive to compute, since fewer posting list
entries are involved. To validate the latter claim, we re-
played 70, 000 Gnutella queries over a sample of 700, 000
files3 using the SHJ algorithm (optimized to compute
smaller posting lists first) described in Section 3. We ob-
served that on average, queries that return 10 or fewer re-
sults require shipping 7 times fewer posting list entries com-
pared to the average across all queries. This motivates a
hybrid search infrastructure, where the PIERSearch builds
a partial index for locating rare items, and flooding tech-
niques are used for searching highly replicated items.

The hybrid search infrastructure utilizes selective pub-
lishing techniques that identify and publish only rare items
into the DHT. This hybrid infrastructure can easily be im-
plemented if all the ultrapeers are organized into the DHT
overlay and run the PIERSearch client. In this full deploy-
ment scenario, each ultrapeer is responsible for identifying
and publishing rare files from its leaf nodes. Search is first
performed via conventional flooding techniques of the over-
lay neighbors. If not enough results are returned within a
predefined time, the query is reissued using PIERSearch.

A key challenge for the hybrid system is in identifying
rare items for publishing into the DHT. The schemes should
be as localized as possible, minimizing communication be-
tween nodes. Our proposed schemes are listed below. We
will revisit the comparison of these schemes in Section 6.3.
• Query Results Size (QRS). Based on our initial obser-

vation in Section 4.2, rare files are those that are seen
in small result sets. A parameter Results Size Thresh-
old is used to determine what query results needs to
be cached. Query results from queries with a results
set size smaller than the threshold are published. In
essence, the DHT is used to cache elements of small
result sets. This scheme is simple, but suffers from the
fact that many rare items may not have been previously
queried and found, and hence will not be published via
a caching scheme.

• Term Frequency (TF). Each hybrid node gathers term
statistics of filenames over a period of time by moni-
toring filenames from the search results traffic. We use
a parameter Term Frequency Threshold to determine
whether an item is rare. Items with at least one term
below the threshold are considered rare items. Based
on our measurements of Gnutella ultrapeers, each ul-
trapeer sees an average of 30, 000 query results per
hour. Hence, by observing for days, an ultrapeer can
easily identify millions of filenames. While this is not
exhaustive, it is feasible if term frequencies remain
fairly constant over a short period of time.

• Term Pair Frequency (TPF). Individual terms may
be subjected to skews in popularity. For example, a
rare item may have a popular keyword. An alternative
scheme considers term pair frequencies instead. Here,

3These queries and files were collected from 30 ultrapeers as described
in Section 4.2.
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Parameter Value
N Number of nodes in the system.

Nhorizon Number of distinct nodes contacted
when a query is flooded over the
Gnutella network. The horizon in-
cludes the query node itself.

Ri Number of replicas for item i.
Ti Lifetime of item i in the network.
Qi Frequency that item i is queried per

time unit.

Table 1: System Parameters for Hybrid System

items with at least one term pair below the Term Pair
Frequency Threshold is considered rare. Since gener-
ating all possible term pairs is memory consuming, we
will only consider ordered term pairs that are adjacent
to each other in the filename.

• Sampling (SAM). This scheme samples neighboring
nodes and compute a lower bound estimate on the
number of replicas for each item. A parameter Sample
Threshold is then used by each node to select only its
local items whose lower bound estimate based on the
sample is below the threshold for publishing. Ideally,
the sampling is done on-line every time a hybrid node
joins the system. Since this may incur high overhead, a
less accurate but less bandwidth consuming alternative
is to gather replica counts of filenames over a period of
time.

6 Modeling and Evaluating Hybrid Search
In this section, we describe a simple analytical model to
quantify the benefits of the hybrid system, and to better un-
derstand the trade-off between the query recall and the sys-
tem overhead. In addition, we use the model to quantify the
quality of the query results obtained by using the publish-
ing schemes described in Section 5. For this purpose we
use trace driven simulations (see Section 6.3).

6.1 Model

We consider a hybrid system consisting of a Gnutella net-
work and a PIERSearch system that share a common set of
N nodes. Here we assume a Gnutella network, although
the model applies to any flooding-based unstructured net-
work. Let I be the set of items (including duplicate items)
shared by all the nodes, and i ∈ I be an arbitrary item in
the network. Tables 1 and 2 summarize the notations used
to describe our system. We make the following simplifying
assumptions:
• All nodes are involved in query processing.

