

Instance-based Schema Matching for Web Databases
by Domain-specific Query Probing

Jiying Wang*

Computer Science
Department

Hong Kong Univ. of
Science and Technology

Hong Kong

cswangjy@cs.ust.hk

Ji-Rong Wen

Information
Management & System

Group
Microsoft Research Asia

Beijing, China

jrwen@microsoft.com

Fred Lochovsky

Computer Science
Department

Hong Kong Univ. of
Science and Technology

Hong Kong

fred@cs.ust.hk

Wei-Ying Ma

Information
Management & System

Group
Microsoft Research Asia

Beijing, China

wyma@microsoft.com

Abstract
In a Web database that dynamically provides
information in response to user queries, two distinct
schemas, interface schema (the schema users can
query) and result schema (the schema users can
browse), are presented to users. Each partially reflects
the actual schema of the Web database. Most previous
work only studied the problem of schema matching
across query interfaces of Web databases. In this
paper, we propose a novel schema model that
distinguishes the interface and the result schema of a
Web database in a specific domain. In this model, we
address two significant Web database schema-
matching problems: intra-site and inter-site. The first
problem is crucial in automatically extracting data
from Web databases, while the second problem plays
a significant role in meta-retrieving and integrating
data from different Web databases. We also
investigate a unified solution to the two problems
based on query probing and instance-based schema
matching techniques. Using the model, a cross
validation technique is also proposed to improve the
accuracy of the schema matching. Our experiments on
real Web databases demonstrate that the two problems
can be solved simultaneously with high precision and
recall.

1. Introduction
Besides web pages crawlable by specific URLs, the Web
also contains a vast amount of non-crawlable content.
This hidden part of the Web is comprised of a large

number of online Web databases consisting of a
searchable interface (usually an HTML form) and a
backend database, which dynamically provides
information in response to user queries [5] [13]. As
compared to the static surface Web, the hidden Web
contains a much larger amount of high-quality (often
structured) information [8].

In the hidden Web, it is usually difficult or even
impossible to directly obtain the schemas of the Web
databases without cooperation from the web sites. Instead,
the web sites present two other distinct schemas, interface
and result schema, to users (Figure 1). The interface
schema presents the query interface, which exposes
attributes that can be queried in the Web database. The
result schema presents the query results, which exposes
attributes that are shown to users. The interface schema is
useful for applications, such as mediators, that query
multiple Web databases, since they need complete
knowledge about the query interface of each database.
The result schema is critical for applications, such as data
extraction, which extract instances from the query results.
In addition to the importance of the interface and result
schemas themselves, attribute matching1 across different
schemas is also important. First, matching between
different interface and result schemas (i.e., inter-site
schema matching) is critical for meta-searching and data-
integration among related Web databases. Second,
matching between the interface and result schema of a
single Web database (i.e., intra-site schema matching)
enables automatic data annotation and database content
crawling. Therefore, in this paper we focus on
automatically discovering both the interface and result

* This work was carried out when the author was visiting at

Microsoft Research Asia.
1 Attribute matching is the process of determining the semantic

correspondences among the attributes of two schemas.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

408

schemas of Web databases and matching semantically-
related attributes between them.

Previous approaches [16], [17], [21] to Web database
schema matching primarily focus on matching query
interfaces (i.e., on inter-site interface schema matching).
The basic idea is to identify attribute labels from the
descriptive text surrounding interface elements and then
find synonym relationships between the identified labels.
The performance of these approaches may be affected
when no attribute description can be identified or the
identified description is not informative (e.g., “Search” in
the homepage of Amazon.com). In contrast, in this paper
we propose a novel instance-based schema matching
approach, motivated by the necessity to identify the result
schemas of Web databases that often lack available
attribute names or labels and the goal of simultaneously
solving inter-site and intra-site schema matching.

Our approach is mainly based on three observations
about Web databases. First, improper2 queries often cause
search failure or no returned results. Second, the
keywords of proper queries that return results very likely
reappear in the returned results’ corresponding attributes.
Third, there is an underlying global schema3 for related
Web databases in the same domain (proposed and verified
in [16]). Accordingly, we introduce a query probing
technique that first exhaustively sends query keywords
residing in a domain-specific global schema, whose
semantics are known in advance, then analyzes the re-
occurrences of submitted query keywords in the returned
result data, and finally identifies the semantically
corresponding attributes from both the interface and result
schemas based on the previous analysis.

Using a domain-specific global schema, we present a
combined schema model that can describe five kinds of
schema matching for Web databases in the same domain:
global-interface, global-result, interface-result, interface-
interface, and result-result. The model not only describes
the matching relationships among different schemas of
Web databases in a specific domain, but, more
importantly, also provides a global view about how to
reinforce the matching accuracy by conducting multiple
kinds of schema matching simultaneously. Using the
model, we also present a cross validation technique that
improves the accuracy of the schema matching results.

The main contributions of this paper are:
• Introduction of a novel schema model of a single Web

database that distinguishes what information users can
query and what information users can browse.

• Introduction of a generative view that includes five
kinds of schema matching for related Web databases
in a specific domain.

2 “Proper” means that the semantics of the query keywords

match the semantics of the input element.
3 The global schema is a view capturing common attributes of

data in the specific domain.

• Introduction of an instance-based method based on
domain-specific query probing, along with mutual
information and vector similarity analysis, to
automatically match various schemas of Web
databases (intra-site and inter-site).

• Benefiting from the above generative view,
introduction of a cross validation technique based on
an approximate solution of the graph partitioning
problem to improve the accuracy of different kinds of
schema matching.
The rest of this paper is organized as follows. In

section 2, we present our model with five schema
matchings for Web databases. In section 3, the domain-
specific query probing technique is introduced. We
propose, in section 4, an instance-based schema matching
approach with a cross validation technique, to solve both
the intra-site and inter-site schema matching problems at
the same time. Section 5 presents the experimental results
of testing our approaches on real Web databases. Section
6 reviews existing work on the schema matching problem
and how it correlates with our approach. Finally, we give
our conclusions and future work in section 7.

