High Performance Index Build Algorithms for Intranet
Search Engines

Marcus Fontoura Eugene Shekita Jason Y. Zien Sridhar Rajagopalan Andreas Neumann

IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120
USA

trevi@almaden.ibm.com

Abstract

There has been a substantial amount of re-
search on high-performance algorithms for
constructing an inverted text index. How-
ever, constructing the inverted index in a in-
tranet search engine is only the final step in a
more complicated index build process. Among
other things, this process requires an analysis
of all the data being indexed to compute mea-
sures like PageRank. The time to perform this
global analysis step is significant compared to
the time to construct the inverted index, yet
it has not received much attention in the re-
search literature. In this paper, we describe
how the use of slightly outdated information
from global analysis and a fast index construc-
tion algorithm based on radix sorting can be
combined in a novel way to significantly speed
up the index build process without sacrificing
search quality.

1 Introduction

Most web and intranet search engines use an inverted
text index to execute queries [29]. Because inverted in-
dexes are expensive to update [7, 8, 28], search engines
typically reconstruct their index from scratch on a pe-
riodic basis. This is simplier and faster than trying to
incrementally update the index. The more frequently
an index can be reconstructed, the faster updates will
be reflected in search results, which in turn improves

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

search quality. Therefore, the time to construct an
inverted index is an important issue in search engines.

There has been a substantial amount of research on
high-performance algorithms for constructing an in-
verted text index [1, 17, 22, 29]. However, construct-
ing the inverted index in a intranet search engine is
only the final step in a more complicated index build
process. Before data is indexed, it has to be analyzed
as a whole in a global analysis (GA) step. Examples of
GA computations include static rank [23], duplicate
detection [5, 6], anchor text extraction [14, 15], and
template detection [2]. The information gleaned from
GA is then used as input to construct the inverted text
index. For example, static rank can used to put the
index in rank order [19]. The time to perform GA is
significant compared to the time to construct an in-
verted index, since all the data being indexed has be
analyzed. Moreover, the proportion of time spent in
GA is likely to grow as analysis becomes more sophis-
ticated [12].

In this paper, we describe how the use of slightly
outdated GA information, that is lagging GA, and a
fast index construction algorithm based on radix sort-
ing can be combined in a novel way to significantly
speed up the index build process without sacrificing
search quality. Results from the Trevi search engine
are presented. Trevi was developed in IBM Research
and is currently used to support all the searches on
IBM’s global intranet, which runs in 7x24 mode and
supports over 350,000 employees. The main contribu-
tions of this paper include:

e An index build process that uses lagging GA, al-
lowing Trevi’s inverted index to be constructed
with just one pass over the data.

e A fast index construction algorithm based on a
pipelined radix sort.

e Experimental results showing that lagging GA
can speed up the index build process, with only a
negligible degradation in precision.

1122

e Experimental results showing that Trevi’s index
construction algorithm is significantly faster than
alternative approaches described in the research
literature.

2 Architecture Overview

Figure 1 shows Trevi’s hardware and software archi-
tecture for IBM’s intranet. As shown, there are four
processing nodes in a cluster. Each node is a com-
modity two-way x86 SMP running Linux, with its own
direct-attached RAID for storage. The cluster is con-
nected with a local gigabit Ethernet to ensure ample
bandwidth for copying data between nodes.

As shown in Figure 1, each node in the Trevi clus-
ter is assigned a particular task. This partitioning of
nodes by task makes it easy to crawl, construct in-
verted indexes, and execute queries in parallel. The
Crawler is responsible for crawling data. It stores raw
documents (HTML pages, PDF files, XML, etc.) along
with associated metadata in a database. Raw docu-
ments are copied to the Index Build node, which is re-
sponsible for periodically running the index build pro-
cess. Once an index has been constructed, it is copied
to the Query Servers, which execute end-user searches.
Two Query Servers are used for fault-tolerance and
load balancing.

The RAID storage on each node is spread over two
physical arrays. and data is never updated in-place,
much like in a log-structured file system [25]. When
a new index is constructed, data is always read from
one disk array and written to the other array. This
dual-array storage architecture greatly improves the
performance of the index build process by making all
disk I/O sequential. It also makes it possible to atom-
ically install a new index on a Query Server without
taking the server down.

3 Index Build Data Structures

The main focus of this paper is on the index build
process, so we do not present further details on the
Crawler and Query Servers. This section describes the
main data structures used in the index build process,
which we subsequently refer to as simply index build.
The data structures used during index build are the
Store, the Indez, the DeltaStore, and the DeltaIndez.
All of these data structures are maintained on the In-
dex Build node and copied to the Query Servers, where
they are accessed in read-only mode.

3.1 The Store

The Store is a repository for the tokenized version of
each document. Documents read from the Crawler
database are parsed, tokenized, and then added to the
Store. The reason for storing tokenized content in the
Store is performance. Multi-format parsing and multi-
lingual tokenization of a document is extremely CPU

c | data copy Index
rawiler Build
c od Store
rawle . . Ind
Documents Local Gigabit Deltastore
Switch Deltalndex
P Query d é
ata copy
Sprayer Server
Link to the
global IBM Store
Intranet DeltaStore
Deltalndex

Figure 1: High-level view of Trevi’s hardware and soft-
ware architecture

intensive, on the order of 50 times slower than a ran-
dom disk I/O. Consequently, we want to do it only
once. After the bulk of the documents on the intranet
have been crawled, there are typically just small ad-
ditions to the Store, on the order of 5% to 10% per
day. When a document changes it will eventually be
recrawled.

Tokenized documents tend to be small, so they are
aggregated into bundles in the Store to enable big-
block I/O for improved performance. Currently, each
bundle in Trevi corresponds to a 8 MB file. The Store
is scanned sequentially during index build, but an API
also exists for randomly accessing documents. This
API is used during query processing to generate sum-
maries for results. Each document in the Store has an
associated store locator that encodes the bundle and
offset within that bundle for a document.

