
Managing Data from High-Throughput Genomic Processing:

A Case Study

 Toby Bloom Ted Sharpe

Broad Institute of MIT and Harvard Broad Institute of MIT and Harvard

 tbloom@broad.mit.edu tsharpe@broad.mit.edu

Abstract
Genomic data has become the canonical example

of very large, very complex data sets. As such,

there has been significant interest in ways to

provide targeted database support to address

issues that arise in genomic processing. Whether

genomic data is truly a special case, or just

another application area exhibiting problems

common to other domains, is an as yet

unanswered question. In this abstract, we explore

the structure and processing requirements of a

large-scale genome sequencing center, as a case

study of the issues that arise in genomic data

managements, and as a means to compare those

issues with those that arise in other domains.

1. Overview

The Broad Institute high-throughput genome sequencing

center currently produces genome sequence at the highest

rate in the world. The sequencing laboratory is essentially

a large manufacturing facility: it uses DNA samples as

raw material and produces digitized sequence where other

manufacturing facilities might produce widgets. We

produce over 50 billion high-quality nucleotide base calls

per year, each of which has multiple pieces of information

associated with it. The amounts of data produced by

sequencing, as well as the data maintained for tracking the

process, and reporting on progress, raise significant

challenges for informatics resources. The following

sections provide background on the sequencing processes

that must be tracked, and the type and size of the data

produced. We then discuss the issues that arise in

performing those functions, and compare them to data

management to problems that arise in other domains.

2. Background : the Genome Sequencing

Process

The sequencing process starts with a piece of DNA and

produces from it a character string of A’s.C’s, T’s and G’s

that represent the four nucleotide bases from which DNA

is composed. During the sequencing process, an initial

DNA sample undergoes a series of laboratory procedures

that include steps such as cutting the DNA into many

small pieces, replicating each of those pieces many times,

and attaching flourescent dyes. In the final step, those

dyes are detected by lasers, and a signal trace (a “read”)

is produced for each of those small pieces. Tracking the

samples through the various lab procedures is essential for

mapping the millions of sequence reads from the laser

sequence detectors back to the original DNA samples.

Tracking is also needed to troubleshoot laboratory

problems and monitor lab performance.

Once the signal trace is produced, the informatics data

acquisition begins. The data is processed through a

pipeline that cleans and validates each read. Signal

processing software analyzes the binary trace file from the

lasers, and produces the string of As, Cs, Ts, and G’s

denoting the DNA sequence. Since this is a chemical

process and not absolutely accurate, we also maintain

quality data for the sequence: the intensity of the

flourescence for each of the four dyes at regular intervals,

and a certainty score for each base (actually four certainty

scores are produced.) Each read is typically about 800 to

900 bases long, with about 650 of those bases usable for

further processing. The lab tracking data is used to

associate each read with its original sample. The

sequence is checked to make sure it looks like it came

from the correct organism and that it hasn’t been confused

with or contaminated by other material in the lab process.

Numerous metrics are collected for monitoring the

process and for maintaining reportable data. The sequence

data is then organized for assembly.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the VLDB copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Very Large Data Base Endowment. To copy

otherwise, or to republish, requires a fee and/or special permission from

the Endowment

Proceedings of the 30
th

 VLDB Conference,

Toronto, Canada, 2004

1198

Once enough sequence data for a genome has been

collected, the assembly process can be started. In

assembly, the read sequences are matched against each

other, like a giant jigsaw puzzle, to figure out in what

order the reads appear in the organism’s genome. There

can be 40 to 60 million reads or more used in a single

assembly, with no a priori structure known among them.

The reads cover the genome many times over, to ensure

enough data to fit all the pieces together unambiguously,

despite the errors present in the detection process and the

many nearly identical but distinct sequences that typically

occur within a genome. Not all of the reads will fit

together, and some will match in multiple places due to

repeat structure within the genome.