• No new items and nodes are added or removed from
the network, and files are not replicated after being
queried.

• Replicas are randomly distributed in the network, and
no identical replicas reside on the same node. The
links between nodes are random. Hence, querying an

item in Gnutella is equivalent to querying a random
sub-set of nodes in the network.

• All costs of the system are dominated by the communi-
cation overhead, which is measured in terms of trans-
mitted messages.

• The search horizon is fixed for all queries, regardless
of the number of results returned4

• Flooding is implemented using an efficient broadcast
mechanism. Thus, it takes n − 1 messages to flood
n nodes. Note that this overhead is within a constant
factor (i.e., the average node degree) of the overhead
incurred by Gnutella.

In the hybrid system, a query for item i is first issued to
Gnutella. If Gnutella does not return any results, the query
is re-issued to the DHT. Thus, the probability PFi,hybrid

that an item i is found in the hybrid system is simply:

PFi,hybrid = PFi,Gnutella + PNFi,Gnutella × PFi,DHT

(1)
If a query for item i in Gnutella visits Nhorizon nodes,

the probability that item i is not found (and thus the query
has to be re-issued in the DHT) is

PFi,Gnutella = 1 −

j=Nhorizon−1
∏

j=0

(

1 −
Ri

N − j

)

, (2)

where Ri represents the number of replicas of item i in the
system. Note that (1 − Ri/N) represents the probability
that no replica of item i is found at the first node (visited by
the query), (1−Ri/(N −1)) represents the probability that
no replica of item i is found at the second node, and so on.

Next, we compute the overheads incurred by the query
and the publishing operations. Let Qi be the query fre-
quency of item i, i.e., the number of queries for item i per
time unit. The cost per time unit of querying item i in the
hybrid system is then

CSi,hybrid = Qi × ((Nhorizon − 1) + PNFi,Gnutella × CSi,DHT )
(3)

where Nhorizon−1 represents the cost of querying the item
using Gnutella, and CSi,DHT represents the cost of query-
ing the item in the DHT. In a typical DHT system, CSi,DHT

is log N messages [20, 22, 24, 28] (with the InvertedCache
option).

Further, let Ti be the life-time of node i in the system5,
and let CPi,DHT be the cost of publishing item i into the
DHT. Then the total cost per time unit of maintaining and
querying item i is

COi,hybrid = CSi,hybrid + (PFi,DHT ×
CPi,DHT

Ti

) (4)

4While several optimizations such as dynamic flooding have been pro-
posed to improve the query performance, we do not consider such opti-
mizations in our model.

5Typically, the life-time of an item is equal to the interval of time the
node is in the system.
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Variable Value
PFi,Gnutella Probability that item i is found in

Gnutella network.
PNFi,Gnutella Probability that item i is not found

in Gnutella network. This is set to
(1 − PFi,Gnutella).

PFi,DHT Probability that item i is published
into the DHT.

PFi,hybrid Probability that item i is found in the
hybrid system.

CSi,hybrid Cost per time unit of searching for
item i in the hybrid system.

CSi,DHT Cost of searching for item i in the
DHT.

CPi,DHT Cost of publishing item i and its
posting list entries into the DHT.

COi,hybrid Overall cost per time unit of sup-
porting item i as a result of the hy-
brid system.

CPall,hybrid Total publishing cost of the hybrid
system.

Table 2: Search Capabilities and Cost Variables of the Hy-
brid System

Finally, the total cost of publishing rare items into the
DHT is

CPall,hybrid =
∑

i∈I

(PFi,DHT × CPi,DHT ) (5)

The goal of the system is to maximize the probability
PFi,hybrid that each item i is found, while minimizing the
overall publishing overhead CPall,hybrid. Maximizing the
probability that an item is found in the hybrid system di-
rectly translates into improvements of the query recall.

6.2 Query Recall with Complete Knowledge
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Figure 9: PFthreshold vs Replica Threshold.

