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Abstract 

The ability to physically cluster a database table 
on multiple dimensions  is a powerful technique 
that offers significant performance benefits in 
many OLAP, warehousing, and decision-support 
systems. An industrial implementation of this 
technique for the DB2® Universal Database™ 
(DB2 UDB) product, called multidimensional 
clustering (MDC), which co-exists with other 
classical forms of data storage and indexing 
methods, was described in VLDB 2003.  This 
paper describes the first published model for 
automating the selection of clustering keys in 
single-dimensional and multidimensional 
relational databases that use a cell/block storage 
structure for MDC. For any significant 
dimensionality (3 or more), the possible solution 
space is combinatorially complex.  The 
automated MDC design model is based on what-
if query cost modeling, data sampling, and a 
search algorithm for evaluating a large 
constellation of possible combinations. The 
model is effective at trading the benefits of 
potential combinations of clustering keys against 
data sparsity and performance. It also effectively 
selects the granularity at which dimensions 
should be used for clustering (such as week of 
year versus month of year). We show results 
from experiments indicating that the model 
provides design recommendations of comparable 
quality to those made by human experts. The 
model has been implemented in the IBM® DB2 
UDB for Linux®, UNIX® and Windows® 
Version 8.2 release.  

1.  Introduction 
Multidimensional clustering (MDC) techniques have been 
shown to have very significant performance benefits for 
complex workloads [4][12][14][15][20]. In fact, the 
literature on MDC has focused on how to better design 
database storage structures, rather than on how to select 
the clustering dimensions. However, for any given storage 
structure used for MDC, there are complex design trade-
offs in the selection of the clustering dimensions. In this 
paper we present a model for doing so in the form of an 
MDC Advisor that will select MDC keys (i.e., designs) 
optimized for a specified combination of workload, 
schema, and data. We also describe its implementation for 
the MDC physical layout scheme introduced in DB2 UDB 
Version 8.1 [2] and report the results of experiments that 
indicate the model provides design recommendations that 
are in line with the quality of human expert 
recommendations. The value of exploiting MDC would 
be superior system performance, reduced time from test to 
production system, and reduced skill requirements within 
an enterprise. 
 
MDC is motivated to a large extent by the spectacular 
growth of relational data, which has spurred the continual 
research and development of improved techniques for 
handling large data sets and complex queries.  In 
particular, online analytical processing (OLAP) and 
decision-support systems (DSS) have become popular for 
data mining and business analysis [16]. OLAP and DSS 
systems are characterized by multidimensional analysis of 
compiled enterprise data, and typically include 
transactional queries including group-by, aggregation, 
(multidimensional) range queries, cube, roll-up and drill-
down.  
 
The performance of multidimensional queries, (such as 
GROUP BY and range queries) is often improved through 
data clustering, which can significantly reduce I/O costs, 
and modestly reduce CPU costs. Yet the choice of 
clustering dimensions and the granularity of the clustering 
are nontrivial choices and can be difficult to design even 
for experienced database designers and industry experts.  
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In recent years, there have been several research and 
industrial initiatives focused on physical database design. 
In particular, a number of projects have focused on design 
automation for indexes, materialized views, and table 
partitioning [3][5][6][7][8][13][17][18][19].  
 
The recent flurry of papers on index and materialized 
view selection, and the development of industrial 
applications in self-managing, or autonomic, systems by 
leading RDBMS vendors such as Microsoft, IBM and 
Oracle, all attest to the growing corporate recognition of 
this important area of investigation. 
 
The rest of the paper is organized as follows: Section 2 
gives an overview of relevant design advisor issues, 
Section 3 describes the approach used with the MDC 
Advisor, Section 4 describes experiments with the MDC 
Advisor, and we conclude with Section 5. 
 

2. Background  

2.1 DB2 UDB V8.1 MDC implementation 
In the MDC implementation in DB2 UDB V8.1 proposed 
by Padmanabhan et al. [15], each unique combination of 
dimension values forms a logical cell that is physically 
organized as blocks of pages, where a block is a set of 
consecutive pages on disk. Every page of the table is part 
of exactly one block, and all blocks of the table consist of 
the same number of pages. The clustering dimensions are 
individually indexed by B+ indexes, known as dimension 
block indexes, which have dimension values as keys and 
block identifiers as key data.  
 
The DB2 UDB implementation was chosen by its 
designers for its ability to co-exist with other database 
features such as row-based indexes, table constraints, 
materialized views, high-speed load, and mass delete.  
 
Figure 1 illustrates these concepts. It depicts an MDC 
table clustered along the dimensions year(orderDate), 
region and itemId. The figure shows a simple logical cube 
with only two values for each dimension attribute. Logical 
cells are represented by sub-cubes in the figure and blocks 
by shaded oval, and are numbered according to the logical 
order of allocated blocks in the table. We show only a few 
blocks of data for a cell identified by the dimension 
values <1997,Canada,2>.  
 

  
Figure 1: Logical view within an MDC table 

 

2.2 Cost-based evaluation for database 
advisors 
Lohman et al. [13] suggest using cost estimates provided 
by the database optimizer as part of the evaluation engine 
of an index advisor that recommends table indexes. In this 
model, Lohman et al. used a simulation technique to 
determine access cost impact of potential table indexes. 
Tthe DBMS is taught to consider “virtual” indexes within 
its query compiler, resulting in an effective costing of 
query performance.    
 
