
Query Rewrite for XML in Oracle XML DB

Muralidhar Krishnaprasad, Zhen Hua Liu, Anand Manikutty, James W. Warner, Vikas Arora, Susan Kotsovolos

Oracle Corporation
400, Oracle Parkway

Redwood Shores, CA 94065
USA

{Muralidhar.Krishnaprasad, Zhen.Liu, Anand.Manikutty, Jim.Warner, Vikas.Arora, Susan.Kotsovolos}@oracle.com

Abstract
Oracle XML DB integrates XML storage and
querying using the Oracle relational and object
relational framework. It has the capability to
physically store XML documents by shredding
them as relational or object relational data, and
creating logical XML documents using
SQL/XML publishing functions. However,
querying XML in a relational or object relational
database poses several challenges. The biggest
challenge is to efficiently process queries against
XML in a database whose fundamental storage is
table-based and whose fundamental query engine
is tuple- oriented. In this paper, we present the
'XML Query Rewrite' technique used in Oracle
XML DB. This technique integrates querying
XML using XPath embedded inside SQL
operators and SQL/XML publishing functions
with the object relational and relational algebra.
A common set of algebraic rules is used to
reduce both XML and object queries into their
relational equivalent. This enables a large class
of XML queries over XML type tables and views
to be transformed into their semantically
equivalent relational or object relational queries.
These queries are then amenable to classical
relational optimisations yielding XML query
performance comparable to relational.
Furthermore, this rewrite technique lays out a
foundation to enable rewrite of XQuery [1] over
XML.

1. Introduction
XML processing in the Oracle XML DB is based on the
XMLType datatype. This is a native datatype introduced

in Oracle 8i [4]. Built using the object relational
infrastructure, the XMLType is similar to other built-in
datatypes such as number and character. Various XML
related operations are supported on the XMLType. These
are useful for shredding the XML data to relational and
object relational data, for traversing the XML content
using XPath notation, or for generating XML from
relational and object relational data. [2]

In particular, users can create tables of XMLType storing
all XML document instances conforming to a particular
XMLSchema [11] registered in Oracle XML DB. This is
referred to as XMLSchema-based storage where the
XMLType instances are stored in a shredded form in
object-relational columns. The object relational types and
columns are generated when the XML schema is
registered [5]. Collection elements (elements with
maximum occurrences greater than one) can be stored
inline as a variable array (VARRAY) of object instances
or stored in a separate collection table.

Users can also convert existing relational data into logical
XML values using views. Oracle XML DB supports the
SQL/XML standard [3,12,13] which allows users to
leverage a set of SQL/XML publishing functions, such as
XMLElement, XMLAgg, XMLForest, and XMLConcat to
flexibly generate XMLType instances from the relational
data. XMLAgg is an important aggregate function for
concatenating a rowset of XML values through a
relational query.

To query XML tables or views, Oracle XML DB provides
a set of functions, such as Extract, ExistsNode, and
Extractvalue that use XPath to locate and extract data
from XML documents [2]. Users can then use SQL/XML
publishing functions to construct new XML nodes.
Collection of XML values can be un-nested using the
table function, XMLSequence that converts a list of XML
elements into multiple rows.

A simple approach to querying XML in a database is to
first materialize the entire XMLType instance as a DOM
and then use an XPath engine to traverse the DOM.
However, this solution is very expensive due to the cost of
materializing the entire XML, and is foreign for a

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1134

relational engine, which is designed to process tuple-
oriented data instead of tree-oriented XML data.

A key observation is that since the XML is constructed
logically through the underlying relational data in Oracle
XML DB, it is feasible to rewrite the XPath navigation to
select just the underlying data that is needed for the
construction of the result. Further, XPath predicates can
be transformed to predicates on the underlying relational
tables. Thus, the original query over XML can be
logically rewritten into an equivalent relational query.
This can be then optimized by a standard relational
optimizer, for instance, by picking the best join order and
index on the underlying tables.

This approach, referred to as 'XML Query Rewrite',
enables Oracle XML DB to transform XML queries into
their equivalent relational queries. The theme of this paper
is to show the framework that we use in Oracle XMLDB
to perform such rewrites.

The rest of this paper is organized as follows. Section 2
provides examples of querying XML in Oracle XDB.
Section 3 gives an overview of XML query rewrite.
Section 4 discusses XPath transformation to SQL
operators. Section 5 discusses operator tree optimizations
with SQL/XML normalization and optimization algebra
rules. Section 6 discusses the integration with view
merging. Section 7 discusses performance experiments.
Section 8 discusses related work. Section 9 discusses
future direction and section 10 concludes the paper.

2. XML Query Motivating Examples

2.1 Querying an XML view constructed via SQL/XML
function

Oracle XML DB enables users to create a view of XML
type instances via SQL/XML publishing functions over
relational tables. Consider a classic case of the dept and
emp tables. The dept table keeps track of all the
departments and emp table keeps track of all employees.
The deptno column of the emp table is a foreign key
referencing the deptno column of the dept table. The
content of the dept and emp tables are shown in table 1
and table 2.

Deptno Dname loc

10 ACCOUNTING NEW YORK
40 OPERATIONS BOSTON
Table 1 - content of dept table

empno ename job sal deptno
7782 CLARK MANAGER 2450 10
7839 KING PRESIDENT 5000 10
7934 MILLER CLERK 1300 10
7954 SMITH VP 4900 40

Table 2 - content of emp table

To generate XML from the relational tables dept and emp,
we create a view dept_xmlview as shown in table 3:

CREATE VIEW dept_xmlview AS
SELECT XMLElement("Department",
 XMLAttributes(deptno as "Deptno"),
 XMLElement("DeptInfo",
 XMLForest(dname as "DepartName", loc as "Location")),
 (SELECT XMLAgg(XMLElement("Employee",
 XMLAttributes(empno as "Empid"),
 XMLForest(ename as "EmpName", job as "Job, sal as "Salary")))
 FROM emp e
 WHERE e.deptno = d.deptno)) AS department
FROM dept d
Table 3- SQL/XML constructed XML view dept_xmlview

This view generates two rows of XMLType instances as
shown in table 4. For each row in the dept table, it uses
the SQL/XML standard publishing functions to construct
an XMLType instance. The SQL query containing
XMLAgg is a correlated scalar subquery that aggregates
the XML information from the emp table. Thus, for each
dept row, the relevant emp rows are retrieved and
converted into a collection of employee elements.

