
Sybase IQ Multiplex – Designed For Analytics

Roger MacNicol Blaine French

Sybase Inc
561 Virginia Road

Concord, MA 01742

 rdm@sybase.com blainef@sybase.com

Abstract
The internal design of database systems has
traditionally given primacy to the needs of
transactional data. A radical re-evaluation of the
internal design giving primacy to the needs of
complex analytics shows clear benefits in large
databases for both single servers and in multi-
node shared-disk grid computing. This design
supports the trend to keep more years of more
finely grained data online by ameliorating the
data explosion problem.

1. Background
Historically, databases have been designed around the
requirement to support large numbers of small concurrent
updates. The primary design criterion has been to
minimize the portion of stored data that must be locked
for exclusive access and the length of time that locks are
held. Consequently, when the writer of data has primacy,
the internal design generally adheres to the following
rules

1. Data should be stored in rows to enable a single
disk i/o to write the modified data out to the
table.

2. Data should be stored on small page sizes to
minimize the i/o cost and portion of disk locked
for exclusive access.

3. The database must support the imperfect notion
of isolation levels to enable reports to run in
acceptable time while negotiating held locks.

4. Few columns should be indexed because locks

on tree structures may deny access to more rows
than row-page locks and increase the time locks
are held.

5. Data pages should typically not be compressed
because of poor amortization of the compression
cost. Rows typically do not compress well
because of the mix of data types stored
adjacently.

6. Adding or dropping a column or index may be
expensive since page storage may need to be
updated for all rows.

7. Searched update statements may be relatively
expensive since the entire row must be read and
written for a single column to be updated.

Given these consequences, IQ’s designers started by
asking one fundamental question “What would a database
look like internally if it were designed from the ground up
for complex analytics on massive amounts of data”? It
was understood that a reader-friendly analytics server
must also support many concurrent update streams and,
increasingly, it would be an operational data store rather
than a store for cleansed and summarized data. But, data
update streams in such a server are likely to be well-
bounded. Once the primary criterion for the internal
design becomes the performance of complex analytics,
rather than row-oriented updates, a radical volte-face in
design becomes self-obvious.

2. Designed for analytics
Typical analytical queries access relatively few columns
of the storage-dominating fact tables and may access a
notable proportion of the rows stored in the fact tables.
While CPU performance and available cache memory has
increased dramatically with 64-bit servers and lower
memory prices, disk performance has not kept up and,
consequently, disk-bound performance is typical for many
analytics. So, were design primacy to be given to
complex analytics, many of the previous rules are
reversed as follows:

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1227

1. Data would be stored in columns, not rows, so
only the columns required to answer a query
need be read – in effect every possible ad-hoc
query could have performance akin to a covering
index. Since data is only written once but read
many times any increase in load time would be
more than offset by improved query
performance. Column storage would enhance
main cache efficiency since commonly used
columns would be more likely to be cached.

2. Data would be stored in a large page size so that
many cells of a column can be retrieved in a
single read and the larger page size plays to
technological changes in how physical disk reads
are structured. Traditional DBMS cannot use
large pages sizes since each read drags along
unneeded columns in the row.

3. The database would use page-level snapshot
versioning so that data modification happens
without interfering with running reports.
Consequently, there would be no need for the
notion of isolation levels – every query would
see an internally consistent database state while
navigating a nearly lockless environment.

4. Every column could be indexed: data will be
written once and read many times so the cost will
be amortized. Column storage at the physical
layer greatly simplifies parallel index updates
and adding an index requires only that column to
be read, not the entire row.

5. Data could be compressed on disk. The
compression cost would be well amortized and
the homogenous datatype of a stored column
would offer optimal compression.

6. Adding or dropping a column or index to reflect
changing business requirements would be cheap,
as no other data would be accessed.

7. Searched updates would be relatively cheap
since only the columns being modified would
need to be read and written.

From these design principles, IQ was developed from the
ground up to be a 64-bit DBMS using kernel threads
giving design primacy to the needs of complex analytics
without compromising load performance.

3. Designed for scalability (Multiplex)
Sybase IQ optimizes workloads across multiple servers
through Sybase IQ-M, which is a multi-node, shared-
storage, parallel database system whose design focus is on
large-scale data warehousing workloads. IQ-M offers
grid-computing through multiple IQ instances running on
multiple server nodes connected to a single shared IQ data
store, which can comprise multiple disk arrays. Each node
(instance) sees the entire database and has direct physical
access to it, unlike the horizontally partitioned databases

(such as MPP (massively parallel processors) with shared-
nothing architecture). There are two types of IQ-M nodes,
writer (one per Multiplex) and reader (all other nodes in
the Multiplex).

1. The Writer node owns all database locks,
performs DBA tasks, and updates the database.
The Writer is tuned for data loading efficiency
and speed.

2. Reader nodes have read only access to the shared
database and perform tasks such as ad-hoc
queries and reporting. The reader access data
without the need for acquiring locks or for a
distributed lock manager.