The key advance in Lohman’s technique is the use of 
optimizer estimates to evaluate the value of a potential 
change in the design of a database. The empirical results 
for this technique were found to be quite good for index 
selection.  A variation of this method was exploited again 
for another physical database design problem in [18] to 
design partitioning schemes for shared-nothing massively 
parallel processing (MPP) databases.  
 
The idea of reusing the database optimizer’s cost 
estimations for evaluating cost benefit of physical design 
changes in the database is based on the observation that 
the query optimizer’s cost modeling is sensitive to both 
the logical and physical design of a database. Having the 
model for workload resource consumption allows us to 
exploit this model for “what-if” analysis.   
 
In the area of automating MDC dimension selection, there 
are implementations such as WARLOCK [21], which was 
limited to parallel warehouses for shared- everything or 
shared-disk architectures.  It used its own cost model 
instead of using the database engines. 

2.3 Estimating the cardinality of distinct 
values in a set from a data sample 
The ability to estimate the cardinality of a set from a 
sample is an important aspect of MDC design. This topic 
was surveyed in depth in the 1990s, notably in [9][10].   
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The known estimators can be divided into two main 
categories: i) those that evaluate cardinality while 
examining the frequency data in the sample, and ii) those 
that generate a result without considering frequency 
distribution across classes in the sample.  The latter type 
are significant to this paper because they can be calculated 
easily with only a small set of input variables describing 
the sample, such as sample frequency, sample size and the 
cardinality of unique values in the sample.  The best of 
these latter estimators is the First Order Jackknife 
estimator, which can be described as follows:  
 

When the data set contains no skew the scale-up 
factor, defined as Scale = D/E[d], is given by 
 

))1(1/(1][/ )/( dNqdEDScale −−==        (1.) 
 
Here D is the number of distinct values in the set and 
d is the number of distinct values in the sample. Also, 
E[d] is the expected number of distinct values in the 
sample under Bernoulli sampling with rate q = n/N, 
where n is the sample size and N is the set size. E[d] 
is the theoretical expected value of d, i.e., the average 
value of d over many repeated samples. The idea 
behind the "method of moments" estimator is to 
derive an equation relating E[d] to D, based on 
theoretical considerations. We solve for D to get a 
relation of the form: 
 

])[( dEfD =    
   

for some function f . Our estimator D̂  is then 
obtained by substituting d for E[d] in the above 
relation: 
 

)(ˆ dfD =     (2.) 
 

Such a substitution is reasonable if the sample is not too 
small. E[d] is the "first moment" of d, so we are replacing 
a moment by an observed value.  
 

2.4 Expression based columns 
Some popular RDBMS products available today provide 
the ability to define expression-based columns as part of a 
relational table definition. These columns, sometimes 
called generated columns or virtual columns, are 
mathematical functions of columns within their record 
tuple.  For example, one might define an expression-based 
column on an employee table that is a function of each 
employee’ s SALARY as follows:  

CREATE TABLE EMPLOYEES 
( EMPLOYEE_ID INT, 
SALARY DECIMAL(10,4), 

SALARY_RANGE INT 
GENERATED ALWAYS AS  
           ( SALARY/1000 )) 

 
These expression-based columns based on mathematical 
and lexical models in many cases have superior clustering 
potential over one or more base columns. For example, 
INT(SALARY/1000) is likely to be superior in terms of 
clustering potential to clustering directly on SALARY.  

3. MDC Dimension Selection 
MDC requires the allocation of storage blocks to disk for 
all cells (unique combinations of dimensions) that have at 
least one tuple. Since in practice all cells will have at least 
one incompletely filled block, MDC will generally cause 
some storage expansion. Since storage may be 
constrained and does impact system performance, it is 
treated as a constraint on the selection problem. 
Accordingly, MDC solutions are considered only if they 
require no more than 10% extra space than a non-MDC 
implementation. 10% was chosen as a reasonable trade-
off to a) constrain increased storage costs and b) constrain 
any possible negative effect that storage increase may 
have on queries processing data along access patterns that 
do not benefit from MDC.  
 
With this constraint in mind, we exploit the SQL query 
optimizer to model the resource consumption of the 
workload with and without MDC clustering. Once a set of 
candidate dimensions,, and their respective benefits to the 
workload, is identified, we also model how each 
dimension’ s benefit will degrade at various 
coarsifications. Finally, through a search and sample 
process, the space of possible combinations of dimensions 
and their coarsifications is examined to find the MDC 
design for a table that maximizes the combinations of 
dimensions while satisfying the expansion constraint.  

 
The search space for selecting clustering dimensions is 
huge. The basic problem of selecting clustering 
dimensions from a finite set can be modeled easily as a 
simple combination problem.  However, since each 
dimension has some number of degrees of coarsification, 
the search space expands exponentially. Assuming an 
equal number of degrees of coarseness for each 
dimension, the following equation shows the 
combinations of “ n”  dimensions each with “ c”  degrees of 
coarsification: 
 

n
n

r

r ccrnrn +−∑
−

=

))))!(!/()!(((
1

1

   (3.) 

 
This equation takes a standard formula for the 
combination of n items, and expands based on the fact 
that, for each iteration of the sum, each tuple has its 
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combinations expanded by a factor of cr because each part 
of the tuple has c degrees of coarsification (i.e., c ways in 
which it can be selected). Similarly, the formula 
concludes with cn since the selection space for a selection 
that includes every dimension, each being selected at one 
of c degrees, is cn.  In general, not all dimensions have the 
same number of degrees of coarsification. Even so, 
equation (3) suggests the complexity of the space.  
 