<Department Deptno="10">
 <DeptInfo>
 <DepartName>ACCOUNTING</DepartName>
 <Location>NEW YORK</Location>
 </DeptInfo>
 <Employee Empid="7782">
 <EmpName>CLARK</EmpName>
 <Job>MANAGER</Job>
 <Salary>2450</Salary>
 </Employee>
 <Employee Empid="7839">
 <EmpName>KING</EmpName>
 <Job>PRESIDENT</Job>
 <Salary>5000</Salary>
 </Employee>
 <Employee Empid="7934">
 <EmpName>MILLER</EmpName>
 <Job>CLERK</Job>
 <Salary>1300</Salary>
 </Employee>
</Department>
<Department Deptno="40">
 <DeptInfo>
 <DepartName>OPERATIONS</DepartName>
 <Location>BOSTON</Location>
 </DeptInfo>
 <Employee Empid=7954>
 <EmpName>SMITH</EmpName>
 <Job>VP</Job>
 <Salary>4900</Salary>
 </Employee>
</Department>
Table 4 - Two rows of XMLType instances from
dept_xmlview

Example 1: Consider an XML query shown in table 5
that finds all the rows in dept_xmlview where the Deptno

1135

attribute is 10. This can be expressed in XPath as
‘/Department[@Deptno=10]’. The query further extracts
the DeptInfo element for each such Department.

select Extract(department, '/Department/DeptInfo')
from dept_xmlview v
where ExistsNode(department, '/Department[@Deptno= 10]') = 1
Table 5 - Query dept_xmlview example 1

This query uses the Extract and ExistsNode functions with
XPath to query the XML instances from dept_xmlview.
These are Oracle XMLDB specific SQL functions that
allow querying XML instances. ExistsNode checks for the
existence of the node(s) targeted by the XPath expression
and returns 1 or 0 depending on whether the XPath
identifies any nodes in the document. The Extract
function returns an XMLType consisting of the resultant
nodes from applying the XPath expression on the source
XML instance. It returns NULL if there are no nodes
found by the XPath expression. The advantage of
ExistsNode is that it allows short circuit evaluation if a
node is found, whereas the Extract function has to find
and return all matching nodes. The above query returns
one row containing XMLType instance as shown in table
6:
<DeptInfo>
 <DepartName>ACCOUNTING</DepartName>
 <Location>NEW YORK</Location>
</DeptInfo>
Table 6 - Result from query example 1

A straightforward evaluation of the query first
materializes the contents of dept_xmlview by constructing
the XMLType instances and then evaluates the
ExistsNode function by evaluating the XPath
‘/Department[@Deptno=10]’. If the ExistsNode returns
1, then it evaluates the Extract function by evaluating the
XPath ‘/Department/DeptInfo’. An optimal evaluation
plan, however, exploits the fact that the XPath
‘/Department[@Deptno=10]’ maps to a predicate on the
underlying deptno column of the dept table and the XPath
‘/Department/DeptInfo’ maps to the XML node
constructed by the function XMLElement(“DeptInfo”, …).
The query can then be evaluated using a simple relational
query shown in table 7. Note that this rewritten query
does not contain any XPath functions.

select XMLElement(("DeptInfo",
 XMLForest(dname as "DepartName", loc as "Location"))
from dept
where deptno = 10
Table 7 - Rewritten query for query example 1

Oracle XML DB uses this optimal evaluation plan by
rewriting the query in Example 1 to the query shown in
Table 7 using the XML Query Rewrite technique. The
rewritten query in table 7 is a relational query on the
relational table and the standard relational optimizer can
select the index on the deptno column of the dept table to

speed up the query. The execution plan for example 1
query is shown below in table 8.

>SELECT STATEMENT
 >TABLE ACCESS BY INDEX ROWID (DEPT)
 >INDEX UNIQUE SCAN (INDEX ON DEPT.DEPTNO)
 >- access("DEPTNO"=10)
Table 8 - Execution Plan for query example 1

Example 1 query only involves XPath traversal on non-
collection elements. Here we show another rewrite
example where the XPath traversal involves a collection
element Employee.

Example 2: Consider the XML query shown in table 9. It
finds all XML instances in dept_xmlview where there
exists a node satisfying the XPath expression
'/Department/Employee[@Empid=7839]'). For such
XML instances, it extracts the
‘/Department/DeptInfo/Location’ node and attaches it to a
new Department element node constructed by the
XMLElement function.

select XMLElement("Department",
 Extract(v.department, '/Department/DeptInfo/Location'))
 from dept_xmlview v
where ExistsNode(v.department, '/Department/Employee[@Empid=
7839]') =1
Table 9 - Query dept_xmlview example 2

This XML query returns one row containing the
XMLType instance shown in table 10:
<Department>
 <Location>NEW YORK</Location>
</Department>
Table 10 - Result from query example 2

Again, the optimal way to evaluate the query is to map the
XPath predicate as a SQL predicate on the empid column
of the emp table and map the XPath
‘/Department/DeptInfo/Location’ to the XMLForest node
on the loc column of the dept table. Oracle XMLDB also
rewrites this query and evaluates it as a relational query as
shown in table 11.

select XMLElement("DeptInfo",
 XMLForest(loc as "Location"))
from emp, dept
where empno = 7839 and emp.deptno = dept.deptno
Table 11 - Rewritten query for query example 2

We now show how to convert a forest of collection
element nodes into a virtual SQL table using the
XMLSequence table function and how they get rewritten.

Example 3: Here is an XML query to list the department
name and the names of the employees that are in that
department.
select extractValue(v.department, ‘/Department/DeptInfo/DepartName'),
 extractValue(value(v2), '/Employee/EmpName')
 from dept_xmlview v,

1136

 table(XMLSequence(Extract(v.department, '/Department/Employee')))
v2
Table 12 - Query dept_xmlview example 3
This query returns the set of rows shown in table 13.

ACCOUNTING CLARK

ACCOUTING KING

ACCOUNTING MILLER

OPERATIONS SMITH

Table 13 - Result from example 3 query

The Extractvalue function is similar to Extract but
returns only scalar values. This is a type aware function
and returns the appropriate type (NUMBER, DATE etc.)
based on the XMLSchema type information, or the
underlying SQL expression information, if available, at
query compilation time. In this particular example all the
title elements are simple strings, so the result is of type
VARCHAR2.

XMLSequence is a SQL function that takes an
XMLType containing a forest of XML element nodes and
transforms it to a collection of XMLType instances. The
TABLE function can then be used to convert the
collection of XML into multiple rows. Multiple correlated
TABLE functions containing XMLSequence and Extract
expressions can be used to un-nest the hierarchical
information contained in the XML document. The query
is optimized into a simple relational query (shown in table
14) over the underlying relational tables contained in the
dept_xmlview.

select dname, ename
from dept d , emp e
where d.deptno = e.deptno
Table 14 - Rewritten query for example 3 query

All previous query examples are on an XML view
constructed via SQL/XML functions. We now show the
examples of XMLType table storing XMLType instances
conforming to an XML schema.