Following assembly, there is often a process known as

finishing, which determines where there are gaps in the

assembled sequence, or regions with insufficiently high

quality, and orders additional lab work to fill in the holes.

Then the cycle repeats. But since other work, like

annotation, or SNP detection, or comparative genomics

projects will have begun, we have a versioning problem

for assemblies – and a corresponding merge problem as

well. These introduce yet more data complexity.

3. Challenges in Processing Genome

Sequence Data

In this section, we discuss the issues that arise in

managing the high-throughput genome sequence data. We

then compare these challenges to those found in other

domains.

3.1 Data Structure and Data Set Size

There are several categories of data handled in the

sequencing informatics process: one is the sequence data

itself; a second is the lab process workflow, tracking and

process data; yet a third is the operational oversight

information; and finally we have tracking of biological

samples. In addition, we maintain the structure of the

assembled genome, and the finishing data that includes

versions and updates of those assemblies.

3.1.1 Sequence Data

The Broad Sequencing Center produces over 50

billion bases a year. Since most processing is performed at

the read level, not the base level, in most cases we’re

dealing with millions, not billions, of entities. However,

there are many data points associated with each base: the

value of the most probable base (A,C,T,G); four quality

scores representing the likelihood of each of the four

possible calls at that position; numerous intensity scores –

the intensity of the signal for each of the four dye

colors—in the vicinity of the intensity peak that marks the

presence of a base.

The most probable base and the quality score

associated with it are, by far, the most frequently used

data, and these attributes are stored as a set of parallel

strings, at the read level. Thus, one string contains the

called bases. Another contains the certainty score for each

of those bases, in order. This significantly reduces the

overhead of storing the data. However, that comes at the

expense of processing. All queries on that data now need

to parse those strings.

The signal traces themselves (which include not only

the base calls and quality scores, but the intensity data in

four channels for each sample) are maintained in file

systems in a hashed directory structure, indexed by the

database. This obviously increases complexity of queries

on that data, while significantly reducing data size.

The scale is not as large as one might expect.

Compression techniques have reduced our storage

requirements to only about 5 terabytes per year. Our

database is currently only about 1 terabyte. But within

that, we maintain multiple tables of hundreds of millions

of rows each. The size of our indexes is therefore

significant, and query optimization becomes more

complex.

Perhaps surprisingly, transaction rates are not

problematic. The transactions can be complex, primarily

because they involve coordination with external

equipment, but the rate is relatively low. The system

handles approximately one million lab transactions per

day, and another one million data analysis transactions.

Most of the data within the sequence acquisition system is

write-once, which significantly reduces the complexity of

transaction management.

3.1.2 Assembly and Closure Data

One example of the complex structures we maintain is

the assembly structure used in the closure and finishing

process that follows assembly.

The process starts with the set of contiguous

sequences generated from the assembly process. We

maintain the map of these “contigs”, along with their

predicted location on the genome, information about gap

sizes between contigs, where known, and the locations of

all the reads within those stretches of sequence. We also

maintain the map of all large-insert clones that span

contiguous regions, but for which we don’t yet have full

sequence coverage. These templates can be used to

generate additional sequence to fill gaps. During the

iterative finishing process, we order additional sequencing

of these spanners, and maintain the information about

pending orders, the primers that were ordered for

purchase for each those, and then the results of those new

sequencing requests. New sequence generated must be

placed on the assembly, thereby generating a new version,

with different coordinates for each of the reads and the

contigs. In fact, since the new sequence may close gaps,

some contigs merge, and so we need to maintain the

1199

history of the assembly, so that when other orders come

back, or work is performed by a collaborator on an earlier

version, it can be mapped to the new assembly. In

addition, neighboring contigs must be updated to reflect

their new neighbors. All changes tend to propagate

through the assembly, with the attendant naming and

relationship problems. And this structure may identify

thousands of gaps, thousands of spanners, and millions of

reads. The relationship management and propagation

problems present interesting performance issues.