Each document in the Store is identified by a 64-bit
hash of its URL. We refer to this as the URL hash of
a document. Auxiliary data structures are kept that
make it possible to obtain the store locator of a docu-
ment given its URL hash.

3.2 The Index

Each token occurrence (posting) in the inverted
text index contains a position and an attribute, i.e,
posting=(position, attribute). The position encodes
the document ID (docID) and the offset within the
document in which the token appeared. Positional in-
formation is necessary for implementing phrase search
and proximity queries. The attribute field encodes
ranking and display information about the token oc-
currence, e.g. if the occurrence was in a title, anchor
text, or normal text. This attribute field is similar
to the fancy postings used in [4], and is used at query
time for ranking purposes. Attributes are typically one
byte in size, although we allow arbitrary sizes. The in-
dex can be viewed as a collection of posting lists, one
for each token. Each posting list is a set of postings
ordered by position.

1123

3.3 The DeltaStore and Deltalndex

In order to make new documents and updates to ex-
isting documents appear as soon as possible in search
results, Trevi uses a DeltaStore and a Deltalndex. The
DeltaStore is used to accumulate changes to the Store,
while the Deltalndex is an index of the documents in
the DeltaStore. The DeltaStore and Deltalndex ba-
sically mirror the structure and functionality of the
Store and Index, respectively.

The index construction algorithm used to build the
Deltalndex is similar to the one used to build the In-
dex. In particular, the Deltalndex is reconstructed
from scratch each time. However, one key difference
is that GA is not done when the Deltalndex is con-
structed, since it would take too long. The result of
this is that, although the Deltalndex enables updates
to appear in search results as soon as possible, it does
not eliminate the need for a fast index build process
that includes GA.

4 Global Analysis

In this section we describe the main computations
performed by GA. These are duplicate detection, an-
chor text processing, and static ranking. All of
these have been discussed at length in the literature
[5, 6, 14, 15, 23], so we only highlight how they are
implemented in Trevi. The main focus of this section
is to provide background for the index build algorithm
presented in Sections 5 and 6.

4.1 Duplicate Detection

Duplicate detection identifies and discards duplicate
documents. During tokenization, each document is
annotated with a fingerprint, which is computed by
hashing the document’s content. This information is
put in the Fingerprint Table. Duplicate detection uses
a union-find algorithm [10] on fingerprints to iden-
tify groups of documents with the same (or nearly the
same) content.

After identifying groups of similar documents, du-
plicate detection picks a master document for each
group. In order to avoid duplicate answers to search
queries, only master documents are indexed by Trevi.
There are several heuristics that can be used to pick
the masters, such giving priority to documents with
shorter URLs. The output of duplicate detection is
the Dup Table, which assigns a master to each docu-
ment in the Store. Given the URL hash of a document
D, the Dup Table can be used to determine if D is a
master or a duplicate.

4.2 Anchor Text Processing

We define the anchor text of a document D as the col-
lection of text contained in anchors that point to D
from other documents. For example, if a given docu-
ment points to http://trevi.ibm.com with text “search

engine”, then “search engine” is part of the anchor text
for http://trevi.ibm.com. Several studies have shown
that indexing anchor text significantly improves search
quality [11, 15]. The intuition is that, very often, an-
chor text resembles end-user queries [18].

Trevi’s anchor text algorithm extracts the links and
their surrounding text from all the documents in the
Store and puts them in the Link Table. The data kept
for each link includes the link’s source URL hash, its
destination URL hash, and its associated anchor to-
kens. The Link Table is sorted and then aggregated on
the destination URL hash to create a virtual anchor
document for each destination. These anchor docu-
ments are written sequentially to the AnchorStore. A
separate storage area is created to avoid updating the
Store in-place, which would require seeking all over
disk.

4.3 Static Ranking

Trevi assigns a static rank to each document in the
Store. Currently, the static rank of a document D is
simply set to the the number of different hosts that
point to D, i.e., the hostcount. The higher the host-
count, the higher the static rank. Although more
sophisticated techniques for assigning static rank are
available, such as PageRank [23], hostcounts are easy
to compute and have produced satisfactory results on
IBM’s intranet. To compute static ranks, Trevi simply
runs a count on the sorted Link Table.

The result of the static rank computation is the
Rank Table, which is a mapping from the URL hash
of a document to its static rank. Given the URL hash
of a document D, the Rank Table can be used to de-
termine D’s static rank. As in many search engines,
docID is synonymous with static rank in Trevi. This
effectively puts Trevi’s inverted indexes in static rank
order, making it possible to terminate top-k queries
early [19].

5 The Index Build Algorithm

In this section we first present the index build algo-
rithm at a high level, ignoring GA computations. We
then describe a straightforward way to incorporate GA
computations, which requires two passes over the data
being indexed. Finally, we present an index build al-
gorithm that uses lagging GA, allowing just one pass
over the data being indexed.

5.1 The Basic Index Build Algorithm

The basic high-level flow of Trevi’s index build algo-
rithm is illustrated in Figure 2(a). The algorithm takes
the current version of the Store, that is, Store;4; and
merges it with the current version of the DeltaStore to
generate the new version of the Store and the new In-
dex, that is, Store;y; and Index;;,. The Store and
Index always move together in time this way, with

1124

Index; 1 over Store;11. By generating a new version
of the Store each iteration we get to garbage collect
the Store, keeping it sequential on disk and free of
old, deleted, or duplicate documents. Since the per-
formance of index build is proportional to the time to
scan the Store, this greatly improves performance.