In this section, we quantify the search quality and the
publishing overhead in the hybrid system as a function of
the replica threshold. We assume that every node in the
system has complete knowledge of the number of repli-
cas for each item. Each node selects items whose num-
ber of replicas are smaller or equal to the replica threshold

for publishing into the DHT. We derive the replica distri-
bution of the items in the system from one of the experi-
ments described in Section 4.2. In particular, we consider
the results returned by 350 distinct queries issued from 30
ultrapeers. These results consists of 315, 546 files stored at
75, 129 nodes.

Figure 9 plots the probability threshold PFthreshold ver-
sus the replica threshold, where PFthreshold determines the
lower bound on the probability PFi,hybrid that any item i
is found in the hybrid system. The figure clearly shows
a diminishing increase of PFthreshold as more and more
popular items are published into the DHT.

Figure 10 shows the publishing overhead (measured as
the percentage of items being published) versus the replica
threshold. Note that the percentage of items published is
proportional to the total publishing cost CPall,hybrid. When
replica threshold is set to one, 23% of items are published.
As the replica threshold increases, the increase of the pub-
lishing overhead diminishes.

Figure 11 plots the average query recall (QR) of queries
in our trace versus the replica threshold for different values
of the percentage of nodes in the search horizon. The search
horizon represents the total number of nodes in the system
that are involved in a Gnutella query. As defined in Sec-
tion 4.2, QR is computed by taking a ratio of the number
of results returned by the hybrid network to the total num-
ber of results in the entire network. As expected, when no
items are published into the DHT (i.e., the replica threshold
is zero), the average query recall is equal to the percent-
age of nodes in the search horizon. As the replica threshold
increases, the query recall increases sharply. For a replica
threshold of one, the average query recall increases to 47%,
52%, and 61%, respectively. When the replica threshold is
two, the average query recall exceeds 64% in all cases.

Similarly, Figure 12 plots the query distinct recall
(QDR) versus the replica threshold. QDR of a query is de-
fined as the percentage of all distinct results in the network
returned for the query. This definition naturally leads to
higher recall values since replicas of the same item within
the results set are ignored. Conversely, publishing multi-
ple copies of the same item does not benefit this metric.
Note that average QDR is exactly PFi,hybrid as computed
by Equation (1).

In summary, both Figures 11 and 12 show that there is a
diminishing return in the increase of the query recall as the
replica threshold becomes larger. Thus, there is little bene-
fit in publishing items that are already popular. In addition,
these plots suggest that the hybrid system works well even
when only the very rare items are published. For example,
publishing only items with one or two replicas, raises the
average QR and average QDR to 68% and 93%, respec-
tively, for a horizon percentage of 15%.

6.3 Rare Items Schemes

In the previous section we have assumed that all items with
a number of replicas smaller or equal to the replica thresh-
old are published into the DHT. This represents the best one
can do in terms of query recall subject to publishing cost
constraints. For this reason, we refer to this scheme as the

439



 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20

P
ub

lis
hi

ng
 O

ve
rh

ea
d 

(%
 It

em
s)

Replica Threshold

Figure 10: Publishing Overhead (% of
items published) vs Replica Threshold.
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Replica Threshold
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Figure 12: Average Query Distinct Re-
call vs Replica Threshold
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Average Query Recall for different Pub-
lishing Overhead (% of items published).
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ferent Publishing Overhead (% of items
published).
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Perfect publishing scheme. Unfortunately, this scheme is
not practical, as it requires knowledge of all replicas stored
in the system. In this section, we evaluate the publish-
ing schemes described in Section 5: Term Frequency (TF),
Term Pair Frequency (TPF) and Sampling (SAM)6. In addi-
tion the Perfect scheme, we consider a Random publishing
scheme, where each item is randomly published into the
DHT irrespective of its number of replicas. We use the Per-
fect publishing scheme as an upper bound, and the Random
publishing scheme as a lower bound for evaluating our pub-
lishing schemes.

Figure 13 shows the average QR achieved for each
scheme, given the publishing overhead (percentage of items
published) for a search horizon of 5%. The publishing over-
head is the “publishing budget” available to the hybrid sys-
tem. For a given budget, a good scheme that avoids false
positives and false negatives will identify a set of least repli-
cated items to be published. To vary the publishing budget
in this experiment, we adjusted the Replica Threshold, Term
Frequency Threshold, Term Pair Frequency Threshold and
Sample Threshold for the respective schemes. We assume
that SAM samples 15% random nodes, and we denoted it
by SAM (15%).