2. Combined Schema Model
A Web database is usually comprised of a query interface
and a backend database. When a user query is submitted
through the query interface, the site accesses its backend
database for relevant data and returns the results to the
user. Specifically, the query interface of the Web database
usually contains multiple input elements, each of which
may be associated with a schema attribute of the backend
database. Data objects that the Web database returns to
users are usually semi-structured, as their attribute values
are encoded into HTML tags. Therefore, both the Web
database interface and the returned results partially reflect
the schema of the backend database, but in different ways.

For instance, Figure 1 shows an example of an online
bookstore4 . The part labelled Data Attributes shows a
possible schema of the backend database consisting of
six 5 attributes {Title, Author, Publisher, ISBN, Format,
Publication Date}. The part labelled Interface shows the
query interface, which contains five input elements with
surrounding text describing their semantics. When the
keyword query “Harry Potter” is submitted through the
“Title” element in the interface, a result page is returned
by the web site containing its answer to the query
(labelled Result in Figure 1 and containing three book
instances with associated attribute values).

From this example we can clearly see the difference
between the attribute information contained in the query
interface and that contained in the result pages. Although
the site may provide an element in the interface for users
to search on a particular data attribute (e.g., “ISBN”

4 http://www.mysimon.com/
5 The exact number is not known.

409

element), this attribute’s data values may not appear in the
result pages. Likewise, the returned results may have
attributes that users cannot query in the interface (e.g.,
Publisher attribute). Furthermore, Figure 1 shows three
kinds of semantic correspondence represented by different
line styles (dotted, dashed and solid). They are
respectively, the correspondence between data attributes
of the primary schema and elements in the query interface
, the correspondence between the data attributes of the
primary schema and instance values in the result pages,
and the correspondence between elements in the query
interface and instance values in the result pages.

In the deep Web, the primary schema of a Web
database is hard to obtain directly as it is hidden behind
query interfaces. However, previous work [16] makes the
significant observation that, by examining the query
interfaces of Web databases, an underlying generative
global schema can be discovered for related Web
databases in a specific domain. Thus, we introduce a
global schema (i.e., a view capturing common attributes
of data in the specific domain.) to substitute for the
primary schema of the Web database and propose a
combined 3-layer schema model for matching the
schemas of Web databases. Besides its availability,
another advantage of introducing a global schema is that it
simplifies the process of matching schemas of different
Web databases in the same domain as they share the same
global schema.

Formally, we define a schema as a set of attributes,
each of which corresponds to some unique meaning. In
our model, the Web databases can be categorized into a

number of domains, where Web databases in the same
domain provide information about the same type of
product (e.g., Book or Used-car) or on the same topic
(e.g., Job). In each specific domain, there exists a unified
global schema (GS) representing the common knowledge
about the domain. In addition, each Web database in this
model consists of two different schemas, the interface
schema (IS) and the result schema (RS) (illustrated in
Figure 2 as nodes). In particular, the global schema
consists of the representative attributes of the data objects
in this domain. The interface schema of an individual
Web database consists of data attributes over which users
can query, while the result schema consists of data
attributes that users can browse. The three schemas of a
Web database all partially represent the data objects
contained in the backend database, varying only on the
number of attributes and attribute names.

A matching between two schemas S1 and S2
determines that certain attributes of schema S1
semantically correspond to certain attributes of schema S2.
For an individual Web database, there exist three kinds of
intra-site schema matching, between GS and IS, between
GS and RS, and between IS and RS (illustrated in Figure
2 as edges between heterogeneous nodes of each single
site). Furthermore, given multiple Web databases in the
same domain, the interface schemas of different Web
databases can also be pair-wise matched (between IS and
IS), as can the result schemas of different Web databases
(between RS and RS). Such inter-site schema matching is
illustrated in Figure 2 as dashed edges between
homogenous nodes of different sites.

Figure 1. An example of a Web database with its search interface and result page.

410

The benefits of such a model are that it allows us to:
• Automatically understand the semantics of schema

attributes. If the attribute semantics of one particular
schema are accurately identified or known beforehand,
then the attribute semantics of other schemas can also
be discovered as long as they are correctly matched to
an identified one. Even if the semantics of one
particular schema are somehow wrongly identified in
a matching with another schema, there is still
opportunity for correction when it is matched to other
schemas.

• Automatically extract relevant content from Web
databases. Crawling the massive information hidden
behind the query interfaces of Web databases is a
major problem for the Web search community.
Automatic understanding of interface schemas can
make it possible for crawlers to intelligently submit
“appropriate” queries into the right input elements.
Furthermore, automatic understanding of result
schemas can make it possible for crawlers to
intelligently obtain valid query results according to
their semantics (i.e., to automatically extract relevant
Web database content).

• Meta-search multiple Web databases. In this model,
related Web databases are categorized by their
domain. With a meta-search interface built for each
domain, users can simultaneously search multiple
Web databases of the domain. Given a user query, first
some promising Web databases that may contain
relevant information are picked and then queries are
sent to these Web databases according to the identified
semantics of their query interfaces. Finally, their query
results are integrated and displayed to users according
to the match among their result schemas.

3. Domain-specific Query Probing
Database schema matching is the task of finding
mappings between attributes of two schemas that
semantically correspond to each other [3]. Previous
approaches to schema matching can be categorized into
two classes, label-based and instance-based, according to
the different information on which they rely (see [22] for
a survey). Label-based methods only consider the
similarity between schema definitions or attribute labels
of two databases. Instance-based methods, such as [12]
and [18], depend on the content overlap or statistical
properties, such as data range and pattern, to determine
the similarity of two attributes.