The DeltaStore and the Deltalndex also move to-
gether in time, but at a faster clip than the Store
and the Index. As shown in Figure 2(b), DeltaStore;
is merged with newly crawled documents to generate
DeltaStorej+1 and Deltalndex;j+,1. Note that newly
crawled documents in Figure 2 (b) are analogous to
the DeltaStore in Figure 2 (a). Consequently, the un-
derlying algorithm for both figures is effectively the
same.

Store; —f — Store;,;
Index
Build
DeltaStore —» — Index.,,
@
DeltaStore,— — DeltaStore,,,
Deltalndex
Build
Newly crawled . Detalndex,
documents !

()

Figure 2: High-level view of (a) index build and (b)
Deltalndex build

It is important to note that the performance of
the algorithms for constructing both the Index and
the Deltalndex benefit greatly from Trevi’s dual-array
storage architecture. For example, while the Store;
and DeltaStore are sequentially read from one disk ar-
ray, Store;+1 and Index;11 can be written in parallel
to the other array.

5.2 Incorporating Global Analysis

We now provide a more detailed description of the in-
dex build algorithm that incorporates GA. The naive
approach to do this is:

1. Duplicate Elimination: Scan the Store to generate
the Fingerprint Table, which maps URL hashes to
fingerprints and is input to duplicate detection.
When the Fingerprint Table is ready, duplicate
detection is performed, generating the Dup table.

2. Anchor Text Extraction: Scan the Store to extract
links from each document. Once all links are ex-
tracted, they are saved in the Link Table. The
anchor text algorithm then generates the Anchor-
Store from the Link Table.

3. Static Ranking: Use the Link table to assign static
ranks to documents in the Store and to generate

the Rank Table. Note that no sort is needed in
this phase since the Link Table was already sorted
for anchor text extraction.

4. Index Construction: Scan the Store and DeltaS-
tore to construct the Index. The tables generated
during the GA phases are needed as input for in-
dex construction to remove duplicates, index an-
chor text, and obtain each document’s static rank.

5. Creation the New Store: Scan the Store and
DeltaStore to create the next generation of the
Store. After this step, the DeltaStore and the
Deltalndex are reset.

Clearly, this naive approach is inefficient, requiring
four passes over the Store. But we can easily reduce
the number of passes to just two. First, observe that
a single Store scan can be used to generate the input
tables for duplicate elimination and anchor text ex-
traction. Then if we are clever about the way we scan
the Store, we can also combine index construction with
the creation of the next generation of the Store.

These optimizations are illustrated in Algorithm 1.
In the algorithm, a subscript is used with each data
structure to denote which version of the Store it re-
flects. For example, Rank;;1 corresponds to the Rank
Table for Store;;1.

Algorithm 1: Straightforward Index Build

1. Scan Store; and the DeltaStore to generate
FingerPrint;,; and Link;y1

. Dup,;,, = duplicate detection(FingerPrint;,)

. AnchorStore; 11 = anchor text processing(Link;y;)

. Rank; 1 = static ranking(Link; 1)

. GAiy1 = Dup;,, AnchorStore;;1, and Rank; 1

. Scan Store;, the DeltaStore, and using GA;11,
generate Store;1 and Index;;q

S UL LN

As shown, in step 1, the algorithm scans Store; and
the DeltaStore to generate the inputs for GA, which
runs in steps 2-5 and produces GA;41. In step 6, the
algorithm scans the stores again and using GA;4+1 gen-
erates Store;+1 and Index; 1. After Algorithm 1 fin-
ishes, the Deltalndex build process is resumed. It cy-
cles at its own rate, generating a new DeltaStore and
Deltalndex each cycle.

5.3 Index Build with Lagging Global Analysis

The performance of index build is largely bound by
the time to do a disk scan of the Store and to per-
form GA. Two disk scans of the Store are required in
Algorithm 1, one to generate GA;11 and another to
generate Store;11 and Indez;y1. The number of scans
can be reduced to just one by using GA; to generate
Index; 1 rather than GA; 1, that is, by using lagging
GA. Lagging GA causes some loss of index precision,

1125

but, as we will show, the loss is negligible because in-
formation like the static rank of a document does not
change drastically from generation i to 4 + 1. Index
build with lagging GA is illustrated in Algorithm 2.

Algorithm 2: Index Build with Lagging GA

1. Scan Store;, the DeltaStore, and using GA;
as input, generate Store;1, Indez;y1,
FingerPrint;, |, and Link;;,
. Dup,;, = duplicate detection(FingerPrint;,)
. AnchorStore; 11 = anchor text processing(Link;y1)
. Rank;1 = static ranking(Link; 1)
. GAiy1 = Dup;,, AnchorStore;; 1, and Rank;,

U W N

An important point to note in Algorithm 2 is that,
in step 1, both Store;+1 and Index; 11 are generated us-
ing the same disk scan of Store;. Another important
point to note is that, because GA; is used in step 1,
new documents will have no static rank computed for
them when they are indexed. New documents are as-
signed a low, default static rank, under the assumption
they will have few incoming links. The next iteration
of index build will fix this if it is not true. Finally, note
that Index;11 is ready after step 1, enabling Deltaln-
dex construction to run in parallel with GA;;1. This
in turn reduces the cycle time of index build, as illus-
trated in Figure 3.

Using current GA
| ic, [o[o]o] e, | ic, [o]p[D]eee

Using lagging GA
e, | oa | ic, | 6A |ees
p[p|p p|p|p

time R GA, = global analysis i
IC; = index construction i

D = generate delta index

Figure 3: Index build cycle time using the current GA
versus lagging GA

Algorithm 2 has to be run twice initially, with the
appropriate inputs set to null, to generate Indexy.
More specifically, bootstrapping begins with Storeg
and no GA.

5.4 Creating the Next Generation Store

This section describes how Store;1; is generated in
step 1 of Algorithm 2 using Store;, the DeltaStore,
and GA; as input.