In Subsection 3.1 we give an overview of the 
methodology adopted, and in subsequent subsections we 
expand on some key areas. This methodology expects the 
following inputs from the user: 

1. A workload specification, detailing specific 
queries and the frequency of execution of each.  

2. A sample database including the database tables, 
indexes, and a sample of data. The more 
complete this database is, the better the 
recommendations.  

Note that the MDC Advisor was designed as an extension 
to the DB2 Design Advisor, which supports several 
techniques for automated workload capture, compression, 
ranking, and weighting [11][17]. 

3.1 High-level overview of the MDC selection 
model 
Our approach is based on searching over the constellation 
of combinations of dimensions at various coarsifications 
to find a combination that has the highest expected benefit 
while satisfying the storage expansion constraint. 
 

1) Identify candidate clustering dimensions and their 
maximal potential workload benefit: 
a) Baseline the expected resource consumption (via 

SQL optimizer estimates) of each query in the 
workload with all optimizer clustering statistics 
simulated to represent poor clustering. 

b) Each query in the workload is reoptimized in a 
special mode, whereby the SQL optimizer 
simulates the effect of clustering on all candidate 
clustering dimensions. The dimensions are 
selected by their use in predicates, as described 
in Section 3.2. During this phase the optimizer is 
essentially modeling a best-case scenario where 
the data is clustered perfectly along all 
potentially useful clustering dimensions. Also, 
during this phase we are modeling the maximum 
potential benefit of MDC apart from its total 
storage requirement. The clustering dimensions 
are modeled within the query compiler/optimizer 
at the finest level of granularity possible for each 
dimension as if that dimension was the only 
clustering dimension used. This granularity is 
titled the Finest Useful Dimensions Granularity 
(FUDG, pronounced “ fudge” ), and represents an 
upper bound on the granularity of each 

dimension that satisfies the storage expansion 
constraint. At the FUDG coarsification, a single 
dimension can be reasonably useful as a 
clustering dimension while still populating most 
of the storage blocks. The maximum cardinality 
of cells is deterministic, as described in Section 
3.3, and can be used directly in the optimizer 
virtual simulation. 

c) Contrasting 1a and 1b we can determine which 
virtual clustering dimensions in 1b resulted in 
significant positive differences in the access 
plans and resource consumption of the queries. 
The relative reduction in query resource 
consumption (estimated by the query optimizer) 
provides an estimate of the benefit gained by 
clustering on each candidate dimension at its 
FUDG coarsification.  

2) Generate a search space of candidate MDC keys: 
a) A list of candidate dimension and their maximal 

potential contributions was generated in the 
previous step. We begin the next phase by 
designing potential coarsifications of each 
dimension (where supported): for example, 
SALARY/1000, SALARY/2000, 
SALARY/4000, etc., described in detail in 
Sections 3.4, 3.5, 3.6). A sample of data for each 
table is then collected. This sample includes a 
small percentage of tuples from the base but 
covers exclusively the clustering dimensions 
identified in step 1c above. The sample data also 
includes generated expressions that define the 
coarsifications for each dimension.    

b) Statistics are then collected regarding the 
cardinality of distinct values for each column in 
the sampled data, and extrapolated by means of 
the First Order Jackknife estimator to estimate 
the cardinality of each dimension at the various 
degrees of coarsification considered.  

c) The maximum potential clustering benefit or 
each dimension was determined in step 1c but 
only at the FUDG coarsification. Now for each 
dimension its potential value will be estimated 
again at each of the coarsifications considered, 
with the assumption that benefit generally 
decreases as coarsification increases. The benefit 
attenuation is determined by a curve- fitting 
process, described in Section 3.7. This yields an 
expected benefit for each coarsification of each 
dimension.  

d) For each table, a set of candidate clustering keys 
is then generated, forming a search space, as per 
Section 3.8. Each key in the set includes a 
possible final clustering solution for an 
individual table. The generated keys are 
produced by a weighted randomized search. 
With just one or two candidate dimensions, it is 
possible to perform an exhaustive search, but 
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with more dimensions the search space can be 
prohibitive.  

This process yields a set of candidate MDC keys (i.e., 
potential designs) for each table.   
 
3) For each table, test the candidate MDC clustering 

keys for satisfaction of the storage expansion 
constraint.  
a) The candidate clustering keys in 2d are sorted by 

expected benefit. Benefit is assumed to be the 
sum of the estimated benefits of the parts (i.e., 
individual dimensions) for the key. This is not 
entirely accurate, but a sufficient simplification.   

b) For each table, the candidate clustering keys are 
then evaluated for space constraint. The space 
consumption for each candidate key is evaluated 
through a sampling process (Section 3.9.2) and 
keys that exceed the space expansion constraint  
are rejected. 

c) Since the candidate keys were first sorted in rank 
order (by expected benefit), the first candidate 
key that satisfies the storage expansion constraint 
is selected as the winner.  

d) This process is repeated for subsequent tables, 
until all tables identified in 1c have been 
evaluated.  