Recent work ([16], [17], and [21]) on matching query
interfaces of Web databases fall into the first category,
based on identifying the descriptive text surrounding
interface elements as the attribute labels and finding
synonym relationships between the labels. Such methods
are not stable and robust in the Web context as no
description may exist or the identified description may not
be informative. On the other hand, instance-based schema
matching has seldom been employed in the deep Web
scenario because of the difficulty of automatically
acquiring database contents hidden behind query
interfaces. Paradoxically, a key prerequisite for automatic
data acquisition from the deep Web is to understand the
semantics of query elements.

Different from the previous work, our goal is to
understand and match not only interface schemas but also
result schemas of Web databases. Consequently, the label-
based matching approach is insufficient and even
inapplicable due to the frequent lack of explicit attribute
labels and descriptions in result pages. Therefore, we
propose an instance-based solution to this problem. We

Figure 2. Global view of the Deep Web and combined schema model of Web databases.

411

first submit semantically pre-identified query keywords
through query interfaces (section 3.2). After obtaining
returned result data, we then analyze the results to
understand the semantics of both the query interfaces and
data attributes, as well as to match the homogeneous
schemas of different Web databases (section 4).

3.1 Observations
During the interaction with Web databases, we observe
two interesting phenomena.

On the one hand, when an improper query is
submitted to a Web database there are often few results or
even no results returned. Improperness here means the
query keywords submitted into a particular element are
not applicable values of the database attribute to which
the element is associated. Taking the Web database shown
in Figure 1 as an example, the site reports only 4 matches
for the query “Harry Potter” when submitted through the
“Author” element, while it reports 228 matches for the
same query when submitted through the “Title” element.
On the other hand, we observe that when a proper query
that returns a result web page is submitted through the
input elements of a Web database, then the query
keywords very likely reappear in the returned result’s
corresponding attributes. For example, in Figure 1, when
we submit query “Harry Potter” through the “Title”
element, the three returned book instances all contain the
query keywords (i.e., “Harry Potter”) in their Title
attribute.

Generally, how many times the keywords for a query
re-appear in the result pages and where they appear tell us
important information about both the interface schema
and the result schema. Specifically, if we employ the
values of some semantically pre-identified data attributes
as queries to submit into a Web database, we can
accomplish two tasks. First, the re-occurrence of the
query keywords in the returned results can be used as an
indicator of which query submission is appropriate (i.e., to
discover semantically associated elements in the interface
schema). Second, the position or location of the submitted
query keywords in the result pages can be used to identify
the semantically associated attributes in the result schema.

3.2 Query Probing
Given some target Web databases in a specific domain,
our query probing process aims to send domain-specific
queries to these target Web databases and collect their
returned results for later analysis.

To accomplish this task, we make two assumptions
about the query probing process. First, a global schema
for the specific domain is pre-defined or pre-generated.
Second, a number of sample data objects under the
domain global schema are also available. In fact, global
schema generation over information sources to
conceptualize the underlying domain is an interesting
problem. Proposed approaches rely on either the names of

the schema elements and the structure of the schema ([7]
and [16]) or formal ontologies ([4] and [15]). We consider
this problem as a separate research direction and do not
deal with it in this paper. In our experiments, we manually
define the global schema and collect sample instances. In
future work, we plan to implement one of the previously
proposed approaches to automatically generate a global
schema over a sample set of Web databases and then map
new Web databases to the generated global schema.

3.2.1 Workflow
We show in Figure 3 the workflow of an automatic
probing process. Given the Web database with its query
interface, an element identification component first
locates qualified input elements in the query interface.
Equipped with instances under a global schema, a query
submission component then exhaustively submits the
attribute values of pre-known instances into those
identified input elements. After collecting the returned
results for all submitted queries, a wrapper induction
component induces a regular-expression wrapper
composed of HTML-tags. Next, a data extraction
component employs the induced wrapper to extract
structured data objects from query result pages and
arrange them into a data table. Finally, the re-occurrences
of submitted queries in the columns of this table are
counted and stored into a query occurrence cube, which
will be introduced in the next subsection.

Figure 3. Flow of the query probing process and the
query occurrence cube.

412

Given a Web database, the first task is to identify
input elements in its query interface, which can be done
by searching for the input-related tags 6 in a HTML
searchable form. In the HTTP protocol, a query
submission is carried out by sending a query request to
the server containing the names of input elements and
their corresponding query keywords. In this paper, we
only submit one value to one element each time while
keeping the default values for the other elements. We will
consider the complex submission of querying multiple
elements at one time in future work.

For each TEXTBOX element in HTML forms, as we
do not know its value domain, we exhaustively try all the
attribute values from the given sample instances. For each
SELECT element, its domain values are limited to its
OPTION elements (i.e., we can only choose one or more
of its OPTION values as the query keywords). Thus, for
each attribute value of the given instances, we try to find
and submit an option “similar”7 to the value. For other
elements like CHECKBOX and RADIOBOX, the process is
similar. As a consequence, the maximum submission time
will be the product of the number of attributes in the
global schema, the number of provided sample instances
and the number of interface elements considered.

After sending queries to the identified interface
elements and collecting returned result pages from the
Web database, the next task is to extract structured data
from the pages. While dealing with hundreds or possibly
thousands of Web databases in one domain, each of which
encloses its data in the result pages according to some
specific HTML-tag structures, how to automatically
extract data objects from the pages is a very challenging
problem that has attracted increasing research interest.
Recently, attempts have been made to develop fully
automatic approaches for inducing wrappers to extract
embedded semi-structured data content from dynamic
template-generated HTML pages [1], [9], [10], [23].
Discussion of these approaches is beyond the scope of this
paper and interested readers are referred to the above
papers for further information.