The document bundles in Store; and the DeltaS-
tore are scanned in LIFO order to generate Store;y.
In order to index only the most recent version of each
document, a Bloom Filter [3] on URL hash is used to

filter out older versions of documents. More specifi-
cally, if document D in Store; has been replaced by a
newer version of D in the DeltaStore (call it D'), then
only D' will appear in Store;1;. In addition, Dup; is
used to eliminate duplicates. Surprisingly, eliminating
duplicates reduces the size of the Store by 50% on the
IBM intranet.

Figure 4 illustrates how Store;11 is generated. In
the example shown, documents D1 and D5 have newer
versions, D1’ and D5', that appear in the DeltaStore.
Therefore, the original versions of these documents are
garbage collected and do not appear in Store;y1. The
DeltaStore is handled similarly. As noted earlier, to
improve performance, Store; and the DeltaStore are
read from one disk array, while Store;1 is written to
the other array.

DeltaStore

Bloom filter

bundle

| :

| ! '

| 0 i

[1 i bundle

0 i [0]
Store; 1 ! m

o 0 :
i bundle orobe 1 :
| . =
:* bundle
i

EE
&l

- * garbage collected

Figure 4: Generating Store; 1

6 High-Performance Index Construc-
tion

This section describes how Indez;y; is constructed in
step 1 of Algorithm 2 using Store;, the DeltaStore, and
GA; as input. The index construction algorithm takes
the tokenized documents from the Store and DeltaS-
tore as input and produces the inverted index. Re-
call that the index is basically a collection of posting
lists, one list for each token that appears in the cor-
pus. Each posting is a pair (position, attribute), and
each position in turn consists of a (docID, offset). To
reduce storage and I/O costs, posting lists are com-
pressed using a simple variable-byte scheme based on
computing the deltas between positions.

Trevi’s index construction is based on sorting. Doc-
ument tokens are streamed into a sort, which is used
to create the posting lists. The primary sort key is
on token, the secondary sort key is on docID (static
rank), and the tertiary sort key is on offset within a
document. By sorting on this compound key, token oc-
currences are effectively grouped into ordered posting
lists.

The well-known sort-merge technique [1, 29] is used
for sorting. Sort-merge is particularly suitable for

1126

batch index construction, where all of the data is in-
dexed at once, which is true in most search engines.
Sort-merge has two main phases in Trevi’s index con-
struction:

1. Sort Phase: Scan Store; and the DeltaStore,
streaming document tokens into a memory buffer.
Each time the memory buffer fills, it is sorted and
then written to disk in compressed form. This
process is repeated until there are no more docu-
ments to scan.

2. Merge Phase: Create a memory heap to merge
the sorted runs. Perform a multi-way merge of
the runs to generate the final compressed posting
lists.

We made two important optimizations that greatly
improved the performance of these phases. First, we
used a highly tuned radix sort [10, 26] to generate
sorted runs. Second, we used a pipelined software ar-
chitecture to enable I/O and CPU to be overlapped.
We describe each of these optimizations below.

6.1 Using Radix Sort

Radix sort has two important characteristics that
Trevi exploits to improve performance: it sorts in lin-
ear time and is stable, meaning it preserves the original
order of input data when there are ties on the sort key.
However, radix sort requires fixed-length keys, whereas
text tokens are variable length. Therefore, tokens need
to be transformed into fixed-length tokenlDs.

Transforming tokens to tokenIDs can be done in a
variety of ways — for example, by generating unique
sequential IDs or by using a hash function. The disad-
vantage of generating unique IDs is that a potentially
large map of tokens to IDs needs to be kept. Hashing
does not suffer from this problem, but there may be
collisions when two or more tokens hash to the same
tokenID. However, by using enough bits in the hashing
function, the probability of a collision can be brought
to nearly zero, which is good enough for a search en-
gine. So we opted for hashing in Trevi, using a 64-bit
Pearson’s hash function [24]. On the IBM intranet,
which has over 260 million unique tokens, there were
no collisions using this hash function.

Using tokenID’s, the fixed-length sort keys for index
construction have the form (tokenID, docID, offset),
where tokenID is a 64-bit hash value, docID is 32 bits,
and offset within a document is 32 bits. The encoding
of the sort key is illustrated in Figure 5. As shown, the
upper bit in the offset is used to denote the section
of a document. This is so a given document can be
streamed into the sort in different sections. More will
be said about this shortly. Note that, by sorting the
full 128-bit key, we are able to simultaneously:

e Group tokens into posting lists.

e Order each posting list by docID, effectively
putting it in static rank order.

e After docID, order each posting list by the offset
within a document and bring different sections of
a document together.

tokenlD/64 position/64
tokenHash/64 doclD/32 A offset/31

section(0=content,1=anchor)

Figure 5: Sort Key

To index anchor text tokens, the AnchorStore is
scanned and streamed into the sort after the Store and
the DeltaStore are scanned. The section bit of the off-
set is used to indicate whether a token is for content or
anchor text. Anchor text tokens have their section bit
set to “1”. Consequently, after sorting, the anchor text
tokens for a document D follow the content tokens for
D. By using more section bits, this approach could
be generalized, allowing documents to have multiple
sections, with each section stored separately.

Within a document D, tokens are streamed into the
sort in the order in which they appear in D, that is, in
offset order. Taking advantage of the fact that radix
sort is stable, this allows us to use a 96-bit sort key
that excludes offset, rather than sorting on the full
128-bit key. Note that if posting lists did not need to
be put in static rank order, a 64-bit radix sort on just
tokenID would be sufficient.

Trevi’s radix sort was implemented using a 16-bit
radix, so for the 96-bit sort key, this requires six lin-
ear passes through the data to accumulate the radix
counters. With a 16-bit radix, we needed radix counter
tables that are able to hold 65K 32-bit integer values.
Experiments showed that using this large radix was
faster than using a smaller one because fewer passes
through the data were required.