 
Note that phase 1 of this analysis (Select dimension 
candidates) is done across all tables simultaneously by 
simulating virtual clustering across all referenced tables in 
the workload. One of the important observations by 
Lohman et al. is that early algorithms for index selection 
assumed separability, such that design decisions on one 
table could be made independently of design decision for 
another table (specifically in the case of index advisors). 
However, Lohman et al. [13] observe that this assumption 
is not always true, as in the case of a nested loop join 
between relations R and S where an index on one of R or S 
reduces the need for an index on the other. This is so 
because as long as one of R and S has an index, the join 
predicate can be applied to the inner relation. Thus, it 
appears that, at least in the case of joins between relations, 
data access patterns are co-dependent, and design 
decisions should not be made for each table in complete 
isolation. The same arguments apply to the problem of 
MDC design, so separability should not be assumed. Our 
approach is a hybrid in which we modeled dimension 
interdependency in steps 1 and 2 above, but assumed 
independence in 3a. 
 

3.2 Identifying candidate columns 
Candidate clustering columns are identified during 
optimization of SQL queries and the simulation of virtual 
MDC: these include columns that are used for predicates 

and operators and are likely to benefit from clustering, 
such as: 
� GROUP BY,  
� ORDER BY, 
� CUBE,  
� ROLLUP,   
� WHERE predicates for equality, inequality, and 

ranges. 

3.3 Modeling space waste from table 
conversion to MDC 
Figure 2 illustrates several cells each containing a number 
of storage blocks, with the final blocks in each cell only 
partially filled. The greater the number of cells there are, 
the more partially filled blocks, and therefore the more 
space wasted. An estimate of the space waste can be made 
by assuming each cell contains a single partially filled 
block at the end of its block list. The space waste is then: 
 

βη ⋅Ρ⋅= %cellsW                    (4.) 
 
where %Ρ  is the average percentage of each storage block 

left empty per cell, and β  is the blocking size. On 
average, the last block in each cell will be 50% filled, 
except in cases of largely empty cells (very few tuples in 
the cell). In the presence of either data skew, or very high 
cell cardinality, the number of cells with very few tuples 
may increase, resulting in a high vacancy rate in the final 
block of some cell. In fact, the choice of %Ρ  is not 
critical, provided it is larger than 50%, since the goal is to 
observe gross expansion of space rather than to estimate 
space use accurately.   In our implementation, we have 
used a conservative estimate for  %Ρ  of 65%.  

Cell #5

Cell #1

Cell #4

Cell #3

Cell #2

Storage blocks for cells

 
Figure 2: Partially filled blocks within cells  

3.4 Coarsification approaches for specific 
dimension types 
For each range dimension, there are specific ways that we 
can coarsify the clustering, but not an infinite set. In 
practice, once we have identified FUDG, as illustrated in 
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the following examples, there are approximately 4 to10 
degrees of useful coarsification that we can apply. For 
example, when coarsifying a date field, we can imagine 
the following possibilities:  
 

day->month->quarter->year 
 
Similarly, for an INTEGER type, we can coarsify the 
dimension using division, with a logarithmic scale (i.e., 
divide by 2, 4, 8, 16, etc).  
 
However, since storage expansion will be proportional to 
the cardinality of cells in the resulting MDC table, clearly 
to satisfy the expansion constraint the combinations of 
dimensions in the final solution must be small enough as 
per equation (4.). Since the cardinality of cells can only 
grow as dimensions are taken in combination (e.g., AB 
will have a cardinality of cells >= A or B individually), 
therefore, the finest useful granularity that is worth 
considering in the search space for any single dimension 
must likewise satisfy this constraint. This granularity is 
known as the FUDG coarsification, and is described in 
more detail in the next section. In our selection scheme 
we begin with the FUDG coarsification, and consider 
further coarsification of the FUDG coarsification for each 
clustering dimension showing workload benefit. 
 

3.5 Determining the FUDG coarsification for 
a candidate clustering dimension 
 
For numeric types, coarsification begins by calculating 
the FUDG coarsification using the HIGH2KEY statistic 
(second largest column value) and LOW2KEY statistic 
(second smallest column value) to define the range of the 
dimensions, then defining an expression that divides that 
range into  �cells_max ranges (cells).  If the base column has 
cardinality that is below the FUDG cardinality, then the 
base column defines the FUDG coarsification for that 
candidate dimension (i.e., this column’ s FUDG 
coarsification is simply the base column itself and 
requires no coarsification).   
 
We define a mathematical function that divides the range 
between HIGH2KEY and LOW2KEY into a number of 
ranges, where the number of ranges is the same as the 
maximum number of cells possible in the table given the 
space constraint, as shown in Figure 3. HIGH2KEY and 
LOW2KEY are assumed to represent the reasonable range 
of values for the dimension.  
 

high2key low2key
equidistant ranges

Number of ranges = �cells_max = maximum 
number of cells given space constraint

 
Figure 3: Calculating FUDG for numeric types 

 
DFUDG = (Column – LOW2KEY)/iCoarsifier   (5.) 
 
where iCoarsifier is....  
 
        iCoarsifier  = ((HIGH2KEY – 
LOW2KEY)/iNum_blocks_min);                      (6.) 
 
        and iNum_blocks_min is...  
 
 iNum_blocks_min =  MAX( 1, table_size /�); (7.) 
 
In (7) table_size is the size of the table we are evaluating 
for MDC, and � is the size of the storage blocks in the 
cell-block model.  In order for this process to work, it is 
necessary that the dimension be converted to integer form 
(so that the cardinality of the resulting range is discrete). 
For real types (DECIMAL, FLOAT, DOUBLE) this 
means ensuring that they have a substantial positive 
range. To accomplish this, the FUDG coarsification for 
Real types includes a multiplicative factor that ensures 
HIGH2KEY is > 1000.  