2.2 Querying schema based XML table examples
We first define an XML schema
‘http://www.oracle.com/dept.xsd’ as shown in table 15
and have registered it with the Oracle XML DB. Then we
create an XMLType table dept_xmltab containing
XMLType instances that conform to the
‘http://www.oracle.com/dept.xsd’ schema as shown in
table 16. The table dept_xmltab table now contains the
hidden columns designated as deptid_hc, deptname_hc,
deptloc_hc for storing the department id, name, location
values and the collection of employees are stored as a
separate storage table emp_col_tab. The object relational
infrastructure is used to create object types, collection
types and subtypes to reflect the various XML Schema
constructs. See reference [5] for more details on schema-
based storage.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oracle.com/dept.xsd" version="1.0”
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 elementFormDefault="qualified">
 <element name "Department">
 <complexType>
 <sequence>
 <element name = "DeptInfo">
 <complexType>
 <sequence>
 <element name = "DepartName" type = "string"/>
 <element name = "Location" type = "string"/>
 </sequence>
 </complexType>
 </element>
 <element name = "Employee" maxOccurs = "unbounded">
 <complexType>
 <sequence>
 <element name = "EmpName" type = "string"/>
 <element name = "Job" type = "string"/>
 <element name = "Salary" type = "positiveInteger"/>
 </sequence>
 <attribute name="Empid" type="positiveInteger"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="Deptno" type="positiveInteger"/>
 </complexType>
 </element>
</schema>
Table 15 - dept.xsd XML schema

create table dept_xmltab of xmltype
 xmltype store as object relational
 xmlschema "http://www.oracle.com/dept.xsd" element "Department"
Table 16 - dept_xmltab schema based XML table

When XMLType instances are inserted into the
dept_xmltab table, they are appropriately shredded and
the values are inserted into the underlying hidden columns
of dept_xmltab and emp_col_tab. The collection table
internally has a hidden column nested_table_id to join
with the hidden set_id column of the parent table
dept_xmltab.
XML queries on the XMLType table dept_xmltab are
optimized through the rewrite technique similar to those
on dept_xmlview view as shown in examples 1, 2 and 3.

Example 4: The equivalent of the query in example 1 on
the dept_xmltab and its rewritten counterpart are shown in
table 17. For the rewritten query, mkxml is a SQL
primitive operator converting an object type instance
constructed by the object constructor (ocons) into XML.

select Extract(value(t), '/Department/DeptInfo',
 'xmlns="http://www.oracle.com/dept.xsd"')
from dept_xmltab t
where ExistsNode(value(t), '/Department[@Deptno = 10]',
 'xmlns="http://www.oracle.com/dept.xsd"') = 1
select mkxml(ocons(‘deptInfo’, t.deptname_hc, t.deptloc_hc),…)
from dept_xmltab t

1137

where t.deptno_hc = 10
Table 17 – Query on dept_xmltab table example 4

Example 5: The equivalent of the query in example 2 on
the dept_xmltab and its rewritten counterpart are shown in
table 18.
select XMLElement("Department",
 Extract(value(t), '/Department/DeptInfo/Location',
 'xmlns="http://www.oracle.com/dept.xsd"'))
from dept_xmltab t
where ExistsNode(value(t), '/Department/Employee[@Empid = 7839]',
 'xmlns="http://www.oracle.com/dept.xsd"') =1
select XMLElement("Department", mkxml(deptloc_hc,...))
from emp_col_tab col, dept_xmltab as t
where col. empid = 7839 and col.nested_tabl_id=t.set_id
Table 18 – Query on dept_xmltab table example 5

Example 6:. Equivalent of example 3 query on
dept_xmltab and its rewritten query are shown in table 19.
select extractValue(value(t), '/Department/DeptInfo/DepartName',
 'xmlns="http://www.oracle.com/dept.xsd"'),
 extractValue(value(t2), '/Employee/EmpName',
 'xmlns="http://www.oracle.com/dept.xsd"')
from dept_xmltab t,
 table(XMLSequence(Extract(value(t),
 '/Department/Employee',
 'xmlns="http://www.oracle.com/dept.xsd"'))) t2
 select t.deptname_hc, col.empname
from dept_xmltab t, emp_col_tab col
where col.nested_table_id = t.set_id
Table 19 – Query on dept_xmltab table example 6

3. XML Query Rewrite Overview
As shown in the previous examples, the XML Query
Rewrite technique rewrites XPath operations to XML
data, which is physically stored relationally, to directly
operate on the underlying data. This enables further
optimizations by the classic relational optimizer in terms
of optimal index access methods and join-order, and thus
avoids the need to physically materialize the XML in
memory.

The query rewrite happens at query compilation time.
After a query passes through the parser, semantic analyzer
and pre-type checking phases, it is internally represented
as a query tree composed of query blocks and operator
trees. We walk through all the query blocks to identify
XPaths in every Extract, Extractvalue and ExistsNode
function and convert them into SQL operator trees with
possible subquery blocks. The query tree is then further
optimized through view merging and subquery to join
conversion and operator tree optimization. The resultant
query tree is then given to the relational optimizer, which
generates the execution plan for the execution engine.
Figure 1 shows the logic flow of rewrite during the query
compilation phases.

The key to implementing this query rewrite idea is to
develop a new set of primitive SQL operators for XPath

navigation and SQL/XML publishing functions. Some of
the operators are directly exposed to the user while others
are not. We have also developed a new set of algebra
rules to optimize those primitive SQL operators. The new
operators and their algebra rules are directly integrated
with the existing relational and object relational algebra in
Oracle. Since the backbone storage of the XML is
relational or object relational, this approach leverages the
existing relational and object relational algebra
framework.

The XML Query rewrite technique consists of the
following key modules:
• XML input analysis
• XPath Expansion based on input XML meta-data
• XPath step meta-data annotation
• XPath transformation to the SQL operator tree
• SQL/XML publishing function normalization
• Operator tree optimization based on a new set of

XML operator algebra rules.
The technique also integrates with relational algebra rules
for view merging, object relational algebra rules for object
construction and attribute access, and collection view
merging.

Figure 1 - Query Rewrite Logic Flow

4. XPath Rewrite

4.1 XML Input Analysis

During the compilation of a query, we examine the XML
input to each XML Query function, Extract, ExistsNode
and Extractvalue, and rewrite them if the underlying
XML input data satisfies one of the following criteria:
• The input XML is stored in a schema-based

XMLType table or column.
• The input XML is generated by an object view using

an XML generation function that relies on the default
mapping of object-relational data to XML.

• The input XML is generated from standard
SQL/XML publishing functions, such as
XMLElement, XMLAgg, and XMLForest.

• The input XML is from a view column, which is
constructed on top of the above three cases.