In this paper, we choose our previous work [23] to
induce a regular-expression wrapper based on nested
repeated-pattern discovery in HTML pages. We also
employ the data extraction module of [23] to extract the
enclosed data objects into a table so that each column of
the result table corresponds to one attribute of the returned
result (i.e., of the result schema).

6 Please refer to the HTML specification [24].
7 The attribute value and the option value (two text strings) are

similar as long as they contain at least one common keyword.

3.2.2 Query Occurrence Cube
After counting the re-appearance of each submitted value
in the query results, a Query Occurrence Cube (QOCube)
is constructed for the target Web database, as shown in
Figure 3. The cube height represents the number of
attributes in the given global schema. The cube width
represents the number of interface elements considered
(i.e., attributes of the interface schema). The cube depth is
the number of columns in the result table (i.e., attributes
of the result schema). Moreover, each cell in this cube
stores an occurrence count associated with the three
dimensions. For example, in Figure 3, cell<1, 2, 0> equal
to 55 means that when all given values for the 1st attribute
of GS are submitted to the 2nd element of IS, the query
keywords re-appear 55 times in the 0th column of RS.

Conveniently, the constructed QOCube provides a
unified solution to match the 3 pairs of Web database
schemas. The 3-dimensional cube can be easily projected
onto three Query Occurrence Matrices (front, top and
left), which exactly reflect the relationship between pairs
of the three schemas (i.e., IS and GS, IS and RS, and GS
and RS). Suppose the number of attributes in the global
schema is N, the number of elements in the interface
schema is M, and the number of columns in the result
table is L. Once a projection function is selected, say sum,
the 3-dimensional cube QOCN×M×L can be projected into
three 2-dimensional occurrence matrices, OMIG

M×N for IS
and GS, OMIR

M×L for IS and RS, and OMGR
N×L for GS and

RS. The main research issue now becomes how to find the
correspondence between a pair of schemas in the
projection matrices.

4. Instance-based Schema Matching

4.1 Intra-site Schema Matching
In this section, we focus on how to match the attributes
between IS and GS, IS and RS, and GS and RS based on
the obtained matrices: OMIG

M×N, OMIR
M×L, and OMGR

N×L.
An example8 of OMIG

5×4 is shown in Example 1 with
the correct matching in the gray rectangles, when GS =
{TitleGS, AuthorGS, PublisherGS, ISBNGS} and IS =
{AuthorIS, TitleIS, PublisherIS, KeywordIS, ISBNIS}.
EXAMPLE 1:

45258000
275143248120
246818462
0501345451
053449893

×
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
TitleIS

TitleGS AuthorGS

AuthorIS

PublisherIS

PublisherGS ISBNGS

KeywordIS

ISBNIS

In fact, there are some properties of the occurrence

matrix to consider when searching for the correspondence

8 All examples in this section are obtained from real Web

databases in our experiments.

413

or correlation between its rows and columns that represent
the attributes of the two schemas. First, an absolute high
occurrence may not represent a correct matching. For
example, the matrix element for AuthorIS and PublisherGS
(534) has the highest value in the matrix while AuthorIS
and PublisherGS do not semantically correspond to each
other. Second, given a particular matrix element mij, its
relative value (magnitude) among all elements for its row
i and column j is more important than its absolute value.
For example, for KeywordIS, which is in fact not a real
attribute for book objects, its similar performance on all
columns indicates that it may not be a good match for any
one of the columns. The matrix element for PublisherIS
and PublisherGS (468) does not have the highest value
among the elements for PublisherGS. However, it is
relatively larger than the values of other matrix elements
in the row for PublisherIS.

Interestingly, we can view the schema-matching
problem as follows. By sending sample queries, a part of
the database content relevant to the queries is fetched
from the Web database. For any two schemas, S1 and S2,
of one Web database, the obtained database content can
be partitioned according to the attributes of S1 and S2,
respectively. Suppose the partitions by the attributes of S1
are A1, A2, … An and the partitions by the attributes of S2
are B1, B2, … Bm. The element mij in the occurrence
matrix for S1 and S2 actually indicates the content overlap
between partitions Ai and Bj with respect to the
occurrences of submitted values re-appearing in the two
partitions. The schema-matching problem now becomes
that of finding the pair of partitions that belong to two
schemas (e.g., Ai and Bj) such that their overlap with each
other is more than their overlap with other partitions
belonging to the opposite schema (e.g., Ai and Bk or Ak
and Bj).

To help solve this problem, we employ the concept of
mutual information, which interprets the overlap between
two partitions X and Y of a random event set as the
“information about X contained in Y” or the “information
about Y contained in X” [20].
DEFINITION 1: Suppose X and Y are two partitions over
a collection of events, and xi and yj are partition elements
of X and Y with joint probability p(xi, yj) and respective
marginal probability p(xi) and p(yj). The mutual
information of the partition X and Y is

∑∑=
i j ji

ji
ji))p(yp(x

),yp(x
),yp(xYXI log);(

Accordingly, we can estimate the mutual information
between a pair of attributes from two schemas using the
following definition.
DEFINITION 2: Given a query occurrence matrix

JI
SSOM ×21 of two schemas S1 and S2, the estimated mutual

information (EMI) between the ith attribute of S1 (say Ai)
and the jth attribute of S2 (say Bj) is

M
m

M
m

M
ijm

M
ijm

BAEMI
ji

ji
++ ∗

= log),(

with M being ∑
ji

ijm
,

, mi+ being ∑
j

ijm and m+j being

∑
i

ijm . Note that if mij equals to 0, EMI is assumed to be

0 as well.
Thus, the occurrence matrix in Example 1 can induce

the EMI matrix shown in Example 2, with each matrix
element being the estimated mutual information value for
the corresponding schema attributes.
EXAMPLE 2:

45055.0000
029.0011.0001.0002.0
001.0025.0003.0004.0

0001.0005.0033.0
0010.0019.0007.0

×⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−

TitleGS AuthorGS PublisherGS ISBNGS

TitleIS

AuthorIS

PublisherIS

KeywordIS

ISBNIS

To find a 1-1 attribute matching of the two schemas is
easy in the EMI matrix. If one matrix element is larger
than the other elements in the same row and also larger
than the other elements in the same column, its related
attributes will have a larger overlap between each other
than their overlap with other attributes of the other
schema, as shown by the gray rectangles. For example,
EMI(AuthorIS, AuthorGS) = 0.019 is the largest value in
both its row and its column and it is a correct match.
Therefore, we propose the following definition to quantify
the intra-site schema matching.
DEFINITION 3: Assume two schemas S1 and S2 with the
corresponding EMI matrix [eij]. The ith attribute of S1
matches with the jth attribute of S2 if

jkee ikij ≠≥ | and ikee kjij ≠≥ | .

4.2 Inter-site Schema Matching
In this section, we focus on how to find the corresponding
attributes for homogeneous schemas, namely, IS and IS,
and RS and RS, of different Web databases.

Borrowing the idea of vector similarity used in the
Vector Space Model of Information Retrieval [2], we
propose an approach to match interface/result schemas of
different Web databases by computing their vector
similarity. In the vector space model, documents are
represented as vectors in a multi-dimensional space. In
this space, each dimension represents a term or concept
found in a document and the values are the corresponding
frequencies of the terms in the document. Similarity
between two vectors is measured by the cosine of the
angle between their two vectors, which is computed as the
inner product of the two vectors, normalized by the
products of the vector lengths.

414

If we consider each attribute of an individual
interface/result schema as a “document” and each
attribute of the global schema as a “concept”, then each
row in the occurrence matrix represents a corresponding
document vector. Therefore, we can calculate the
similarity (i.e., semantic correspondence) between
attributes from different schemas by measuring their
vector similarity. The following definition quantifies the
inter-site schema matching between two Web databases.
DEFINITION 4: Given two query occurrence matrices
of two Web databases’ interface/result schemas

GSOM 1 = mnija ×][and GSOM 2 = mlijb ×][with respect to
the same global schema, the estimated vector similarity
(EVS) between the ith attribute of S1 (say Ai) and the jth
attribute of S2 (say Bj) is

∑∑

∑

∗
=

k
jk

k
ik

k
jkik

ji
ba

ba
BAEVS

22
),(

To find a 1-1 attribute matching of two schemas in the
EVS matrix is the same as in the EMI matrix (Definition
3). A matrix element whose value is the largest both in its
row and column represents a match. For instance,
Example 3 shows two occurrence matrices of two
interface schemas with respect to a global schema GS =
{Title, Author, Publisher, ISBN}, where IS1 = {Author1,
Title1, Publisher1, Keyword1, ISBN1}, IS2 = {Title2,
Author2, ISBN2}. The grey rectangles depict the largest
similarity values among rows and columns, which is also
the correct matching. Interestingly, although the second
attribute of IS2, Author2, is wrongly matched to Publisher2
of GS in the previous intra-site schema matching
(underlined element in EMI matrix of S2), our method still
can find the right inter-site matching.
EXAMPLE 3:

45258000
275143248120
246818462
0501345451
053449893

×
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

4318000
040633139
0118177166

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

A1

T1

I1

T2

A2

I2

A1

T1

P1

K1

I1

K1

P1

35000.100
663.0665.0721.0
004.0952.0717.0
0843.0955.0
0996.0839.0

×
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

T2 A2 I2

Vector Similarity Matrix of S1 and S2

Occurrence Matrix of S1

Occurrence Matrix Of S2

AGTG PG IG

AGTG PG IG

4318000
0032.0006.0016.0
0020.0003.0045.0

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

EMI Matrix Of S2

4.3 Cross Validation
Given multiple Web databases in the same domain, we
can employ the techniques proposed in sections 4.1 and
4.2 to identify the matching attributes belonging to
schemas of an individual Web database and the matching
attributes belonging to schemas of different Web
databases. Consequently, we can employ the five types of
matching results (i.e., GS-IS, GS-RS, IS-RS, IS-IS and
RS-RS) to cross validate each other (i.e., to recognize
which matching is correct and which is not). In this
section, we focus on how to cross validate different
matching results produced from both inter-site and intra-
site matching. Note that in this step, we do not limit how
the schemas are previously matched (i.e., we can employ
any applicable label-based or instance-based method) as
long as the matching results are provided.

Given all the attributes from the interface schemas (or
result schemas) of the target Web databases, we can
categorize the IS (or RS) attributes into multiple clusters
with respect to the GS attributes to which they have been
matched. For example, the attributes, which are
previously matched to the attribute AG of the global
schema, are categorized into one cluster, while the
attributes, which are previously matched to the attribute
PG of the global schema, are categorized into another
cluster. Recall that attributes are also matched to each
other in inter-site schema matching. In the ideal case, an
attribute in one cluster only matches with attributes in the
same cluster. When a matching across clusters does exist
(i.e., two attributes in two different clusters have a match)
there must be a mismatch. The possible reason for the
mismatch could be either that one of the two attributes
was put into the wrong cluster or that the matching
between these two attributes is wrong.

Interestingly, if we consider the attributes as vertices
and matching between attributes as edges, we can convert
the problem of deciding which matching is incorrect into
a graph partitioning problem: given a set of vertices and
edges, divide the vertices into N partitions such that the
edge-cut is minimized. The edge-cut is the sum of the
weights (1 in this case) of all the edges between the
partitions. This graph partitioning problem is known to
be NP-hard [14]. Therefore, we can only expect
approximate solutions in general.