 
For DATE and TIMESTAMP fields, we coarsify by 
casting first to INT and BIGINT, respectively, then using 
integer division to coarsify to week, month, quarter, year. 
Special assumptions are made when determining the 
FUDG coarsification for DATE and TIMESTAMP 
because of the practical concern that the data currently in 
the database at the time the MDC Advisor is run may only 
be a time-fragment of the real data (for example one 
month’ s worth of data). This is a very significant and 
realistic situation for database designers. If only a single 
month of data were provided, the cardinality of cells in 
the DATE dimension might be limited to 31 distinct 
values, while in fact the data may only be a one month 
sample of a seven-year data warehouse. Therefore, to 
mitigate this risk, in both TIMESTAMP and DATE cases, 
we assume that WEEK of YEAR is a reasonable estimate 
of FUDG since it coarsifies the column to a maximum of 
52 cells per year. We do not recommend clustering on 
DATE or TIMESTAMP without coarsification, even 
when the apparent cardinality of cells in the dimension 
data is low enough.  
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3.6 Sampling for cardinality estimates 
For each dimension, once the FUDG coarsification has 
been estimated, further coarsification is designed. The 
search model requires a reasonable estimate of the 
cardinality of each dimension at each of the dimension 
coarsifications (during step 2b of the process described in 
3.1 above), as well as the ability to measure the 
cardinality of combinations of these dimensions (during 
step 3a in Section 3.1 above).  To facilitate a reasonable 
response time for the MDC Advisor, a sampling approach 
is used. In this sampling model, data is sampled for each 
candidate table only once, and stored in a temporary 
staging table. The sampling is performed using a 
Bernoulli sampling method. Statistics including 
cardinality of dimensions, dimension coarsifications and 
combination of dimensions can be collected over the 
sampled data rather than the base table, which enables the 
evaluation of a large number of variants while only 
sampling the base table once. While the staging table 
holding the sample may need to be scanned multiple 
times, significant performance benefit accrues from the 
fact that the staging table is a small fraction of the size of 
the base table from which its data came.   
 
Cardinality estimation research [9][10] suggests that the 
accuracy of statistical cardinality estimators drop off 
precipitously when sampling rates fall below 1%. 
Therefore, the staging table constructed here uses the 
larger of a 1% sample or a sample of 10000 tuples to 
construct its sample. 
 
The staging table Ttemp, includes a definition of all the 
base columns from Tbase that are candidate clustering 
dimensions. In addition, Ttemp includes expression-based 
columns for all of the coarsification of the base columns 
the MDC Advisor will consider, starting with the FUDG 
coarsification level, and increasing from there. For 
example, if SALARY may have a FUDG coarsification of 
SALARYf = SALARY/1000, we may also create 
generated columns of SALARYf /4, SALARYf /16, 
SALARYf /64..., etc. The staging table is populated with a 
1% sample from the base table.  This allows the 
cardinalities of unique values that are needed in 2c and 3a 
of Section 3.1 to be counted while only taking the sample 
once (i.e., sample once, count many).  
 

3.7 Modeling workload benefit consequences 
of clustering coarsification 
One of the key issues is to understand the likely effect of 
coarsification on the expected benefit in clustering on any 
given dimension. A brute force approach to solving this 
problem would be to re-evaluate (simulate) the workload 
cost with each individual coarsification of each 
dimension, or perhaps all possible combinations. Such an 

approach for workloads of any significant dimensionality 
is impractical. Instead we use a simple model sufficient 
for the MDC selection process, based on the following 
two observations  

1. When a database table has only one cell, MDC 
provides no value. 

2. Expected benefit at the FUDG coarsification was 
determined through simulation within the SQL 
optimizer.   

 
This gives us two points of reference on a performance 
versus cardinality of distinct values graph, when 
cardinality is 1 (i.e., zero benefit) and at the cardinality of 
distinct values at the FUDG coarsification.  We also infer 
that the benefit due to clustering is monotonic and 
decreasing as coarsification increases.  
 
Although the exact shape of the monotonic curve cannot 
be easily determined, we have modeled it as a smooth 
logarithmic relationship, such that the penalty for 
coarsifying a dimension is initially minor, but increases 
dramatically at higher coarsification levels.   We apply a 
curve-fitting process to plot a concave polynomial 
between the two well-known points to derive a benefit-
coarsification function, as per Figure 4. From this 
relationship function, we can model the performance 
benefit of any coarsification level of a dimension given its 
cardinality of cells at the FUDG coarsification level.  

 
Figure 4: Curve-fitted benefit-coarsification function 

 
The benefit versus cardinality of cells function is then 
determined as follows in equations (8) and (9). 
 
      B = m * log( C )                                     (8.) 
      m = Bf/(log(Cf))                                    (9.) 
 
 B is the performance benefit at a given coarsification 
level, and C is the cardinality of cells at the same 
coarsification level. Bf is the performance benefit at the 
FUDG coarsification and Cf is the cardinality of cells at 
the FUDG coarsification level for the dimension.                
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3.8 Search algorithm 
To find an optimal combination of dimensions that 
satisfies our storage expansion constraint, we have used a 
simple weighted randomized search, which includes some 
qualities of a genetic algorithm including weighted 
selection of attributes. After completing steps 1a, 1b, and 
1c described in Section 3.1, the algorithm is left with a 
search problem that must select the best possible MDC 
design given a list of candidate dimensions with estimated 
performance benefit at their FUDG coarsification. The 
search space for this problem is all possible combinations 
and permutations of all these candidate dimensions at any 
of their possible coarsifications. The complexity of this 
search was described in equation (3). Since the evaluation 
of a candidate clustering key requires some degree of 
cardinality evaluation (to ensure the storage constraint is 
not exceeded) the evaluation function requires some 
sampling and counting. Therefore, the need for cardinality 
estimation requires a computationally costly evaluation 
function, and an exhaustive search is not practical. 
 