There is no node-to-node interference since a single query
is limited to a single node. The use of snapshot versioning
requires minimal communication between the IQ-M
nodes, consequently there is no requirement for an
expensive high-speed interconnect between nodes.

The design offers a better approach to analytics
scalability. Adding additional applications and users to a
database can be solved simply by adding additional
cheaper reader nodes. The impact of additional nodes on
existing nodes is minimal until the disk array is saturated.
The non-traditional storage model offered by IQ’s design
enables more user requests to be satisfied before for a
given disk configuration is saturated than traditional
DBMS clusters since each node typically accesses fewer
pages to satisfy each query.

4. The role of compression
Vertical storage enables IQ to use a multi-tiered
compression strategy:

1. Domains that have less than 65,535 distinct
values are stored in enumerated form. A column
store can use enumeration directly as the stored
form rather than in an data structure.

2. Each column is written to disk using a
compression algorithm specifically tailored to
the patterns typical of its datatype.

3. Index record lists are stored in compressed form
as segmented bitmaps. Bitmap index pages
utilize a range of internal representations
depending on the density of bits in any given
segment.

A consistent emphasis on data compression has
advantages. First, it requires less disk space and a smaller
storage system footprint than other DBMS, reducing both
system purchase and administration costs. Second, the
required disk I/O bandwidth is typically reduced by over
90% allowing better CPU utilization. Sybase IQ systems
are typically CPU bound unlike conventional DBMS,
which are typically I/O bound. Third, as a result of using
a large I/O request size, Sybase IQ systems can exploit

1228

denser disk configurations using fewer larger disks than
other DBMS without sacrificing performance. Fourth,
because Sybase IQ reads only the columns referenced, it
has a smaller memory footprint.

Businesses and government regulations are requiring:
more data to be kept online; that it be kept highly
available; and for that data to be more finely grained.
Increasingly, a DW must keep operational data and not
summarized data to meet reporting requirements. A
column store enables more operational data to be kept
online on a given configuration through the combination
of enumerated storage and better compression thus
ameliorating the inherent data explosion problem.

5. Query efficiency
The combination of column storage and compression
enables every column in a Sybase IQ database to be
indexed, often with more than one index type. For a
column store, the results of the Where clause needs to be
a mask of rows to be projected that can be applied to each
column and virtual rows created as cells are read in
parallel from each column and combined. This mask takes
the form of a bitmap termed the “foundset”.

The IQ query engine aims to make maximal use of
available indices and push all sensible predicates
(including predicates on functions and expressions) into
column indexes in parallel. The result of each predicate is
a bitmap of rows. The resulting bitmaps are combined
through Boolean operators to solve the Where clause.
Having bitmap indexes on all columns means that IQ does
not need or support “update statistics” – meta-data
required by the optimizer is obtained directly from the
indexes and, by definition, is never stale.

6. Sizing rules
Sizing rules for IQ: I/O efficiency and comparison with
typical RDBMS

DBsize/raw data size: 0.4-0.9 vs 2-8
Storage: RAID_5_ovhd B vs

 RAID_1_ovhd
DB page size: 256K-512K vs 2K-32K
IO Bandwidth per CPU: 8 MB/s vs 10-200
Typical io/sec per CPU: <100 vs >1000
Optimal disk size: 100GB+ vs 18-36GB

7. Results on Multi-Node system
A recent benchmark on a Sun Fire 6800 (24 750MHz US-
III CPUs, 48GB RAM) of the current shipping version of
IQ Multiplex showed 64-bit addressing by using 40 GB
RAM for the IQ cache. Storage was on Sun StorEdge T3
arrays. 253 million rows were loaded in 1h35min for a

loading speed of 2.6 million rows/min or 160 million
rows/hour. 79 GB of raw input data was compressed to 33
GB (41% of its raw size).

Several queries were run first on a single domain, and
then on four multiplex domains simultaneously against a
single IQ-M data store. Each query test consisted of
running 10 queries concurrently on one domain. As more
domains were added to the Multiplex to run additional
query streams, the overall query response times stayed the
same (one would have expected degradation in
performance as more query streams were being run
against the same database on the same shared storage),
and demonstrated excellent scalability of the described
design. The following table gives time in seconds for a
single domain and the range of times for four domains:

Query Single domain 4 Multiplex domains
1a 2434 2372 - 2419
1b 2705 2660 - 2811
2a 1992 1936 - 1978
2b 2324 2446 - 2305
3a 2853 2806 - 2849
3b 2326 2287 - 2446
4a 731 665 - 693
4b 725 662 – 690
5a 672 797 - 832
5b 692 684 - 778

8. Summary
Sybase IQ-M demonstrates that complex analytics on very
large databases benefit from a radical re-evaluation of
many aspects of internal database design. By basing the
primary design assumptions on the nature of analytic
workloads, the combination of column storage, bitmaps,
aggressive compression, and shared disk grid-computing
through IQ Multiplex offers significant performance
benefits for multi-terabyte databases.

1229

1230