 Parse, Semantic Analyze, Type Check

XPath Rewrite View Merge

Subquery Transform Operator Tree Optimization

Optimizer

Execution
Engine

1138

We do not do rewrite if the underlying XML input
structure is opaque to the query compiler, such as when
the input XML is CLOB based storage or generated from
arbitrary user defined functions returning XMLType. The
idea is that we need to know the meta-data that describes
the structure of the input XML in order to optimize the
XPath operation on top of it. The input XML meta-data
itself, on the other hand, can be very flexible - it can be an
XML schema annotated with shredding information of the
mapping object meta-data and object relational table, or
merely object meta-data descriptor, or an arbitrary
SQL/XML operator tree constructing the XML input. For
an XML input whose structure is opaque, the user can still
use a functional index or a text index to do query
optimization. However, the discussion of optimization
using a functional or text index is beyond the scope of this
paper.

4.2 XPath Expansion based on input XML meta-data

For each XPath that is a compile time constant used in the
Extract, ExistsNode and Extractvalue functions, we
expand the XPath if it contains wildcard character
matching and double slash abbreviation based on the
meta-data information of the input XML that we gathered
from the input XML analysis . We expand the double
slash into its constituents. For example, an XPath ‘/a//d’
can be rewritten as ‘/a/b/c/d’ if we know from the meta-
data that all the possible elements between element ‘a’
and element ‘d’ is element ‘b’ followed by element ‘c’.
We also expand wildcard character ‘*’ based on meta-
data information. For example, the XPath ‘/a/b/*/d’ is
rewritten to ‘/a/b/c/d’.

4.3 XPath Step Meta-data Annotation

After the expansion of the XPath, we annotate each step
of an XPath with the meta-data from the underlying input
XML meta-data. The meta-data of an XPath element may
contain the object attribute meta-data to which this
element is mapped or a sub-tree of the SQL/XML
operator tree from which this element is constructed.

The XPath step meta-data also indicates whether this step
is feasible. For example, for an XPath ‘a/b’, if ‘b’ is not a
possible child element of element ‘a’ based on the meta-
data, then the element ‘b’ step is marked as a not feasible
step. A non-feasible step is transformed to the SQL
NULL constant in the subsequent ‘XPath Transformation
to SQL operator tree’ section.

We annotate each element step with the element
cardinality information. This information can be used by
other XPath transform functions to determine if the
element is a collection or scalar element. For example, for
an XPath step that matches the element ‘employee’, if the
maximum occurrences property for that element in the
XML schema is more than 1 or it maps to a collection

object type, then element ‘employee’ is a collection
element. With neither an XML schema nor an object
descriptor, we can derive this information from the input
SQL/XML operator tree. For example, if the ‘employee’
element is constructed by applying XMLAgg to a set of
rows as a query ‘select XMLAgg(XMLElement(“employee”…)) from
emp’ or is constructed from an XMLConcat expression,
such as ‘XMLConcat(XMLElement(“employee” ,‘Miller’),
XMLElement(“employee”, ‘Smith’))’, then the element is a
collection element.

4.4 XPath Transformation to SQL operator tree

After we finish the annotation of meta-data of each XPath
step, we transform the entire XPath into a SQL operator
tree. The transformation engine walks through the input
XPath expression and recursively applies the following
rewrite functions depending on the node type of the XPath
expression tree. The rewrite functions are
• Rewrite of XPath steps
• Rewrite of XPath predicates
• Rewrite of XPath expressions, such as relation

operators, logical operators, arithmetic operators and
XPath built-in functions.

4.4.1 Rewrite of XPath Steps

We convert each step of element or attribute extraction
into a primitive SQL operator that extracts that node out
of the underlying construction XML operator. If the
element is a collection element, we further expand the
result of the extraction into a subquery block, which
represents the selection of a logical table formed by the
conversion of collection elements into relational rows.
The purpose of transforming XPath steps into a SQL
operator tree along with subquery blocks is that when they
are applied to the input XML construction SQL operator
tree by the operator tree optimization and view merge
module, many operators can be cancelled so that an
optimal operator tree is derived.

The SQL extraction operators are primitive SQL
operators, XATG and OATG. If the element is constructed
from a SQL/XML operator tree, then XATG is used. For
example, Extract(XMLElement(“foo”, 3), ‘./foo’) is transformed
into XATG(XMLElement(“foo”, 3), ‘.’, ‘foo’), which can be
further optimized by the operator tree optimization
module into just XMLElement(“foo”, 3). XATG is a
primitive SQL operator not exposed to the user.
Semantically, XATG(xmltype, ‘.’, ‘A’) is equivalent to
Extract(xmltype,’A’) and XATG(XATG(xmltype, ‘.’, ‘A’), ‘A’, ‘B’) is
equivalent to Extract(xmltype, A/B’).

If the element is constructed from object relational data,
then the OATG operator is used. For example,
Extract(MKXML(OCONS(‘obj’, attr1Val, attr2Val)), ‘attr2’)
is transformed into
(MKXML(OATG(OCONS(‘obj’, attr1Val, attr2Val), ‘attr2’)).

1139

This can be further optimized by the operator tree
optimization module into just MKXML(attr2Val). Here
the OCONS is an object constructor SQL operator which
constructs an object of type ‘obj’ containing two attributes
‘attr1’ and ‘attr2’ and the MKXML is a SQL operator
which converts an object value instance into an
XMLType instance value. Details of these SQL
operators, such as MKXML, OCONS and OATG, are
discussed in Section 5.4.

For the extraction of collection elements, we also form a
subquery block that represents a selection from a logical
table. For schema based XML or XML formed by object
relational data, the logical table is either the physical
storage table for the collection object if the collection
object is stored out of line or constructed via conversion
of a collection object type instances into a tuple stream if
the collection object is stored inline with the main table.
For SQL/XML generated XML, the logical table is
mapped to the result of the SQL query that contains the
XMLAgg. This subquery block can then be view merged
into the parent query block recursively through the
relational view merge and collection view merge process.
Consequently, this logical table does not have to be
materialized at run time.

4.4.2 Rewrite of XPath Predicates

XPath predicates are transformed into SQL predicates. In
the case of predicates on collection elements, the SQL
predicate created is attached to the subquery created
corresponding to the collection element. This effectively
pushes down the predicate to the source table so that the
relational optimizer can do its optimization job.

XPath predicates on scalar elements are transformed into
SQL CASE expressions where are further optimized using
algebra rules that are applied by the operator tree
optimization module.