Using our weighted randomized search, combinations of 
dimensions at various coarsifications are selected in 
probabilistic proportion to their relative benefit to the 
workload. Each such combination forms a candidate 
solution. The set of generated candidate MDC keys (i.e., 
solutions) are then sorted by benefit. For simplicity, the 
benefit of each MDC solution is assumed to be the sum of 
the workload benefit for each dimension in the solution. 
Once the candidate clustering keys have been generated 
and ranked, they are evaluated in rank order using the 
evaluation function described in the previous section to 
determine whether they satisfy the storage expansion 
constraint. Since the candidate clustering keys are sorted 
in rank order, the first candidate key to pass the test for 
storage expansion is chosen as the final clustering 
recommendation for a given table.  
 
To improve the efficiency of the search, when a candidate 
key is found to have a design that will lead to gross 
storage expansion (e.g., >5x storage growth), then we 
reject this key, and also eliminate near neighbours in the 
search constellation. This near-neighbour reduction has 
been effective in high dimensionality search spaces in 
greatly reducing the search cost. On our experiments, the 
efficiency of the search was improved by 400% in some 
cases by this addition. 
 

3.9 Evaluation function for candidate keys 

3.9.1 Estimating workload benefit 
The search method used in this paper will require an 
evaluation function to assess the fitness (or value) of each 

search point in the candidate solution space. The “ value”  
in this context is the potential benefit to the query 
workload in improving performance. To do this we 
exploit a variation of the technique used by Lohman et al. 
[13]  where the database optimizer is used to provide a 
cost estimate of the workload. In this method the 
optimizer is given a simulation of the table definition and 
table statistics (and statistics for dependent objects) 
against which it makes its estimations.  In the case of 
MDC the problem is more complex for these reasons:  
� MDC affects the base table: it is not simply an 

optional attachment, as in the case of an index; 
� MDC affects the statistics of the base table, 

namely table size; 
� The MDC search typically includes search points 

for dimensions at multiple degrees of 
coarsification. 

 
To deal with the complexities, the optimizer model is 
extended to model MDC candidates, affecting statistics of 
the base table as well as cluster ratios on existing indexes. 
The benefit of the FUDG coarsification of a dimension is 
then calculated as the aggregate of the resource 
consumption reduction for each query in the workload 
that exploits the virtual clustering dimension as compared 
to the same resource consumption analysis without MDC 
clustering. However, the cardinality of cells at a given 
coarsification of a dimension cannot be reliably estimated, 
and sampling is required to determine this. Once a 
reasonable estimate of the cardinality of cells is obtained, 
the attenuated workload benefit due to coarsification of a 
dimension can be estimated using equation (8) as 
described in Section 3.7. Therefore, the SQL query 
optimizer is used to estimate the workload benefit for 
each dimension at its FUDG coarsification, while 
sampling, counting, and curve fitting are used to estimate 
the benefit of the same dimension at increased levels of 
coarsification. 
 
Once the benefit of each candidate dimension is 
calculated at its FUDG coarsification, the expected 
benefit for each dimension at further coarsifications is 
modeled through the process described in Section 3.7 and 
the curve-fitting algorithm described there, provided 
cardinalities or estimates of cardinalities are known for 
each coarsification of the dimensions we wish to model. 
These estimates of cardinality for each candidate 
dimension are similarly detected through the sampling 
process described in Section 3.6, and extrapolated using 
the First Order Jackknife Estimator.  
 
Using these methods in combination, we now have a 
model for:  

a) Detecting candidate dimensions. 
b) Estimating the workload benefit of a candidate 

clustering dimension at its FUDG coarsification.  
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c) Modeling the benefit of each candidate 
clustering dimension at coarsifications beyond 
the FUDG coarsification, as a logarithmic 
function of cardinality reduction. 

 

3.9.2 Evaluating satisfaction of the storage 
expansion constraint 
The remaining problem in the evaluation function is to 
determine for any given combination of dimensions and 
coarsifications what the cardinality of resulting cells will 
be. This measure of cardinality of cells is critical to 
determine in order to satisfy the storage expansion 
constraint. Using the same data sample collected above 
into Ttemp, we can use SQL to count the cardinality of the 
unique values of a combination of dimensions that 
correspond to the dimensions in a MDC solution we being 
evaluated.  
 
To do this, we use an SQL query such as the following:  
 
SELECT COUNT(*) FROM (SELECT DISTINCT 
A,B,C FROM T-TEMP)  
AS CELL_CARD;                            (10.) 
 
This returns the COUNT of distinct values of the 
clustering key (ABC).  Once the cardinality in Ttemp of 
distinct values of the candidate clustering key is 
determined, we can scale this sampled cardinality using 
the First Order Jackknife Estimator to estimate the 
number of cells that would exist in the entire table. This 
sampling and extrapolation method effectively models 
correlation between the dimensions in a candidate 
solution.  