In our case, where there is already an initial partition
of the vertices (according to the matching results with
respect to GS), a simple approximate approach is to move
vertices over partitions as long as the number of cuts
decreases. Accordingly, a vertex v is moved to the
partition in which most of its “neighbours” reside. Since a
vertex v needs to be moved if many of its neighbours
jump, multiple passes are likely to be needed before the
process converges on a local optimum. When the process
stops, we resolve the cross cluster matching between
attributes Ai of site S1 and Bj of site S2 contained in two
clusters C1 and C2 by first discarding it and then re-

415

matching Ai to attribute Bk of site S2 clustered into C1 or
vice versa.
EXAMPLE 4:

"Author"
cluster

"Publisher"
cluster

Move

"Author"
cluster

"Publisher"
cluster

Aa

Bp

Cp

Dp

Ep

Ba

Ca

Da

Ea

Bp

Cp

Dp

Ep

Ba

Ca

Da

Ea

Aa

Aa

Example 4 illustrates one pass of such an approximate

approach. For simplicity, suppose that the global schema
only contains two attributes {Author, Publisher} and there
are five Web databases with the IS attributes IS1 = {Aa},
IS2 = {Ba, Bp}, IS3 = {Ca, Cp}, IS4 = {Da, Dp} and IS5 =
{Ea, Ep}. The two ellipses on the left depict how the
attributes are primarily clustered according to which GS
attribute they are matched (by intra-site schema
matching), and the edges between two attributes show
whether they are matched or not (by inter-site schema
matching). In the initial state, Aa is wrongly matched to
the Publisher attribute of GS and also wrongly matched to
Bp while it has been correctly matched to three other
attributes in the Author cluster. Therefore, Aa is moved to
decrease the number of edges across clusters from 3 to 1,
as shown in Example 4. By such a “moving” process, we
correct the matching attribute of Aa from the Publisher to
the Author attribute of GS. After the move, the edge
between Aa and Bp is replaced by a new edge between Aa
and Ba (the attribute of site 2 that is matched to the global
attribute Author).

Due to space limitations, we omit the detailed
algorithm for the above cross-validation technique and
only show the experimental results in the next section to
verify its effectiveness.

5. Experiments
We performed a comprehensive evaluation of the
proposed instance-based schema matching approaches on
thirty complex Web databases over two domains: Book
and Used-car. The main goal was to investigate the
feasibility of a unified and accurate solution to matching
schemas both in a single site and from different sites. We
first describe the Web databases employed for the testing.
Then we present the results for intra-site schema matching
and inter-site schema matching, and the improvement
achieved by cross validating the matching results.

5.1 Test Web Databases

For our evaluation, we used 20 Web databases for
purchasing books online and 10 Web databases for
searching for used-cars online. The global schema for the

two domains are manually defined as Book = {Title,
Author, Publisher, ISBN} and Used-car = {Make, Model,
Postal-zip, State, Price, Mileage, Year}. We also manually
collected 20 book instances and 10 car instances (details
can be found in [25]) and took their attribute values as
sample queries to be used to probe the test Web databases.
After obtaining the query result pages from each Web
database, we employed our previous work [23] on
wrapper induction to automatically extract the result
records according to their specific structures and re-
arrange them into a result table.

Table 1. Characteristics of test Web databases.

 #Interface
Elements #TS %SS #Result

Columns
#Extracted

Data

Book 4.2 343.3 32% 6.25 1322.9
Car 6.0 123.1 72% 5 995.3

The columns #TS and %SS of Table 1 represent,
respectively, the number of total submissions made to the
test Web databases and the corresponding success rate9.
The reason that the Used-car domain has a lower number
of submissions and a higher success rate than the Book
domain is because SELECT and TEXTBOX input elements
were treated differently when submitting the queries. We
exhaustively tried all the attributes of the pre-known
instances for a TEXTBOX element, while we only
submitted the OPTION values of a SELECT element if
they were found to be similar to one or more attribute
values of the pre-known instances (see section 3.2.1). In
our experiments, most of the Web databases in the Book
domain only contain TEXTBOX elements. Therefore, this
domain has a higher number of submissions, but a lower
success rate.

5.2 Matching Results
In this subsection, we report and discuss the experimental
results for both intra-site and inter-site schema matching
of the two domains. The intra-site schema matching
results are listed in Table 2. To verify the effectiveness of
our proposed instance-based matching approach (EMI)
derived from mutual information analysis, we
implemented a simple method as our baseline (MAX).
The baseline method works as follows: in the query value
occurrence matrix, the matrix element with the largest
value both among the elements in the same column and
among the elements in the same row is identified as an
attribute matching.

In our evaluation, precision and recall originating
from the information retrieval area are used as the
metrics. Precision is measured as the ratio of the number
of correctly identified matching attribute-pairs to the total
number of attribute-pairs identified by the methods.

9 A query submission is successful if the induced wrapper can

extract at least one instance from the query result page.

416

Recall is measured as the ratio of the number of correctly
identified matching attribute-pairs to the total number of
matching pairs in the two schemas. Suppose the number
of correctly identified matching attribute-pairs is C, the
number of wrongly identified matching attribute-pairs is
W and the number of correct matching attribute-pairs but
somehow missed in the approach is M, then the precision

of the approach is
WC

C
+

 and its recall is
MC

C
+

.

Table 2. Intra-site schema matching results.