Note that we can incorporate new sort criteria in
Trevi by simply changing its sort key. So by using a
key-based radix sort for index construction, we obtain
both high performance and flexibility. This is in con-
trast to an approach based on accumulating postings
using a dictionary [17], which would require an addi-
tional sort on each posting list to incorporate new sort
criteria.

6.2 Pipelining the Merge-Sort

Overlapping I/O and CPU is the key to good sorting
performance. This is accomplished by using a soft-
ware pipeline to create sort runs, as shown in Figure 6.
Although it is not shown, we also use a two-stage
pipeline for the merge phase, with one stage reading
and merging runs from disk, and the other stage com-
pressing and writing the final postings to disk. Our

1127

work here follows from [22], except that we replaced
a comparison-based sort for each run with a more ef-
ficient radix sort. In addition, we used a two-stage
pipeline rather than a three-stage pipeline to create
sort runs. We found that the flush stage was so fast
compared to the other stages that combining it with
the radix sort resulted in a more balanced pipeline.

Load | B, [B,| *** |[B,| *** |B,

Sort + Flush | B2 | B, bl By| eoe B,

time

Figure 6: The pipeline for generating sort runs; B
and By are the sort buffers

Determining an optimal sort buffer size was a key
contribution of [22]. They found that the buffer size
should be neither too small nor too large — a balance
has to be struck. This is intuitive because, on the one
hand, a larger buffer improves I/O efficiency. But on
the other hand, comparison-based sorting is nonlinear,
which means sorting can become a CPU bottleneck if
the sort buffer is too large.

With radix sort, there is no balance that needs to
be struck, since the time to sort a run is linear in the
buffer size. Moreover, radix sort is so fast that the frac-
tion of time spent in the merge phase becomes larger.
The time spent in the merge phase is O(S log N) where
S is the total size of the data and N is the number of
runs. These observations imply that we want as large
a sort buffer as possible — to maximize I/O efficiency
and to minimize N. We ran experiments to verify this,
as shown in Figure 7. Note that, for Trevi’s two-stage
pipeline to work, the sort buffer is actually split into
two equal-sized sub-buffers.

1060

1050

[

1040 \

1030

oo ||
R
g

1000

Index Construction Time (sec)

990

pp—

980

o 200 400 600 800 1000 1200 1400 1600
Sort Buffer Size (MB)

Figure 7: Index construction time with different sort
buffer sizes and 600,000 documents

We consciously tried to balance the work in the
pipeline stages. For example, instead of accumulat-
ing the radix counters as tokens were loaded into the

sort buffer, we performed this computation in the
Sort+Flush stage because it resulted in a more bal-
anced pipeline.

We can calculate the maximal speedup of the
merge-sort from pipeling. First consider the sort
phase. Let B; denote the sort buffer size. The Load
stage is linear in the buffer size and takes time AB;.
The Sort+Flush stage is also linear in the buffer size
and takes time ¢B;. Thru experimentation, we found
that A = 1.20 and ¢ = 1.00. In other words, the
Load stage, which includes a fair bit of per-token pro-
cessing, was actually more costly than the Sort+Flush
stage. Based on our values for A and ¢, the theoret-
ical speedup of the sort phase is the serial execution
time divided by the pipelined execution time, that is,
(1.20 + 1.00)/1.20 or 1.83. The merge phase tends to
be I/O bound, and intuitively has a speedup of at most
2.0.

The fraction of time spent in the merge phase was
found to be 45%. Hence, the maximal speedup of the
merge-sort from pipelining is 0.55-1.83 + 0.45-2.0
or 1.91. Therefore, we should be able to effectively
use two CPUs and no more. Experimentally, we saw
a speedup of about 1.30 using two CPUs. Using two
CPUs also provides a nice balance with Trevi’s dual-
array storage architecture.

6.3 Aggregating Token Occurrences

Aggregating all the occurrences of a particular token
within a document D just once when D is tokenized
and stored can speed up index construction [4]. Al-
though the volume of data to be sorted is not dra-
matically reduced, fewer individual tokens need to be
sorted, which in turn reduces CPU usage. In all of
our experiments, unless otherwise noted, we used this
approach.

7 Experimental Results

In this section, we present experimental results from
the Trevi search engine. Results are provided for
Trevi’s index build process, showing that lagging GA
can improve the performance of index build without
sacrificing search quality. Results are also provided
for Trevi’s index construction algorithm, showing that
it is significantly faster than alternative approaches de-
scribed in the research literature. We ran all our ex-
periments on a two-way SMP with dual 2.4 Ghz Intel
Xeon processors running Linux. The disk storage was
configured as two physical RAIDO0 arrays, each with 6
drives. We were able to read from one disk array and
write to the other array at a rate of 95MB/s.

7.1 Global Analysis

In these experiments, we constructed several genera-
tions of the index, starting from a 3.5 million document
Store and adding 500,000 documents each generation.

1128

Our data set was based on a partial crawl of IBM’s
intranet. The change interval of 500,000 was chosen
because that is the daily rate of change we see in IBM’s
intranet. This includes changes to existing documents
and newly crawled documents.

In our first set of experiments, we used the Kendall’s
tau distance for top k lists by Fagin et. al. [16] to
measure the discrepancy in static rank between dif-
ferent generations of the index, i.e., how static rank
changes from Index; to Index;. Similar experiments
were carried out for anchor text. Given two ordered
lists, Kendall’s tau computes a similarity measure by
checking every possible pair {i,j} of items in the two
lists and applying a penalty whenever the order of
items 7 and j differ in the input lists. We use a normal-
ized version of the measure that scales the values to be
between 0 (when the lists are identical) and 1 (when
the lists are in the opposite order). This measure has
been widely used before in different contexts, such as
index pruning [9] and rank aggregation [13].