3.1.3 Taxonomies

One of the issues that arises regularly is the representation

of non-uniform hierarchies. We encounter a number of

situations in which branches of the tree may be of varying

lengths in what should be analogous situations. This

makes it difficult to structure the database. Taxonomies

are one such situation.

The sequencing center handles large numbers of

samples. These need to be categorized with respect to

taxonomic classifications, from the genus and species,

sometimes down to the individual. We need to know

when we’re sequencing a single individual vs. samples

from multiple different individuals. This hierarchy is not

uniform. Genus and species are standard, but the

taxonomic levels above them vary among the kingdoms.

And below that level, there is also a lack of uniformity: .

some organisms are classified as subspecies within that

hierarchy; others have breeds, or strains. In some

organisms, an isolate is a single individual; in others a

colony. The DNA from inbred mice of the same strain

might be considered interchangeable in some situations.

This means that there is no single hierarchy that

represents the taxonomy. A simple organism dimension

for categorizing sequencing targets becomes problematic.

3.1.4 Sample Data and Derivations

Another example of a problem in representing

hierarchies is the DNA sample tracking in the lab. DNA is

sequenced by cutting it into pieces and sequencing the

ends of the pieces. The problem arises because any strand

of DNA can be cut into a set of smaller strands of DNA,

until you get down to a piece you can read in its entirety.

(The usual process, however stops far short of this

exhaustive recursion, however. We assemble continuous

sequence by stitching together overlapping bits of

separate samples, rather than exhaustively sequencing a

single sample.) However, depending upon the task at

hand, different techniques and lengths are used.

Thus, we may take a sample of genomic DNA and

create from it sequencing libraries of small clones – hence

creating a two-level hierarchy to maintain. Or we may

instead create a library of large insert clones. We might

sequence the ends of those without further cutting, or we

might instead create from each large-insert clone, its own

small-insert library. And from small-insert libraries, we

might create yet smaller “shatter” libraries. At each level,

we can take one DNA entity and create a library of

smaller pieces of DNA. Or at any level, we can sequence

directly. We therefore have a recursive structure in the

sample dimension. We need to maintain the relationship

among all those levels – which samples at one level were

used to derive sets of samples at another level, so that we

can understand how the sequences generated are related.

There is no flat, tabular layout that represents these

relationships, because the depth can vary, and there are no

fixed joins that can find all related samples.

3.2 Querying

Queries again pose an interesting contrast to business

applications.

The hierarchical data structures and compression

techniques described above will of course add to query

complexity. Many of our reports perform the equivalent

of tree-walks on very large tables, with large numbers of

constraints. Tricks like nested sets help, but are not

sufficient [2]. Many of our complex queries require hand

optimization. Better automatic parallelization might be a

substantial help.

We have not yet addressed lab requests for trending

and various other time-series reports. These are likely to

present significant challenges as well.

In addition, the databases serve as back ends for

complex genome analysis applications. As such, the

queries presented often expect result sets numbering in the

millions or tens of millions of rows, pulled from tables

with hundreds of millions of rows. Rather than expecting

aggregated results from the database, these applications

require the individual records. Performance in retrieving

those results is frequently a problem.

3.3 Impact of a Research Environment

In most respects, the sequencing center is no more than a

large, automated flexible manufacturing floor. It happens

to generate digitized DNA sequence rather than widgets,

but in other ways, it differs little.

However, it should not be forgotten that this is a

research environment, and some aspects of that

environment are responsible for the complexity of data

handling, rather than the complexity being inherent in the

data itself.

There is an explicit goal of changing the lab processes

and technology every six months, with major upgrades

every two years. From an informatics standpoint, that

means the number of steps in the process, the lab

measures maintained at each step, the kinds of branching

and pooling that occur in the workflow must be fully

flexible. The process is separated from the basic data

acquisition as much as possible, but the schema still

changes very frequently. Constraints become very hard to

maintain and automated error checking is difficult,

1200

because so little information is embedded in the schema.