4.4.3 Rewrite of XPath Expressions

We transform XPath operators, such as logical operators,
arithmetic operators, relational operators, etc, into their
equivalent SQL operators. We also transform XPath
built-in functions into their equivalent SQL functions.
Most of these transformations are straightforward. The
principle here is that if we do not find an equivalent SQL
operator, we can create one that implements the semantics
required by the XPath. This is an advantage of rewriting
these XML queries inside the database server since we
can always extend it with new SQL operators. It also
enables us to expose PL/SQL and other SQL functions as
XPath functions.

The XPath comparison operators, such as equality,
greater-than, lesser-than etc., have existence semantics if
either of their arguments are collection elements. From

the XPath step meta-data, we know if the step results in a
collection element or not. So, for an XPath predicate
containing the comparison operator, such as ‘[b = c]’, we
transform it differently depending on the element
cardinality.

• If both element ‘b’ and element ‘c’ are scalar

elements, then this is transformed into the equivalent
SQL ‘=’ operator.

• If both element ‘b’ and element ‘c’ are collection
elements, then this is transformed into an EXISTS
SQL operator with a subquery block testing the
existence relationship. So it is transformed into

 EXISTS (select null from collection_b
 where EXISTS (
 select null from collection_c
 where collection_b.column_value =
 collection_c.column_value).
• If one element is a scalar and the other element is a

collection, (say ‘b’ is scalar element), then it is
transformed into
 EXISTS(select null from collection_c
 where collection_c.column_value = b).

For input to logical operators, such as AND and OR, we
again convert the subquery input which represents
collection elements into EXISTS SQL operator
representing existential check.

Rewriting into exists subquery blocks enables further
transformation into semi-joins by the regular relational
subquery transformations.

After an XPath is transformed into SQL operators for the
Extract function, the rewrite is done. For ExistsNode, we
apply a final SQL operator to compute the effective
boolean value of the result XML. If the result XML is a
collection element node, then we apply EXISTS SQL
operator, otherwise, we apply the SQL CASE operator.
For ExtractValue, we apply a final SQL operator that
atomizes the node by extracting the text value and cast it
into an appropriate SQL type.

We also handle the rewrite of query over XML with XML
schema having Choice, substitution groups and
inheritance construct by exploiting object type
inheritance, SQL CASE and TREAT operators. However,
the discussion of such is beyond the scope of this paper.

5. Operator Tree Optimization
Algorithmically, operator tree optimization is an algebraic
transformation of the operator tree by applying a set of
algebraic rules for each operator node in the tree. We do
this recursively, from bottom up, so that an optimal
operator tree is derived. Optimization arises from the
elimination of unnecessary operator nodes and overall

1140

simplification in the operator tree. The extraction and
generation operators can be cancelled when the two
operators are the inverse of each other. Operator nodes of
the XML generation tree that are not selected by the
XPath are also eliminated. Consequently, the operator tree
is reduced down to a minimal set of operator nodes that
are needed to compute the query result.

For each SQL operator, we define a set of algebraic rules
to optimize the operator. The algebraic rules fall into the
following categories:
• Nullification rule: The nullification rule is cost-

reductive because it simplifies the operator if any
argument to the operator is SQL NULL. The
nullification rule usually simplifies the operator by
replacing it with NULL, if all the arguments are
NULL, or by eliminating any arguments that are
NULL.

• Elimination rule: This rule is cost-reductive because
it eliminates unnecessary intermediate operators.

• Distribution rule: This rule applies an operator f to
another operator g by distributing operator f to all the
children of operator g.

• Cancellation rule: This rule cancels two operators
that are the inverse of each other.

• Normalization rule: Normalization does not reduce
the number of SQL operators in the operator tree,
however it canonicalizes all the syntax exposed to the
user to the low-level operators so that fewer algebra
rules need to be added into the system. Thus, the
operator tree optimization needs to deal with fewer
possible cases of input operators. This is especially
useful when a language provides a large number of
high-level syntactic variations to the users.

5.1 SQL/XML publishing function normalization

We normalize SQL/XML publishing functions into a set
of primitive SQL operators that generate XML.
Normalization is to transform user-exposed functions,
such as a SQL/XML publishing function, into an operator
tree composed of primitive SQL operators. The higher-
level operators can be viewed effectively as syntactic
sugar for the primitive operators.

Consider the SQL/XML function XMLForest. XMLForest
examines each input argument expression, and if the
argument expression is not null, then a new XMLElement
node is formed with the input tag name, otherwise, the
result is null. The rest is XMLConcat applied on each of
the new XMLElement nodes. For example, the expression
XMLForest(name as “DeptName”, location as
“DeptLocation”) generates the following XML fragment
if name column value is ‘Engineering’ but location

column value is NULL:
<DeptName>Engineering</DeptName>.
The above XMLForest expression can be syntactically
transformed into the following equivalent:
 XMLConcat(
 CASE WHEN name IS NOT NULL, THEN
 XMLElement(“DeptName”, name) ELSE NULL END,
 CASE WHEN location IS NOT NULL THEN
 XMLElement(“DeptLocation”, location) ELSE NULL END)

5.2 New SQL/XML Algebra Rules

In the examples below, we designate XE, XC, XAG, CS,
and INN to represent the SQL functions XMLElement,
XMLConcat, XMLAgg, CASE WHEN, and IS NOT NULL
respectively. We use “T” and “U” to represent XML
element tag name, e to represent an expression, and c to
represent conditional expression. For example,
XMLElement(“T”, e1, .., en) is represented as XE(“T”, e1, .., en).
CASE WHEN c1 THEN e1 WHEN c2 THEN e2 ELSE ed END is
represented as CS(c1, e1, c2, e2, ed).
Note that the list in this section is not exhaustive – it is a
subset, and is meant to provide a flavor of the algebraic
rules used in Oracle XML DB.

The second column of the tables of algebraic rules uses
the following abbreviations for the classification of
algebraic rules: N: Nullification Rule; E: Elimination
Rule; D: Distribution Rule; O: Normalization Rule

5.2.2 Algebraic rules for XMLElement
XE(“T”, NULL)
 = XE(T)

N1 If the input argument to XMLElement is
SQL NULL itself, then it merely creates an
element with empty content

XE(“T”, e1, ..,
NULL, .. en) =
 XE(“T”, e1, …
en)

N2 If any of the input argument to XMLElement
is NULL, then that argument can be
eliminated from the input

XE(“T”, e1, ..,
 XC(ei, .., ej), . en)
=
XE(“T”, e1, .., ei,
.., ej, .. en)

E1 If any input argument to XMLElement is
XMLConcat, then all the arguments to
XMLConcat can be merged into the parent
XMLElement as its argument. The
intermediate XMLConcat operator is
eliminated.