As expected, the average recalls of all schemes lie be-
tween Perfect (best) and Random (worst) recalls. SAM
(15%) has the highest average query recall among all

6Due to the lack of sufficient queries to train the Query Results Size
(QRS) scheme, we omitted evaluating the scheme.

schemes, achieving nearly the same average query recall
as the Perfect recall when the publishing overhead exceeds
50%. TP and TPF perform similarly for large publishing
overheads (> 50%). For low publishing overheads (50%),
TP performs better than TPF. Both TP and TFP provide a
noticeable improvement over Random. For example, when
the publishing overhead is 50%, the average query recall of
both schemes is 70%, which represents a 40% improvement
over Random.

Figure 14 shows the same experiment as above, but mea-
suring average QDR instead the average query recall. The
results are similar. For large publishing overheads (i.e.,
> 50%), SAM (15%) preforms as well as Perfect. Sim-
ilarly, TPF performs worse than TF for a low publishing
overheads (< 30%), and better than TF for publishing over-
heads larger than 30%.

We summarize our observations below:
• Term Frequency schemes work relatively well, and are

attractive due to modest storage requirements to keep
term statistics. In our traces, there were 38, 900 dis-
tinct terms and 193, 104 distinct adjacent term pairs.
A typical PC can easily accommodate data sets that
are one or even two order of magnitude higher than
what we observed. To further reduce storage require-
ments one could use Bloom filters [17] to encode these
sets. TPF is more effective than TF, except for low
publishing overheads, where a large number of term
pairs with low counts leads to poorer accuracy when
the Term Pair Frequency Threshold is small.
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• SAM has the best query recall, but this comes at the
expense of non-trivial sampling overhead. For exam-
ple, in a 100, 000 node network, SAM (15%) needs
to sample about 15, 000 nodes. There are three solu-
tions to alleviate this problem. First, we can reduce
the number of nodes that are sampled. Figure 15 sug-
gests that this is a good approach. SAM performs only
marginally worse when reducing the percentage of
nodes sampled from 15% to 5%. Second, the sampling
can be aggregated using ultrapeers, where each ultra-
peer aggregates the file information of its leaf nodes,
and is responsible for sampling other nodes through
their ultrapeers. This technique would reduce the sam-
pling overheads by a factor k, where k is the average
number of leaf nodes supported by an ultrapeer. Third,
the sampling can be done over a long period of time by
monitoring the files via the Gnutella traffic, at the ex-
pense of being less accurate.

7 Implementation and Deployment

Figure 16: Strawman Deployment on a selected set of Ul-
trapeers

In this section we report on our initial deployment of
the hybrid design we motivated above. Our goal in deploy-
ing a real implementation were to ensure that PIERSearch
worked on live Gnutella queries at a non-trivial scale, and to
get initial validation of our hypotheses about the benefits of
the design. To evaluate the hybrid design, we deployed fifty
hybrid LimeWire/PIERSearch clients on PlanetLab, which
participate on the Gnutella network as ultrapeers. Figure 16
shows the partial deployment used in our experiments on
PlanetLab. Unlike a full deployment scenario where all
nodes in the system must be upgraded to run our hybrid
ultrapeer, our deployment was feasible (given PlanetLab)
and backward-compatible with the installed Gnutella base.
Though our deployment is modest compared to Gnutella in
the large, we will see that it provides significant benefits.
Each hybrid ultrapeer that we deployed consists of the fol-
lowing main components (Figure 17):
• Gnutella Ultrapeer. The Gnutella Ultrapeer is based

on our modified LimeWire Ultrapeer (Section 4). It
participates in the Gnutella network, and from the per-
spective of other Gnutella nodes in the network, the
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Figure 17: Hybrid Client Implementation on a Single PlanetLab
node.

hybrid ultrapeer behaves like an ordinary Gnutella ul-
trapeer. Our modified Limewire ultrapeer forwards
both file information and queries to the Gnutella proxy
described below. The file information is gathered via a
number of mechanisms: we fetch the list of local files,
fetch lists of files at neighboring nodes (accessible via
Gnutella’s BrowseHost API), and snoop file informa-
tion that the LimeWire ultrapeer sees in the responses
to queries it forwards on behalf of the Gnutella net-
work7. The queries are also snooped from the Gnutella
traffic, and can be queries issued by the leaf nodes of
the local ultrapeer, or queries forwarded by the ultra-
peer on behalf of neighboring ultrapeers.