IS — GS RS — GS IS — RS

P R P R P R
MAX 68% 50% 91% 81% 90% 84% Book
EMI 80% 71% 95% 88% 93% 87%
MAX 97% 63% 96% 57% 100% 67% Car
EMI 97% 64% 93% 63% 100% 73%

In Table 2, we can see that our EMI-based method
significantly outperforms the baseline method. In the
Book domain, both the EMI-based and Max-based
methods produce the worst results on IS-GS schema
matching. The reason is that Web databases of this
domain tend to include a “Keyword” input element in the
interface schema for the convenience of end-users who
may want to use keyword search. Using the “Keyword”
element often returns results for any query no matter to
which global attribute the query belongs. Since there is no
“noisy” keyword attribute in the global schemas and the
result schemas, our matching approach can achieve a
higher accuracy in GS-RS matching. In the Used-car
domain, both MAX-based and EMI-based methods have a
relatively low recall. The reason is that our matching
techniques are based on counting the re-appearance of
submitted queries in the result data, which is more
suitable for database attributes accepting the “equal”
select operator. When handling numeric-field attributes
that accept “less than” or “greater than” select operators,
such as Price and Mileage, the returned results sometimes
may not include the exact query keyword, such as
“$10,000”.

65%
70%
75%
80%
85%
90%
95%

5 10 15 20

Precision

Recall

Figure 4. Result achieved by different number of sample

instances.

We show in Figure 4 how the achieved results vary
when the number of sample instances is increased. The
columns in Figure 4 are achieved average precision and

recall of the intra-site schema matching results of the
Book domain, when the number of instances is set to 5,
10, 15 and 20. From the figure, we can see that the
achieved results generally increase as the number of
sample instances increases. However, more sample
instances mean more query submissions to the Web
database. Since we do not want to overburden the target
Web databases, an interesting future research direction
might be to find a trade-off between the number of
submissions and the achieved results.

Table 3. Inter-site schema matching results.

IS-IS RS-RS

P R P R
Label-based 90% 87% 95% 14% Book

EVS 91% 71% 94% 86%
Label-based 89% 88% 98% 25% Car

EVS 92% 72% 89% 66%

In Table 3 we compare the inter-site schema matching
results achieved by our proposed approach (EVS) based
on vector similarity analysis to the matching results
achieved by label-based approaches. Label-based
approaches are mainly based on finding the synonym
relationship between attribute labels. In matching
interface schemas, we manually identified the surrounding
text of input elements as their labels [16], [17], [21]. In
matching result schemas, we manually found either
explicit author-supplied column headers in the result
pages or the text strings commonly shared by all extracted
instances as the attribute labels. Table 3 shows that the
performance of the EVS-based method is close to that of
label-based methods in IS-IS matching, while it performs
much better in RS-RS matching since attribute labels are
often unavailable in result pages. In addition, our
approach does not require intelligent layout analysis to
precisely identify the correct attribute labels.

Table 4. Effectiveness of cross validation.

Before CV After CV

 P R P R
IS — GS 80% 70% 96% 83%
RS — GS 95% 88% 98% 91%
IS — RS 93% 87% 97% 90%
IS — IS 91% 71% 94% 74%

Book

RS — RS 94% 86% 99% 87%
IS — GS 97% 64% 97% 72%
RS — GS 93% 63% 97% 70%
IS — RS 100% 73% 100% 75%
IS — IS 92% 72% 95% 77%

Car

RS — RS 89% 66% 92% 69%

We present in Table 4 the effectiveness of the
proposed cross validation approach in improving the
overall accuracy. Table 4 shows that the cross validation

417

method does improve the overall matching accuracy,
especially in the Book domain. It is notable that we cannot
achieve as high a recall as we can precision (over 90%).
We believe that the cause is not due to the ineffectiveness
of the cross validation, but is due to the nature of the
probing-based approach itself.

5.3 Discussion
In our experiments, we observed some issues that need
further consideration.

The performance of our instance-based matching
approaches to some extent depends on the selection of the
sample instances. More specifically, two properties of the
sample instances could influence the matching process:
the topics that they cover and their attribute-distinguishing
capability. Take the Book domain as an example. Some
Web databases may only contain books about computer
programming while others only have novels. Therefore, to
ensure that result data can be extracted from the Web
databases’ answers to the sample queries, various topics
are required to be covered in the sample instances. At the
same time, the attribute-distinguishing capability of the
sample instances may also influence the matching results.
For example, the name of a famous person usually
frequently appears both in the Author attribute of the
books he/she wrote and the Title attribute of his/her
biographies, such as “Jane Austen” in our chosen sample
instances.

We also notice that, as Web databases vary in their
designs, some of them might generate result pages with
different formats for different queries. For example, when
answering a Title query, a Web database returns a list of
qualified book instances and each of the instances is
described by some text. However, when answering an
ISBN query, the same Web database returns only one
unique book instance with its detailed information shown
in the result page. It is obvious that these two kinds of
results are generated by two different templates. To deal
with this issue, an intelligent result analysis method is
needed to first extract results with different formats and
then combine them into one uniform result table.

6. Related Work
Schema matching is a basic problem in database research
with numerous techniques proposed to address the
problem (see [11] and [22] for surveys). Existing work
that addresses the problem of automatic schema matching
for Web databases adopts the prior techniques on
matching schemas of traditional databases. [16] presented
a statistical approach to integrate the interface schemas of
Web databases in the same domain. It hypothesizes that
given Web databases in the same domain, the aggregate
vocabulary describing the interface input elements tends
to have a relatively small size. Furthermore, there exists a
unified hidden schema underlying these interfaces. A
statistical probability model is employed to find the

hidden schema by the co-appearance of attribute names.
The schema matching methods employed are label-based.

[17] introduced a tool, WISE-Integrator, that performs
automatic integration of Web search interfaces in a
product domain. WISE-Integrator employs
comprehensive meta-data, such as element labels and
default value of the elements, to automatically identify
matching attributes from different search interfaces.

[19] investigated algorithms for generic schema
matching, outside of any particular data model or
application. An algorithm called Cupid was proposed to
discover mappings between schema elements based on
their names, data types, constraints, and schema structure.

[18] used a classifier to categorize attributes according
to their field specifications and data values, and then train
a neural network to recognize similar attributes. However,
this method may not be applicable for Web databases
since both field specifications and data values are
incomplete in many cases.