Thus, some of the complexity of our schemas, and the

resulting complexity and performance issues in our

queries, are a result of designing for flexibility rather than

performance.

3.4 Data Integration and Analysis

Thus far, we’ve described the issues involved in

maintaining sequencing data in isolation. But of course,

the goal is genetic analysis, not just production of

sequence data. Integration problems are the problems

most often discussed in bioinformatics. Our center alone

collects not only sequence data, but expression analysis

data, and genotyping data. We will soon be collecting

proteomic data as well. Integrative genomics [5] involves

combining results from analysis of multiple kinds of data

where any one is insufficient. And of course, there are

large numbers of public and proprietary databases

available with overlapping but not identical sets of

genomic data of various types. Often the naming across

them is inconsistent. The formats are certainly

inconsistent. And so we bring all of the well known

problems of data integration to a domain with many,

many terabytes of data, and on-demand integration. This

may be a quantitative rather than qualitative difference

from other application domains, but it will still be a very

significant challenge.

4. Conclusions

This abstract describes many of the problems faced in

managing large-scale genomic data. We have addressed

issues of data structure, and its impact on transactions and

on queries; the unique issues brought on by very large

data size, and the complexity of the application space.

All of these issues present serious challenges to

maintaining and accessing this type of data. We have

illustrated no problems here that do not exist in other

domains, in whole or in part. However, the conjunction of

these problems, in a domain with such large data volume

does present significant challenges. We summarize here

the various issues we raised and assess their impact in

other application domains.

Traversing complex data structures, and maintaining

the complex hierarchical relationships among the data

entities, is certainly one of the biggest underlying

problems in this space. However, this is the same problem

that led to so much work on object databases years ago. It

is not new.

The frequently changing structure and the impact on

the schema again occur at larger scales here. But that

problem underlies the work on metadata repositories as

well. These kinds of problems are not unlike those that

occur in a flexible manufacturing environment, or in

environments such as clinical trials, where there is a basic

framework that must be customized for each use. The

frequency, as well as the scale, is different here. But the

problem is similar. There is a tradeoff between the

generality needed to allow for unpredictable changes, and

the complexity of querying and data validation in those

environments.

Data integration across multiple sources on demand

certainly requires significant work to become a reality in

genomic analysis. The problems are identical to those

faced in other domains: inconsistent naming, inconsistent

ranges, differing data formats. The sheer size of the

problem may appear to verge on a qualitative difference

here, but integration is a major problem everywhere.

Overall, at least from the perspective of sequence data,

which is a small subset of genomic data in general, we see

many unresolved issues in data management, but none

that seem unique to this type of application data.

Acknowledgements

Andrew Zimmer leads the finishing informatics effort and

architected the mapping structures to meet the challenges

described. J.P.Leger is leading the data warehousing effort

and manages the reporting team. Jen Baldwin, Rob Nicol,

Chad Nussbaum, Bruce Birren, and Kerstin Linblad-Toh

direct the Genome Sequencing and Analysis platform and

program. Jill Mesirov is the Chief Informatics Officer of

the Broad Institute, and Eric Lander is Founding Director

of the Broad Institute. And thanks go to all members of

the Production Sequencing Informatics team for building

the software that enables the sequencing center to

function.

References

[1] S. Batzoglou, et al ARACHNE: A whole-genome

shotgun assembler. Genome Res. 12: 177-189 (2002).

[2] J. Celko, SQL for Smarties, Academic Press, San

Diego, 2000.

 [3]International Human Genome Sequencing

Consortium, Initial Sequencing and Analysis of the

Human Genome, Nature, 409, 860-921, (2001).

[4]D.B. Jaffe, et al. Whole-genome sequence assembly for

mammalian genomes: Arachne 2. Genome Res. 13: 91_96

(2003).

[5]V.K. Mootha, et. al . Identification of a gene causing

human cytochrome c oxidase deficiency by integrative

genomics. Proc Natl Acad Sci USA 100: 605_610 (2003).

1201