5.2.3 Algebraic rules for XMLForest
XMLFOREST(e1 as “T1”, .., en as
“Tn”) = XC(CS(INN(e1), XE(“T1”,
e1), NULL), .., CS(INN(en), XE(“Tn”,
en0), NULL))

O1 Normalize XMLForest
into XMLConcat of
CASE of XMLElement

5.2.4 Algebraic rules for XMLConcat

XC(NULL) =
NULL

N1 If the input argument t to XMLConcat is
SQL NULL itself, then the output is SQL
NULL.

XC(e1, .., NULL, ..
en) = XC(e1, .., en)

N2 If any of the input arguments to
XMLConcat is NULL, then that argument
can be eliminated from the input

XC(e1, .., XC(ei, ..,
ej), .., en) = XC(e1,
.., ei, .., ej, .., en)

E1 If any input argument to XMLConcat is
XMLConcat, then all the arguments to
XMLConcat can be merged into the parent
XMLConcat as its argument. The
intermediate XMLConcat function is
eliminated.

XC(e) = e E2 XC with single input argument can be

1141

eliminated.
5.2.5 Algebraic rules for the XATG operator

XATG(NULL, “T”, “U”) =
NULL

N1 If the input argument t to
XATG is SQL NULL itself,
then the output is SQL NULL.

XATG(XE(“T”, e), ‘.’, ‘T’) =
XE(“T”, e)

E1 This rule eliminates the XATG
operator.

XATG(XE(“T1”, e), ‘T1’, ‘T2’)
= XATG(e, ‘.’, ‘T2’)

E2 This rule eliminates the
XMLElement function. “e” is
assumed to be an XMLType

XATG(XE(“T”, e), ‘.’, ‘T1’=
NULL

E3 This rule eliminates the XATG
and XE operators because tag
‘T’ and ‘T1’ does not match

XATG(XC(e1, .., en), ‘T’, ‘U’)
= XC(XATG(e1, ‘T’, ‘U’), ..,
XATG(en, ‘T’, ‘U’))

D1 This rule distributes XATG
operator to all the arguments
to XMLConcat function.

XATG(CS(c1, e1, .., cn, en, ed),
‘T’, ‘U’) = CS(c1, XATG(e1,
‘T’, ‘U’), .., cn, XATG(en, ‘T’,
‘U’), XATG(ed, ‘T’, ‘U’))

D2 This rule distributes XATG
operator to all the branches of
a CASE operator.

XATG(XAGG(e), ‘T’, ‘U’) =
XAGG(XATG(e, ‘T’, ‘U’))

D3 This rule distributes XATG
operator to the argument of
XAGG.

5.2.6 Algebraic rules for IS NOT NULL (INN) expression

INN(NULL) = false N1 If the input argument t to INN is SQL
NULL itself, then the output is false.

INN(not_null_e) =
true

E2 If the input argument to INN is a not
null expression (such as a non-nullable
column), then the output is true.

5.2.7 Algebraic rules for CASE expressions (CS)

CS(true, e1, e2) = e1 E1 Eliminates the CS operator when the
case value is known to be true.

CS(false, e1, e2) = e2

E2 Eliminates the CS operator when the
case value is known to be false.

CS(c, e, e) = e E3 Eliminates the CS operator when the
branched expressions are equivalent.

5.3 Example of operator tree optimization by
application of algebraic rules

Assume colb is a nullable column and colc is a non-
nullable column. The following is an example to show
how Extract(XMLElement("a", XMLForest(colb as "b",
colc as "c")), './a/c') is optimized to just XMLElement("c",
colc) by applying the algebraic rules.

• Applying normalization of XMLForest and

transformation of XPath into XATG operators yields:
XATG(XATG(XE("a", XC(CS(INN(colb), XE("b", colb), NULL),
CS(INN(colc), XE("c", colc), NULL))), '.', 'a'), 'a', 'c')

• Applying INN-E2 and CS-E1 (note colc is not a
nullable column) yields:
XATG(XATG(XE("a", XC(CS(INN(colb), XE("b", colb), NULL),
XE("c", colc))), '.', 'a'), 'a', 'c')

• Applying XATG-E1 to eliminate the inner XATG
yields:
XATG(XE("a", XC(CS(INN(colb), XE("b", colb), NULL), XE("c",
colc))), 'a', 'c').

• Applying XATG-E2 to eliminate the outer XE yields:
XATG(XC(CS(INN(colb), XE("b", colb), NULL), XE("c", colc)),
'.', 'c')

• Applying XATG distribution rules XATG-D1 and
XATG-D2, and XATG-N1 yields:
XC(CS(INN(colb), XATG(XE("b", colb), '.', 'c'), NULL),
XATG(XE("c", colc), '.', 'c'))

• Applying XATG-E3 to eliminate the first XATG and
XATG E1 rule to eliminate the second XATG yields:
XC(CS(INN(colb), NULL, NULL), XE("c", colc))

• Applying CS-E3 yields:
XC(NULL, XE("c", colc))

• Applying XC-N2 yields the final optimal tree:
XE("c", colc)

5.4 Integration with Object Relational Algebra Rules

Oracle uses a set of algebraic rules to optimize object
operations. These rules can be used seamlessly with the
XML algebraic rules to perform XML optimizations in
the presence of object operands, and object optimizations
in the presence of XML.

Object operators in Oracle include OCONS for object
construction, and OATG for attribute access. As an
example of object algebraic optimization, consider the
following rule :
OATG(OCONS(‘obj’, attr1Val, attr2Val), ‘attr2’) = attr2Val .
This rule states that to get ‘attr2’ attribute of an object
constructed with attr1 having value attr1Val and attr2
having value attr2Val, the result is just attr2Val.

In order to integrate with XML, two new operators
MKXML and UMKXML have been developed. MKXML
converts an object instance into an XMLType instance
and UMKXML converts an XMLType instance back into
an object instance. MKXML and UMKXML are the
inverses of each other.

Algebraic rules are used to specify the transformation of
XPath steps over XML constructed from object instances
– this will results in a tree with OATG over OCONS.
Consider the following SQL expression:
extractValue(MKXML(OCONS(‘obj’, attr1Val, attr2Val)), ‘attr2’),
This is transformed into an equivalent SQL expression :
OATG(UMKXML(MKXML(OCONS(‘obj’, attr1Val, attr2Val))), ‘attr2’),
This is optimized by the operator tree optimization into
just the simple attr2Val SQL expression..

6. Integration with relational view Merging
Relational view merge merges a query or a view
definition in the FROM clause into the main query. For

1142

example, the following query select * from (select * from
t) may be optimized into select * from t.