• Gnutella Proxy. The proxy accepts queries and file
information from the Gnutella ultrapeer. The file infor-
mation is filtered for rare items, which are sent to the
PIERSearch client. Queries are also selectively sent
by the proxy to be reissued via the PIERSearch client.

• PIERSearch client. The PIERSearch client receives
rare items from the Gnutella proxy, and constructs the
Item and Inverted tuples which are published into the
DHT. Similarly, it receives queries from the proxy, for-
mulates the query described in Section 3, which it then
sends to PIER for execution.

• PIER client. Our DHT-based query engine, PIER uti-
lizes the Bamboo [21] DHT. Hence, the hybrid client
participates in two separate networks: the Gnutella
network and the Bamboo DHT overlay.

In our deployment, each LimeWire ultrapeer monitors
query results from its regular Gnutella traffic. These query
results are responses to queries forwarded by the ultrapeer.
Query results that belong to queries with fewer than 20 re-
sults are identified as rare items, and sent to PIERSearch
for publishing. This scheme is based on the QRS rare item
scheme (Section 5), which we chose because it is easy to
implement in the partial deployment model.

We begin by describing the behavior of PIERSearch
publishing in our experiments. The publishing rate we ob-
served was approximately one file per 2-3 seconds per node.
Each published file and corresponding posting list entries
incurred a bandwidth overhead of 3.5 KB per file. We also

7In a full-deployment scenario, forwarded query results would not need
to be sent to the proxy as each ultrapeer would be only responsible for
indexing files for itself and its leaves.
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tested the InvertedCache option, which increased the pub-
lishing overhead to 4 KB per file. A large part of the band-
width consumption in PIERSearch publishing today is due
to the overheads of Java serialization and self-describing
tuples in PIER, both of which could in principle be elimi-
nated.

Next, we consider the latency benefits that PIERSearch
brought to Gnutella in our deployment. We tested the hy-
brid search technique in PlanetLab on 1739 leaf queries of
the hybrid ultrapeers. In our implementation, leaf queries
that return no results within 30 seconds via Gnutella are
considered to have “timed-out”, and are re-queried by
PIERSearch. In our experiments, PIER executed the query
and returned the first result within 10 seconds with the In-
vertedCache option, and 12 seconds without. While de-
creasing the timeout to invoke PIER would improve the ag-
gregate latency, this would also increase the likelihood of
issuing queries in PIER. As part of our future work, we plan
to study the tradeoffs between the timeout and query work-
load.

Note that the average latency for these queries to re-
turn their first result in Gnutella is 65 seconds (see Fig-
ure 7). Hence, the hybrid approach with a 30-second time-
out would reduce the latency by about 25 seconds.

We also measured the bandwidth overheads of querying
with PIERSearch. Using the InvertedCache option, each
query needs to be sent to only one node. The cost of each
query is hence dominated by shipping the PIER query it-
self, which is approximately 850 bytes. The distributed join
algorithm incurs an average of 20 KB overhead for each
query. Considering these numbers as well as the publishing
costs and latencies reported above, the benefits of reduc-
ing per-query bandwidth seem to outweigh the publishing
overheads of storing the filename redundantly, making In-
vertedCache a more attractive option for our scenario.

Finally, we consider the benefits in answer quality that
resulted from our partial deployment. Our experiments
show that the hybrid solution reduced the number of queries
that receive no results in Gnutella by 18%. This reduc-
tion serves as a lower bound of the potential benefits of the
hybrid system. The reason why this value is significantly
lower than the potential 66% reduction in the number of
queries that receive no results is twofold:

• Unlike the Gnutella measurements reported in Section
4.2 where queries are proactively flooded from many
ultrapeers, in our experiment, we consider only the
files that are returned as results to previous queries.
Thus, this scheme will not return the rare items that
were not queried during our experiments. Employing
other schemes for identifying rare items described in
Section 5 in conjunction with peers proactively pub-
lishing their list of rare items should considerably
boost the benefits of the hybrid infrastructure.

• As the number of clients that implement our scheme
increase, we expect the coverage to improve as well.
The coverage would be even better in a full-fledged
implementation in which each ultrapeer would be re-
sponsible for a set of leaf nodes from which they
would identify and publish rare items.