 
Once the cardinality of cells is estimated, it can be tested 
against equation (4) to determine whether the storage 
expansion constraint is satisfied.  
 
3.10 Data skew 
 
In a few instances (see 3.6, 3.7 and 3.9.2), the MDC 
Advisor algorithm requires a statistical estimator to 
extrapolate the cardinality of unique values in a sample.  
The First Order Jackknife Estimator was chosen for its 
simplicity. This estimator is known to be weak in the 
presence of severe data skew. Though length limitations 
do not allow for a detailed analysis here, it can be shown 
that the specific requirements in this algorithm are quite 
tolerant to estimation inaccuracies, which allow the First 
Order Jackknife estimator to be adequate in the presence 
of data skew in most cases. Even so, several other 
estimators with superior skew handling are described in 
[9][10], which can be substituted to improve the 
robustness of the algorithm.  
 

4.  Experimental Results 

4.1 Test  Objectives & Description 
The objective of the tests was to compare the quality of 
the MDC Advisor recommendation when compared to 
expert human recommendation against a well-known 
schema and workload. The industry standard TPC-H 
benchmark was used for the tests [1]. The metric used for 
comparison is called the TPC-H Composite Query-per-
Hour (QphH@Size). For the experiments a 10 GB TPC-H 
database running on DB2 UDB V8.1 on a pSeries® server 
with  AIX® 5.1, 4 X 375 MHz CPUs and 8 GB RAM was 
used. Six experimental tests were performed:  
 
1. Baseline: The performance of the benchmark without 

MDC. Table 1 describes those tradition RID (row) 
indexes used for the baseline experiment, which had 
cluster ratio quality of 5% or better, a measure of 
percentage of data that is well clustered along one 
dimension.  

2. Advisor 1: The performance of the benchmark using 
the top most MDC design (described in Table 2) of 
the Advisor. 

3. Advisor 2: The performance of the benchmark using 
the second best MDC design (described in Table 3) 
for the Advisor.  

4. Expert 1: The MDC design used during IBM’ s most 
recent 2003 TPC-H publication. This is described in 
Table 4. According to TPC-H guidelines, the MDC 
design was constrained to clustering exclusively on 
base columns (coarsification was not permitted).  

5. Expert 2:  The top MDC design provided by the DB2 
MDC development team described in Table 5. 

6. Expert 3: An alternative MDC design provided by the 
DB2 MDC development team is described in Table 6. 

 
Index name Base table Columns 

 (key parts) 
Cluster 
quality 
(%) 

L_OK  LINEITEM  +L_ORDERKEY  100 
R_RK   REGION    +R_REGIONKEY   100   

S_NK  SUPPLIER   +S_NATIONKEY   36.8 

PS_PK_SK  PARTSUPP  +PS_PARTKEY 
+PS_SUPPKEY   

100   

S_SK    SUPPLIER    +S_SUPPKEY  100 

PS_PK PARTSUPP +PS_PARTKEY    100 

Table 1: Single dimensional clustering in baseline 
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Base table MDC dimensions 
CUSTOMER C_NATIONKEY,C_MKTSEGMENT 
LINEITEM (INT(L_SHIPDATE))/7, 

L_RETURNFLAG, 
(INT(L_RECEIPTDATE))/14, 
L_SHIPINSTRUCT 

ORDERS (INT(O_ORDERDATE))/7,  
O_ORDERSTATUS 

PART P_SIZE 
PARTSUPP (((PS_PARTKEY)/(((1999999 -

2)/(19956))*(8)))) 
SUPPLIER S_NATIONKEY 

Table 2: MDC design for "Advisor 1" 
 

Base table MDC dimensions 
CUSTOMER C_NATIONKEY/2, C_MKTSEGMENT 
LINEITEM (INT(L_SHIPDATE))/14, 

L_RETURNFLAG, 
(INT(L_RECEIPTDATE))/7, 
L_SHIPINSTRUCT 
 

ORDERS (INT(O_ORDERDATE))/14,  
O_ORDERSTATUS 

PART P_SIZE/2, P_CONTAINER 
PARTSUPP (((PS_PARTKEY)/(((1999999 -

2)/(19956))*(16)))) 
SUPPLIER S_NATIONKEY/2 

Table 3: MDC design for "Advisor 2" 
 

Base table MDC dimensions 
LINEITEM L_SHIPDATE 
ORDERS O_ORDERDATE 

Table 4: MDC design for "Expert 1" 
  

Base table MDC dimensions 
CUSTOMER C_NATIONKEY 
LINEITEM (INT(L_SHIPDATE))/100, 

L_SHIPMODE, L_SHIPINSTRUCT 
ORDERS O_ORDERDATE 
SUPPLIER S_NATIONKEY 

Table 5: MDC design for "Expert 2" 
 

Base table MDC dimensions 
CUSTOMER C_NATIONKEY,C_MKTSEGMENT 
LINEITEM (INT(L_SHIPDATE))/100, 

L_SHIPMODE, L_SHIPINSTRUCT, 
(INT(L_RECEIPTDATE)/10000 

PART P_SIZE, P_BRAND 

Table 6: MDC design for "Expert 3" 
 

The TPC-H workload was run three times for each test; 
the shortest run for each design is noted here. Execution 
time variability was found to be quite minimal among the 
three runs, generally less than 2%. The tests were done 
with identical database and database manager parameters. 