In an object-relational system, an XPath query over a
collection column, with or without a predicate, (e.g.
‘/Department/Employee[EmpName = ‘CLARK’]’)
is converted into a subquery selecting from a logical table:
select * from table(cast(multiset(
 select * from table where pred) as collectionType))
Here tab is the underlying storage table for the instances
of collectionType. The predicate pred is present only if
the XPath query has a predicate. Collection view merge
cancels the table function with the cast(multiset(query) as
collectionType) operation, leaving the query as
select * from (select * from tab where pred).
This is then further optimized via relational view merge
into the simple query :
select * from tab where pred.
Alternatively, in a relational system, collections may be
constructed using the XMLAgg function to aggregate
XMLType values. In this case, the rewritten query for an
XPath such as ‘/Department/Employee[EmpName=’JO’] is of the
form
select xmlagg(v.column_value)
 from table(XMLSequence(
 select xmlagg(XMLElement(..)) from t where pred))) v
This query can be effectively transformed into the
following form:
select xmlagg(v.column_value)
 from table(cast(multiset(select XMLElement(...) from t where pred)
 as xmlsequenceType) v,
Note that the XMLSequence over XMLAgg has been
transformed into a cast(multiset()). Here,
XMLSequenceType represents an array of XMLType.
Collection view merge then optimizes the query to :
select xmlagg(v.column_value) from(select XMLElement(…) from t
where pred) v
Relational view merge then optimizes the query to:
select xmlagg(XMLElement(…)) from t where pred.
Through the relational and collection view merge, the
query over the underlying storage table or view
constructing the collection elements is folded into the
parent query. The predicates on the collection elements
automatically become the predicates on the underlying
collection storage table or view. This effectively pushes
the predicate down, and various access methods can be
better exploited. No run-time materialization of the
collection elements is needed.

7. Performance
To measure the performance of XML query rewrite over
SQL/XML viewed over relational data, we create the
SQLX-Bucky benchmark based on Bucky[10]
benchmark. We use SQL/XML publishing functions to
create XMLType views over relational tables. To measure
the performance of XML query rewrite over schema
based XML table, we use XMark[14]. In both
benchmarks, we express the query using Extract,

ExistsNode, ExtractValue, XMLSequence and SQL/XML
publishing functions.

The performance objectives are two-fold. The first is to
compare the performance of rewritten XML queries with
the performance of the same query without rewrite.
Without query rewrite, XML needs to be materialized
followed by XPath evaluation. The performance of
rewritten queries, however, scales gracefully similar to
that of relational queries. Rewritten queries are orders of
magnitude faster than non-rewritten queries since they can
use indexes.

Our second objective is to compare the performance of
the XML queries against their semantically equivalent
object relational or relational queries combined with
SQL/XML publishing functions. We find that the
performance of the two is comparable for both XMark
and SQLX-Bucky benchmark. Figure 2 and Figure 3
show the ratio of the query performance using query
rewrite to the semantically equivalent relational or object
relational query written directly over the underlying
storage tables. This demonstrates that query over XML
combined with rewrite yields performance comparable to
that of queries directly on the underlying data.

0

0.5

1

1.5

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Figure 2 – Query Speed Ratio for SQLX-Bucky

0
0.2
0.4
0.6
0.8

1

1.2

Q1 Q2 Q5 Q7 Q9 Q10 Q13 Q15 Q16 Q20

Figure 3 – Query Speed Ratio for XMark

8. Related Work
Many of the concepts presented in this paper have been
studied in other contexts. XML algebra [6][7] and
optimizing queries of XML views of relational data in the
middleware [8][9], in particular, have been the subject of
much research.

Our work is unique in the following respects. First, our
query optimization rules are based on optimizing XPath
expressions over SQL/XML and object relational SQL.
Second, query processing is performed inside a popular,
commercial database server, as opposed to non-integrated
mid-tier solutions. Our solution does not materialize large

1143

volumes of XML in the middleware. We primarily
optimize queries over XML whose underlying storage is
relational and object-relational. Third, our algebraic rules
for XML processing and optimization is tightly integrated
with existing relational and object-relational rules. This
enables optimization involving a mix of relational and
XML queries.

Since the majority of business data is stored in relational
and object-relational database, Oracle XML DB focuses
on a practical subset of XML querying problems that, we
believe, are the most useful for customers. We bridge the
relational and XML worlds within Oracle XML DB by
leveraging the relational and object relational algebra, and
its optimization infrastructure.

9. Future Direction
As XQuery [1] becomes the standard to query XML, and
the SQL/XML standard embraces XQuery functionality,
Oracle XML DB will optimize XQuery over XML data.
The XML Query Rewrite techniques presented in this
paper has laid out the groundwork to fully optimize
XQuery over XML stored object-relationally or
generated by SQL/XML functions from relational data.
We will discuss this in our future paper

XML data can be recursive. Such XML can be
constructed using the Oracle CONNECT BY expression
and hierarchical XML generation methods. The rewrite of
queries over such recursive constructs has scope for future
investigation.

10. Conclusion
In this paper, we have focused on a technique of
optimizing queries on XML whose underlying storage is
relational or object-relational. The idea is to transparently
transform the XML query into its equivalent relational or
object-relational equivalent through query rewrite
techniques at compile time, so that a classic optimizer can
further optimize it and a tuple-oriented execution engine
can efficiently execute it. We create a set of new SQL
operators for XPath navigation, and incorporate a new set
of algebra rules for SQL/XML operators with existing
relational and object relational algebra rules in the Oracle
database server. Our experience has shown that this
technique enables customers to leverage their existing
relational and object relational systems, and to provide
interoperability between XML and their existing data and
applications.

Acknowledements
We gratefully acknowledge the contributions of all the
members of the Oracle XML DB development and
product management teams. We would especially like to

thank Ravi Murthy and Muralidhar Subramanian, who
have given us valuable and insightful ideas for query
rewrite.

References
[1] World Wide Web Consortium, “XQuery 1.0: An XML

Query Language”, W3C Working Draft, November 2003.
[2] Oracle XML DB Developer’s Guide: Oracle 9iR2. See

http://otn.oracle.com/tech/xml/xmldb
[3] Database Languages – SQL - Part 14: XML Related

Specifications (SQL/XML) – Aug 2003
[4] Sandeepan Banerjee, Vishu Krishnamurthy, Muralidhar

Krishnaprasad, Ravi Murhty: “Oracle 8i – The XML
Enabled Data Management System”, ICDE 2000.

[5] Ravi Murthy, Sandeepan Banerjee: “XML Schemas in
Oracle XML DB”. VLDB 2003

[6] Flavius Frasincar, Geert-Jan Houben, Cristian Pau: “XAL:
an Algebra for XML Query Optimization”. In ADC 2002,
Melbourne, Australia, 2002, ACS

[7] H.V. Jagadish, Laks V.S. Lakshmanan, Divesh Srivastava,
Keith Thompson: “TAX A Tree Algebra for XML”. In
DBPL 2001.