Figure 8 shows how the discrepancy measure
changes for the documents with the top 100,000 static
ranks. The bottom curve shows how the ranks vary
from generation i to ¢ + 1, while the top curve one
shows how the ranks vary over time, comparing the
ranks in generation 1 with the ranks in generation .

Figure 8 shows that, in the steady state, the top
100,000 static ranks differ by no more than 2% be-
tween two consecutive generations, and by up to 18%
from the start after 7 generations. This means that by
using lagging static ranks we lose less than 2% accu-
racy on static ranks if a 500,000 change interval is used
to trigger the construction of a new index. This graph
also shows that the loss of accuracy in the static rank
grows linearly with the number of changed documents
that accumulate between generations. Another inter-
esting observation is that the difference between the
static ranks in two consecutive generations decreases
over time, from about 6% to about 1.5%.

Discrepancy

Generation number (i)

Figure 8: Discrepancy between the top 100,000 static
ranks in different index generations

One of the reasons for this behavior is that in in-
tranets the crawl date is a very good static rank, as
described in [15]. This means that the documents with
the highest static rank tend to be crawled first since
they are closer to the intranet’s “root”. After the first
few index generations, when most of the “important”
documents are already in the Store, the ranks are quite
stable.

Another characteristic of the data is the Zipfian dis-
tribution of the static ranks. Figure 9 shows the distri-
bution of the ranks on a log-log scale. It is interesting
to notice that after 10,000 documents all the static
rank values are extremely low and they are 0 after
600,000 (this point is not shown in the graph). This
means that after the most important documents have
been crawled, the discrepancy in the top static ranks
tends to be very low. This also explains why the bot-
tom curve of Figure 8 decays and stabilizes after a few
generations.

10000

Tk
A

- .

Rank Valug
B
o]
o]

10 100 1000 10000100000
Documents Ordered by Rank

Figure 9: Distribution of the static ranks for the IBM
intranet

Figure 10 shows similar discrepancy results for an-
chor text. We generated lists of the 100,000 most fre-
quent anchor tokens for every index generation and
applied the same discrepancy measure as before. The
graphs for anchor text and ranks exhibit a similar
shape and range of discrepancy values. The differ-
ence between consecutive generations is between 2%
and 4% and after the 7 generations it is still less than
14%. The main point here is that both static ranks
and anchor texts are very stable between consecutive
generations for the change interval we considered.

The use of lagging duplicate detection might cause a
potential loss of precision. This is due to the fact that,
if we use lagging information, all documents added to
the Store between generation ¢ and ¢ + 1 are added
to Indez; 1, even if they are duplicates and should be
filtered out. If there are no duplicates among the doc-
uments added to the Store in a given generation there
is no degradation in quality, since no duplicates are
indexed. On the other hand, if there are duplicates

1129

1vs. i ———
i vs. i+d et

Discrepancy
o]
o]
]

0.06

0.04

0.02

Generation number (i)

Figure 10: Discrepancy between the top 100,000 an-
chor text tokens in different index generations

added to the Store there can be a degradation in qual-
ity, since there is a chance that the index might return
duplicate documents in the results of a query.

We analyze this in Figure 11 by comparing the ratio
of duplicate documents added in a generation to the
total number of documents. The graph shows that,
if we use lagging GA, only 2.6% to 5.1% of the doc-
uments added to the Store are incorrectly classified
by duplicate detection. Moreover, these are new doc-
uments that are assigned a low, default static rank.
Consequently, this makes it highly unlikely that du-
plicate documents will be returned in search results,
unless the query is very specific and not enough highly
ranked documents appear in the results.

5.5

4.5

3.5

2.5

1 2 3 a 5 6 7
Generation number (i)

Figure 11: Analysis of the duplicate detection for sev-
eral index generations

We also ran a quality test by selecting 180 queries
from the Trevi query log, manually identifying rele-
vant documents for these queries. We measured the
average precision at 1 and at 10 over all the queries
for the different index generations. The results were
stable, varying less than 2% in both cases over the 7
generations. Precision at 1 varied from 0.639 to 0.650

while precision at 10 varied from 0.215 to 0.219. This
shows that no precision is lost over the generations due
to the use of lagging GA.

Figure 12 shows the difference in the time to per-
form index build with and without lagging GA. Note
that that the time to scan the Store and run GA, which
is the difference between the two curves, grows lin-
early with the number of documents. The improve-
ment in index build from lagging GA depends on the
complexity of GA. In Trevi, GA is very simple and
yet the performance gains are significant, on the order
of 256%. In the extreme case, GA could be orders of
magnitude slower than index construction. For that
scenario, Trevi’s index build algorithm could be modi-
fied to let GA lag for two or more generations to reduce
its impact. Another advantage of using lagging GA,
which is not reflected in Figure 12, is that it allows
delta indexes to be built in parallel with GA.

14000

Lagging GA ————
Current GA -z
e
13000 g
12000
11000
—
< 10000
S
P
E
= 92000
8000
7000
6000
5000
a1 2 3 4 5 6 7

Generation number (i)

Figure 12: Performance improvement in index build
from lagging GA

7.2 The Performance of Index Construction

We begin this section by looking at how Trevi’s index
construction algorithm scales. In Figure 13, we see
that it scales nearly linearly with the index size. Our
time complexity is actually O(Slog N) where S is the
total size of the data and N is the number of runs,
but since we use very large sort buffer sizes (1.5GB by
default), N tends to be small.

All the points in Figure 13 correspond to a partial
crawl of the IBM intranet except for the last point,
which corresponds to a full 10,666,580 document crawl.
The crawl included 6,515,728 unique documents af-
ter duplicate elimination plus 4,150,852 anchor doc-
uments. Only the last point in the graph includes an-
chor documents, which tend to be smaller than the
average document.