8 Related Work
A survey of distributed database research can be found
in [18]. To our knowledge, the distributed database sys-
tem that targeted the largest number of nodes was Mariposa,
which envisioned scaling to “1,000 sites or more” [25]. Of
course the distributed database literature typically targets
much broader functionality than what is offered in peer-to-
peer filesharing, including flexible schemas, general SQL
queries, and transactional storage.

A goal of our work on PIER is to study the chal-
lenges in scaling to many more nodes, while relaxing
some of the design requirements of traditional distributed
databases [11, 12]. Our current incarnation of PIER uses the
Bamboo DHT [21], not the CAN DHT described in earlier
papers. The simple join algorithm we describe in Section 3
of this paper is also not discussed in our earlier papers; it
arose naturally in the context of filesharing workloads.

The seeds of this paper were presented in a recent work-
shop [16], including some of the Gnutella measurements
we present here in Section 4. The workshop paper focused
largely on the case for building a hybrid search infrastruc-
ture. In this paper, we expand upon the workshop paper
significantly by presenting the architecture, implementation
and deployment results for our PIER-based hybrid ultra-
peers. This paper proposes and analyzes solutions to identi-
fying rare items, a problem that was left unsolved in the ear-
lier paper. The Gnutella results we present here also flesh
out some issues that were unclear in the workshop paper,
including the separation of the QR and QDR metrics, and
results for the QDR metric.

A recent study [4] has shown that most file downloads
are for highly-replicated items. One might think that their
findings contradict our analysis in Section 4.2 that shows
that queries for rare items are substantial. However, the
two studies both correctly reflect different aspects of the
Zipfian distributions. Their study shows the head of the
Zipfian popularity distribution, and hence they measure the
download requests based on the items that match the top
50 query requests seen. In contrast, our study focuses on
the long tail of the distribution as well. While individual
rare items in the tail may not be requested frequently, they
represent a substantial fraction of the query workload, and
are therefore worth optimizing.

There have been other recent proposals for P2P text
search over DHTs [26, 6]. A feasibility study on DHT-
based P2P web search [14] focuses on the more demand-
ing web corpus (3 billion documents) and a larger query
rate (1000 queries per second). There has also been work
done on optimizing search performance in unstructured net-
works [4, 27, 5], mostly to address the shortcomings of
flooding. Our hybrid infrastructure offers a simple alter-
native to either optimizing searching in structured or un-
structured networks, by combining the strengths from both
networks.

As an alternative to our hybrid infrastructure, there is a
proposal [3] to build a Gnutella-like network where nodes
are organized using a structured overlay. The authors argue
that building Gnutella using structured overlays lead to im-
proved performance of floods and random walks, and also
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can be used to reduce maintenance overheads.

9 Conclusion
In this paper, we have presented PIERSearch, a P2P search
engine that utilizes PIER, a DHT-based query processor.
We proposed a hybrid search infrastructure that utilizes
flooding for popular items and PIERSearch for indexing
and querying rare items. To support our case, we performed
live measurements of the Gnutella workload from differ-
ent vantage points in the Internet. We found that Gnutella
is highly effective for querying popular content, but inef-
fective for querying rare items. A substantial fraction of
queries returned very few or no results at all, despite the
fact that the results were available in the network.

A key challenge for the hybrid search infrastructure is
in identify rare items for publishing. Using a model for
hybrid search and Gnutella traces, we study the tradeoffs
of improving query recall and publishing overheads intro-
duced by the hybrid infrastructure. Our experiments show
that building a partial index over the least replicated items
can improve query recall dramatically, especially when the
query does not require multiple copies of the same item
within its results set. On top of that, there are diminishing
returns for indexing more popular items in the DHT that
can already be found via flooding.

Based on our model and Gnutella traces, we also com-
pare different schemes for identifying rare files for selective
publishing by the hybrid nodes into the DHT. Our evalua-
tion shows that the localized schemes that we proposed for
identifying rare items compare favorably to a perfect base-
line that assumes global knowledge of the system. Our de-
ployment of fifty hybrid ultrapeers on Gnutella shows that
our hybrid scheme has the potential to improve the recall
and response times when searching for rare items, while in-
curring low bandwidth overheads.
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