 

4.2 MDC Advisor search space 
A graphical display of search points considered by the 
MDC Advisor algorithm (Figure 14) for the two largest 
tables, LINEITEM and ORDERS illustrates some 

interesting search characteristics.  The shaded areas 
covering the rightmost portions of the space are areas 
where the search points would have caused severe table 
storage expansion. As a result, these high expansion 
candidates are not practical as solutions and are simply 
rejected from the candidate solution set.  
 
Figure 5 shows the performance benefit versus storage 
expansion projected for each candidate solution explored 
in the MDC search. Note that the benefit model assumed 
< 10% growth, so that candidate solutions resulting in 
more than 10% growth have bogus benefit. The density of 
search points that lie along a region in the � domain 
between 1.0x and 1.1x expansion is quite reasonable, 
illustrating that the search algorithm is successful in 
finding many candidate solutions in the acceptable range 
of expansion. The circled area shows the keys with 
highest benefit and reasonable data expansion from which 
the final recommended MDC solution is chosen.   

 

 
Figure 5: Distribution of search points for TPC-H 

two largest tables 

4.3 MDC table expansion 
Table 7 shows the actual table expansion rates for the 
TPC-H tables for the six clustering designs. 
 
The MDC Advisor logic, was quite effective at selecting 
MDC designs that were constrained to the space 
constraint goal of 10% expansion. The largest table 
expansion was seen in Advisor 1 experiment where 
LINEITEM table expanded by 11.98%, and 12.76% 
expansion on PARTSUPP, which is quite good given the 
1% sampling rate of the First Order Jackknife estimator.  
 
 

Table  
name 

No 
MDC 

Expert  
1 

Expert  
2 

Expert  
3 

Advisor  
1 

Advisor  
2 

 Size 
(4K) 

Growth 
(%) 

Growth 
(%) 

Growth 
(%) 

Growth 
(%) 

Growth 
(%) 

LINEITEM 2081040 1.05 4.69 8.42 11.98 11.95 

ORDERS 443840 4.08 4.08 0.00 5.23 4.89 

PART 76240 0.00 0.63 5.56 0.63 9.99 

PARTSUPP 319296 0.00 0.00 0.00 12.76 6.49 

CUSTOMER 69168 0.00 0.35 1.50 1.50 3.63 

SUPPLIER 4096 0.00 7.81 0.00 7.81 6.25 

       
Total 2993680 1.34 3.90 6.03 10.53 10.07 

Table 7: Table expansion with MDC 
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Also the expert designs by human designers (Expert 1, 
Expert 2, and Expert 3) were generally more aggressive 
than the MDC Advisor in constraining space expansion 
(1.34%, 3.90% and 6.03% total expansion, respectively), 
a likely reflection of their deep knowledge and many 
years of experience with the TPC-H workload 

4.4 Query performance results 
The MDC Advisor completed its design analysis and 
reported its recommendations in less than an hour. 
 
Figure 6  shows the QphH results for the six clustering 
designs and they show the performance benefit of MDC 
and the effectiveness of the MDC Advisor algorithm in 
selecting MDC designs in comparison to human experts. 
 
In these experiments, all of the MDC designs showed 
significant benefit over the baseline throughput. The rank 
ordering of the five MDC designs according to their 
performance benefit Advisor 2 with 11.12%, Expert 1 
with 13.35%, Expert 3 with 14.20%,   Advisor 1 with 
14.54%, and Expert 2 with 18.08%.  Significantly, 
Advisor 1, which represents the MDC Advisor’ s best 
recommendation was measurably superior to to MDC 
Advisor 2, and both Expert 1 and Expert 3.  
 
Also revealing is a view of the performance by individual 
queries, as shown in Figure 7. No single clustering design 
achieved gains across the entire workload, highlighting 
the complexity of the search problem. Specifically, a 
successful advisor algorithm must consider the overall 
benefit of clustering designs across all tables and all 
queries, which is one of the highlights of the approach 
described in this paper. 

 5. Conclusion and future work 

5.1 Summary 
The MDC Advisor algorithm leverages past work in 
automated physical database design and statistical 
modeling, in combination with new ideas on MDC, to 
provide a method for automating the design problem of 
MDC. To our knowledge, this is the first published 
algorithm to tackle this important problem.  The algorithm 
exploits a combination of query optimizer what-if 
analysis, weighted randomized search, data sampling, and 
statistical extrapolation. Six experiments were performed 
using a 10 GB TPC-H database to compare the advisor 
designs against those of human experts and it was found 
to provide design recommendations that were in line with 
the quality of these experts. The advisor was effective at 
modeling correlation between dimensions through 
sampling, and was able to limit the database expansion 
under MDC to a value very close to its design goal of 
10%. Based on the value shown through these 
experiments and the importance of the studied problem, 
the model described in this paper has been implemented 
for the V8.2 release of DB2 UDB for Linux, UNIX and 
Windows.  

TPCH performance with various clustering designs
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Figure 6: TPC-H overall results  

Figure 7: TPC-H query performance for all 6 experiments 
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5.2 Future work 
This work can be enhanced by investigating: 
� Hierarchy climbing for dimension coarsification.  
� Improving coarsification models and storage 

estimates in the presence of data skew.  
� Efficient table migration (alter) schemes for  
        conversion to MDC.  
� Recommendation of block size and adaptive blocking 

sizes, to better accommodate data skew. 
� Improved selection of the storage expansion 

constraint, including adaptive algorithms. 
� Experimentation on larger/varied data sets, schemas, 

and workloads, in particular including database 
schemas and workloads from user environments 
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