1130

9000

8000

7000

6000

5000
4000
3000

2000 /
//

1000 /

Index Construction Time (sec)

2e+06 4e+06 6e+06 8e+06

Number of Documents

le+07

Figure 13: Nearly linear scaling of index construction

7.2.1 Comparison to Other Index Construc-
tion Algorithms

It is difficult to compare Trevi’s index construction al-
gorithm to alternative approaches described in the re-
search literature. This is because different index fea-
tures may have been supported, or a different hard-
ware platform was used, or different input data was
used, and so on. Nonetheless, we still tried to carry
out a comparison in as fair a manner as possible. All
of the results shown below are from constructing an in-
dex on a partial crawl of IBM’s intranet with 2,000,000
documents. The document collection did not include
anchor text documents, and was about 23GB. The to-
kenized documents included stemmed and unstemmed
tokens.

o Trevi with Token Aggregation: 4,000,000
docs/hour. This was using Trevi’s default
index construction algorithm, where all the oc-
currences of a particular token in a document D
are aggregated when D is tokenized and stored,
as described in Section 6.3. Postings contain full
position information, a one-byte attribute, and
they are ordered by rank. The final index size
was 10.5GB.

o Trevi without Token Aggregation: 2,800,000
docs/hour. This was using Trevi’s default algo-
rithm but without aggregated token occurances.

o Trevi without Attributes: 3,100,000 docs/hour.
This is using Trevi’s default algorithm but with-
out the one-byte attribute in postings to try and
be more comparable with Lucy (see below).

e Lucy: 3,000,000 docs/hour This was using Lucy
[21] on our hardware and our data set. Lucy is a
C-based open source text index from RMIT Uni-
versity. At this time, we know of no papers pub-
lished describing Lucy, but it does not appear to
order postings by rank or support attributes in
postings, so it had considerably less work to do

than Trevi. Lucy’s index was 7.3GB, which was
smaller than Trevi’s index because it stored much
less information per posting. There were 2.7 bil-
lion postings in the index, so if a one-byte at-
tribute was added to every posting, Lucy’s index
size would be have been 10.0GB, which is nearly
identical in size to Trevi’s index.

o Melnik et al.: 1,100,000 docs/hour. This was the
result reported in [22]. Experiments were run
on a 350-500 Mhz PC with 300-500MB of RAM
and multiple IDE disks. Their index does not
appear to contain per-token attributes or doc-
ument, offsets, and postings are not ordered by
rank. Also, the result reported seems to only in-
clude the time to write sorted runs and excludes
the time to merge them. When we obtained an
executable version of their algorithm and ran it
on our hardware and our data set, we obtained
600,000 docs/hour.

e Long and Suel: 700,000 docs/hour. This was the
result reported in [19]. Experiments were run
on a Dell Optiplex 240GX, 1.6Ghz Pentium 4,
with 1IGB RAM and two 80GB Seagate Barracuda
hard disks. Postings are ordered by rank and con-
tain attribute information, and most likely also
position information. They actually had a larger
data set and ran 16 machines in parallel.

o Lucene: 350,000 docs/hour. This was using
Lucene [20] on our hardware and our data set.
Lucene is an open source Java-based index [20].
Postings do not contain attribute information and
are not ordered by rank.

8 Related Work

Although several papers have focused on specific GA
algorithms [2, 5, 6, 14, 15, 23], to the best of our knowl-
edge, this is the first paper that describes how to in-
tegrate these algorithms into a complete index build
process. In [30], the authors describe how to design
stable rank algorithms. That work is relevant to this
paper since Trevi’s index build process relies on the
fact that document ranks should be stable across con-
secutive generations of its index. Another related work
[19], describes how to use static rank ordering in an in-
verted index to improve query performance. However,
the authors did not provide any details about how their
index is actually construction.

Brin and Page [4] discuss an early version of the
Google search engine. The authors describe a sys-
tem consisting of a crawler, document repository, GA
(PageRank), and index construction. However, they
do not discuss how frequently GA is computed or how
tightly coupled it is in their index build process. Their
index construction algorithm is also not described in
as much detail has here.

1131

Witten, Moffat, and Bell [29] describe a sort-based
index construction algorithm that saves temporary
disk space by using an in-place merge algorithm. A
table mapping index blocks to their location on disk
was maintained, and an extra pass over the blocks is
needed to shuffle them into sorted order. The draw-
back to this scheme is that it generates more I/0, and
in particular more random I/0, during index construc-
tion to save disk space, which has become an inexpen-
sive commodity. In contrast, Trevi’s index construc-
tion maximizes performances without worrying about
temporary disk space. It tries to do as much sequen-
tial I/O as possible, reading from one disk array while
writing to the other.

Heinz and Zobel [17] describe an index construc-
tion algorithm that uses an in-memory lexicon to ac-
cumulate compressed posting lists. When memory is
used up, the posting lists are dumped to disk in lex-
icographic order and the process is repeated. When
all the documents have been processed, an in-place
merge is used to produce the final results. Their index
construction algorithm differs from the one described
here in that they use an in-place merge, they do not
attempt to order posting lists in rank order, they do
not allow documents to be indexed in sections, and
they do not include per-posting attribute information.

Sinha and Zobel [27] describe a new index construc-
tion algorithm based on dynamic tries. They provide
results showing that their algorithm performs better
than one based on radix sorting for large collections
of strings. However, it is unclear whether their algo-
rithm could be adapted to efficiently build the kind of
rank-ordered posting lists described here.

9 Conclusions

The time to construct an inverted index is an im-
portant issue in web and intranet search engines
[1, 17, 22, 29] But constructing the inverted index is
only the final step in a more complicated index build
process, which includes a global analysis (GA) of all the
data being indexed to compute measures like PageR-
ank [23]. In this paper, we showed how the use of
slightly outdated GA information, that is lagging GA,
and a fast index construction algorithm based on radix
sorting can be combined in a novel way to speed up the
index build process without sacrificing search quality.