[11] developed the COMA schema-matching system
as a platform to combine multiple matchers in a flexible
way. While their approach may seem similar to our cross
validation method, it is fundamentally different since the
goal of our method is the reinforcement of multiple
matchers, not the straightforward combination of the
matchers.

[21] presented HiWe, a prototype deep-web crawler
that can extract the labels of interface elements and
automatically submit queries through the elements.
Interface elements with the same/similar labels are
matched in order to obtain each other’s domain values
for automatic query submission.

The main difference between our work and previous
work is that we aim to provide a general framework for
schema matching of Web databases. To the best of our
knowledge, no previous work has presented such a
framework, especially the combined schema model.
Moreover, the instance-based schema-matching method is
seldom used for schema matching in the Web database
context since it is hard to get instances from Web
databases. Supplied with a set of sample instances, our
work proves that instance-based methods can also be very
effective for Web database schema matching.

7. Conclusion
In this paper, we investigate the problem of schema
matching for Web databases. We propose a combined
schema model to describe the various schemas associated
with a Web database and a generative view to include five
kinds of schema matching of related Web databases in a
specific domain.

In the combined schema model, we address two
significant schema-matching problems for Web databases,
intra-site schema matching and inter-site schema
matching. We then investigate a unified solution to the
two problems based on domain-specific query probing

418

and attribute content overlap. Our instance-based
approaches, which adopt the mutual information concept
and vector similarity analysis, are quite powerful for
precisely identifying the matching relationships among
attributes of Web databases’ interface and result schemas.
Benefiting from our general framework, a cross validation
technique, converted to a graph-partitioning problem, is
introduced and shown to improve the matching
performance.

Currently our approach needs some human
involvement to provide a precise global schema and
instance samples. One direction to extend this work is to
adopt automatic global schema generation techniques to
make the whole system fully automatic. Another direction
of improvement is to combine our work with previous
label-based approaches to build a more robust matching
system. In addition, we plan to extend this work to handle
not only 1:1 mappings but also 1:N mappings over Web
database schema attributes.

Acknowledgements
This work was partially supported by the UGC Research Grants
Council of Hong Kong under the Areas of Excellence—
Information Technology program.

References
[1] A. Arasu, and H. Garcia-Molina. Extracting structured

data from Web pages. Proc. ACM SIGMOD Conf., 2003.

[2] R. Baeza-Yates, and B. Ribeiro-Neto. Modern Information
Retrieval. ACM Press, New York, 1999.

[3] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative
analysis of methodologies for database schema integration.
ACM Computing Surveys, 18(4), 323-364, 1986.

[4] D. Beneventano, S, Bergamaschi, F. Guerra and M.
Vincini. Synthesizing an integrated ontology. Internet
Computing, vol. 7, no. 5, 2003.

[5] BrightPlanet Corp. The deep web: surfacing hidden value.
http://www.completeplanet.com/Tutorials/DeepWeb/

[6] J. Callan, M. Connell and A. Du. Automatic discovery of
language models for text databases. Proc. ACM SIGMOD
Conf., 1999.

[7] S. Castano, V. Antonellis, and S. Vimercati. Global
viewing of heterogeneous data sources. IEEE Trans. Data
and Knowledge Eng., vol. 13, no. 2, 2001.

[8] C.H. Chang, B. He, C. Li, and Z. Zhang: Structured
Databases on the Web: Observations and Implications
discovery. Technical Report UIUCCDCS-R-2003-2321. CS
Department, University of Illinois at Urbana-Champaign.
February, 2003.

[9] C.H. Chang, and S.C. Lui. IEPAD: information extraction
based on pattern discovery. Proc. 10th World Wide Web
Conf., 681-688, 2001.

[10] V. Crescenzi, G. Mecca and P. Merialdo. ROADRUNNER:
towards automatic data extraction from large web sites.
Proc. 27th VLDB. Conf., 109-118, 2001.

[11] H. Do and E. Rahm. COMA: a system for flexible
combination of schema matching approaches. Proc. 28th
VLDB Conf., 2002.

[12] A. Doan, P. Domingos and A. Halevy. Reconciling
schemas of disparate data sources: a machine-learning
approach. Proc. ACM SIGMOD, 2001.

[13] D. Florescu, A.Y. Levy, and A.O. Mendelzon. Database
techniques for the world-wide web: a survey. SIGMOD
Record 27(3), 59-74, 1998.

[14] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Completeness.
Freeman, New York, 1979.

[15] F. Hakimpour, and A. Geppert. Global schema generation
using formal ontologies. Proc. 21st Conf. on Conceptual
Modeling, 2002.

[16] B. He, and C.C. Chang. Statistical schema matching across
Web query interfaces. Proc. ACM SIGMOD Conf., 2003.

[17] H. He, W. Meng, C. Yu and Z. Wu. WISE-Integrator: an
automatic integrator of Web search interfaces for E-
commerce. Proc. 29th VLDB Conf., 2003.

[18] W. Li and C. Clifton. Semantic integration in
heterogeneous databases using neural networks. Proc 20th
VLDB Conf, 1994.

[19] J. Madhavan, P.A. Bernstsein and E. Rahm. Generic
schema matching with Cupid. Proc. 27th VLDB Conf.,
2001.

[20] A. Papoulis. Probability, Random Variables, and
Stochastic Processes. McGraw-Hill, 1984.

[21] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. Proc. 27th VLDB Conf., 129-138, 2001.

[22] E. Rahm and P.A. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal, 10(4), 334-
350, 2001.

[23] J. Wang and F. Lochovsky. Data extraction and label
assignment for web databases. Proc. 12th World Wide Web
Conf., 187-196, 2003.

[24] World Wide Web Consortium. HTML 4.01 Specification,
1999.

[25] http://www.cs.ust.hk/~cswangjy/vldb04_exp.htm/

419