We presented experimental results from the Trevi
search engine, which is currently used to support all
the searches on IBM’s global intranet. Results show
that the use of lagging GA does not compromise search
quality and can reduce the time of the index build
process by 25% or more. If the complexity of GA
increases, perhaps due to clustering or data mining,
the use of lagging GA will result in even greater time
savings. Results also showed that index construction
using a pipelined radix sort can outperform alternative
approaches by 33% or more.

References

[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, New York, NY,
1999.

[2] Ziv Bar-Yossef and Sridhar Rajagopalan. Template de-
tection via data mining and its applications. In Proceed-
ings of the International World Wide Web Conference,
WWW2002, 2002.

[3] Burton Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422—
426, 1970.

[4] Sergey Brin and Lawrence Page. The anatomy of a large-
scale hypertextual web search engine. In WWW?7 / Com-
puter Networks 30(1-7), pages 107-117, 1998.

[5] Andrei Z. Broder. Identifying and filtering near-duplicate
documents. In Combinatorial Pattern Matching, 11th An-
nual Symposium, pages 1-10, 2000.

[6] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse,
and Geoffrey Zweig. Syntactic clustering of the web. In
WWWE6 / Computer Networks 29(8-13), pages 1157-1166,
1997.

[7] Eric William Brown. Execution performance issues in full-
text information retrieval. Technical report, University of
Massacusetts, Amherst, MA, February 1996. Ph.D. Thesis.

[8] E.W. Brown, J.P. Callan, and W.B. Croft. Fast incre-
mental indexing for full-text information retrieval. In Pro-
ceedings of the 20th International Conference on Very
Large Databases (VLDB), pages 192-202, Santiago, Chille,
September 1994.

[9] David Carmel, Doron Cohen, Ronald Fagin, Eitan Farch,
Michael Herscovici, Yoelle S. Maarek, and Aya Soffer.
Static index pruning for information retrieval systems. In
Proceedings of 24th ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR °01),
pages 43-50, New Orleans, Louisiana, USA, September
2001.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms. The
MIT Press, Cambridge, MA, 2003.

[11] Nick Craswell, David Hawking, and Stephen Robertson.
Effective site finding using link anchor information. In Re-
search and Development in Information Retrieval, pages
250-257, 2001.

[12] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl,
R. Guha, Anant Jhingran, Tapas Kanungo, Sridhar Ra-
jagopalan, Andrew Tomkins, John A. Tomlin, and Jason Y.
Zien. Semtag and seeker: bootstrapping the semantic web
via automated semantic annotation. In Proceedings of
the Twelfth International World Wide Web Conference,
WWW2003, May 2003.

[13] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivaku-
mar. Rank aggregation methods for the web. In Proceed-
ings of the Tenth International World Wide Web Confer-
ence (WWW 10), pages 613-622, Hong Kong, China, May
2001.

[14] Nadav Eiron and Kevin S. McCurley. Analysis of anchor
text for web search. In SIGIR Conference, pages 459-460,
2003.

[15] Ronald Fagin, Ravi Kumar, Kevin S. McCurley, Jasmine
Novak, D. Sivakumar, John A. Tomlin, and David P.
Williamson. Searching the workplace web. In Proceedings
of the Twelfth International World Wide Web Conference,
WWW2003, May 2003.

Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing
top k lists. In Proceedings of ACM-SIAM Symposium on
Discrete Algorithms (SODA ’08), pages 28-36, Baltimore,
MD, USA, January 2003.

[17] Steffen Heinz and Justin Zobel. Efficient single-pass index
construction for text databases. JASIST, 54(8):713-729,
2003.

[16

1132

[18] Reiner Kraft and Jason Zien. Mining anchor text for query
refinement. In Proceedings of the Thirteenth International
World Wide Web Conference (WWW 10), page (to ap-
pear), New York, NY, May 2004.

[19] Xiaohui Long and Torsten Suel. Optimized query execution
in large search engines with global page ordering. In Pro-
ceedings of 29th International Conference on Very Large
Databases (VLDB 2003), pages 129-140, Berlin, Germany,
September 2003.

[20] Lucene. http://jakarta.apache.org/lucene/.
[21] Lucy. http://www.seg.rmit.edu.au/lucy.

[22] Sergey Melnik, Sriram Raghavan, Beverly Yang, and Hec-
tor Garcia-Molina. Building a distributed full-text index
for the web. In World Wide Web, pages 396-406, 2001.

[23] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing or-
der to the web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[24] Peter K. Pearson. Fast hashing of variable-length text
strings. Communications of the ACM, 33(6):677-680, June
1990.

[25] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems, 10(1):26-52, 1992.

[26] Robert Sedgewick. Algorithms in C++. Addison-Wesley
Publishing Company, Boston, MA, 1998.

[27] Ranjan Sinha and Justin Zobel. Cache-conscious sorting of
large sets of strings. In Proceedings of the ALENEX Work-
shop on Algorithm Engineering and Ezperiments, pages
93-105, 2003.

[28] Anthony Tomasic, Héctor Garcia-Molina, and Kurt
Shoens. Incremental updates of inverted lists for text doc-
ument retrieval. pages 289-300, 1994.

[29] Ian Witten, Alistair Moffat, and Timoty Bell. Managing
Gigabytes. Morgan Kaufmann Publishers, Inc., San Fran-
cisco, CA, 1999.

[30] Alice X. Zheng, Andrew Y. Ng, and Michael I. Jordan.
Stable algorithms for link analysis. In Proceedings of 24th
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’01), pages 258-266, New
Orleans, Louisiana, USA, September 2001.

1133