[8] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene
Shekita, Catalina Fan, John Funderburk: “Querying XML
Views of Relational Data”. VLDB 2001.

[9] Mary Fernandez, Atsuyuki Morishima, Dan Suciu:
“Efficient Evaluation of XML Middleware Queries”,
SIGMOD Conf., May 2001

[10] Michael J. Carey, David J. DeWitt, Jeffrey F. Naughton,
Mohammad Asgarian, Paul Brown, Johannes E. Gehreke,
Dhaval N. Shah: “The Bucky Object Relational
Benchmark”,0
http://www.cs.wisc.edu/~naughton/bucky.html.

[11] The W World Wide Web Consortium, “XML Schema
Standard”, see http://www.w3.org/XML/Schema

[12] Andrew Eisenberg and Jim Melton: SQL/XML and the
SQLX Informal Group of Companies, , ACM SIGMOD
Record, Vol. 30 No. 3, Sept. 2001,
http://www.acm.org/sigmod/record/issues/0109/standards.pdf

[13] Andrew Eisenberg and Jim Melton: SQL/XML Is Making
Good Progress”
http://www.acm.org/sigmod/record/issues/0206/standard.pd
f

[14] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael
J. Carey, Ioanna Manolescu, Ralph Busse: “Xmark: A
Benchmark for XML Data Management”
http://www.csd.uch.gr/~hy561/Papers/XMark-vldb02.pdf

Appendix Benchmark Query
For reference, we list a sample of XMark queries and
SQLX-Bucky queries that we use for our performance
experiments.

XMark Benchmark

1144

The XMLdata is stored in a schema based XMLType
table site_tab, with the XML schema derived from the
XMark Internet auction site.

Q1: Return the name of the person with ID ‘person0’:

select extract(value(v), '/person/name')
from site_tab v0,
 table(xmlsequence(extract(value(v0), '/site/people/person'))) v
where extractValue(value(v), '/person/@id') = 'person0'

Q5: How many sold items cost more than 40:
 select count(*)

from (select extract(value(v), '/closed_auction/price')
 from site_tab v0, table(xmlsequence(extract(value(v0),
 '/site/closed_auctions/closed_auction'))) v
 where extractValue(value(v), '/closed_auction/price') >=40)v

Q7: How many pieces of prose are in our database ?:
 select xmlelement("cnt",

 (select count(*)
 from table(xmlsequence(extract(value(v), '/site//description')))) +
 (select count(*)
 from table(xmlsequence(extract(value(v), '/site//annotation')))) +
 (select count(*)
 from table(xmlsequence(extract(value(v), '/site//email')))))
from site_tab v0, table(xmlsequence(extract(value(v0), '/site'))) v

Q9: List the names of persons and the names of the items
they bought in Europe:
 select xmlelement("person",

 xmlattributes(extractValue(value(p), '/person/name') as "name"),
 (select xmlagg(xmlelement("item",
 (select xmlagg(extract(value(t2), '/item/name'))
 from site_tab v000,
 table(xmlsequence(extract(value(v000),
 '/site/regions/europe/item'))) t2
 where extractValue(value(t),
 ‘/closed_auction/itemref/@item')=
 extractValue(value(t2), '/item/@id'))))
 from site_tab v00, table(xmlsequence(extract(value(v00),
 '/site/closed_auctions/closed_auction'))) t
 where extractValue(value(p), '/person/@id')=
 extractValue(value(t),'/item/buyer/@person')))
from site_tab v0,
 table(xmlsequence(extract(value(v0), '/site/people/person'))) p

Q13: List the names of items registered in Australia along
with their descriptions:
 select xmlelement("item",

 xmlattributes(extractValue(value(i), '/item/name/text()') as "name"),
 extract(value(i), '/description'))

 from site_tab v0, table(xmlsequence(extract(value(v0),
 '/site/regions/australia/item'))) i

Q20: Group customers by their income and output the
cardinality of each group:
 select xmlelement("result",

 xmlelement("preferred",
 (select count(*) from site_tab v,
 table(xmlsequence(extract(value(v),
 '/site/people/profile[@income >= 100000]'))))),
 xmlelement("standard",
 (select count(*) from site_tab v,
 table(xmlsequence(extract(value(v),
 '/site/people/profile[@income < 100000
 and @income >= 30000]'))))),
 xmlelement("challenge",

 (select count(*) from site_tab v,
 table(xmlsequence(extract(value(v),
 '/site/people/profile[@income < 30000]'))))),
 xmlelement("na",
 (select count(*) from site_tab v
 where existsNode(value(v), 'site/people/person/@income') = 0
))) from dual

SQLX-Bucky Benchmark
Relational tables are created to hold base data and
SQL/XML views are created on the relational tables.

Q1: Find the address of the staff member with id 6966:
 select extractvalue(staff, '/ROW/NAME') name,

 extractvalue(staff, '/ROW/ADDRESS/STREET') street,
 extractvalue(staff, '/ROW/ADDRESS/CITY') city,
 extractvalue(staff, '/ROW/ADDRESS/STATE') state,
 extractvalue(staff, '/ROW/ADDRESS/ZIPCODE') zip
from Staff_sqlxv e
where extractvalue(staff, '/ROW/SSN') = 6966;

The Staff_sqlxv is a SQL/XML view created on top of the
rf_person table as:
 Create View Staff_sqlxv AS

 SELECT XmlElement("ROW",
 XmlElement("SSN", id), XmlElement("NAME", name),
 XmlElement("ADDRESS", XmlElement("STREET", street),
 XmlElement("CITY", city), XmlElement("STATE", state),
 XmlElement("ZIPCODE", zipcode)),
 XmlElement("BIRTHDATE", birthdate),
 XmlElement("KIDNAMES",
 (select XMLAgg(XmlElement("CHLDNAME", kidname))
 from rf_Kids k where k.id = p.id)),
 XmlElement("PICTURE", picture),
 XmlElement("PLACE", XmlElement("LATITUDE", latitude),
 XmlElement("LONGITUDE", longitude)),
 XmlElement("DATEHIRED", DateHired),
 XmlElement("STATUS", status),
 XmlElement("WORKSIN", worksin),
 XmlElement("ANNUALSALARY", annualSalary)) as staff
 FROM rf_PersonFlat p
 WHERE p.type=10;– type code for staff in table rf_person.

Q8: Find all staff whose children are named “girl16” and
“boy16”:
 select distinct extractvalue(e.staff, '/ROW/NAME') name,

 extractvalue(e.staff, '/ROW/ADDRESS/STREET') street,
 extractvalue(e.staff, '/ROW/ADDRESS/CITY') city,
 extractvalue(e.staff, '/ROW/ADDRESS/STATE') state,
 extractvalue(e.staff, '/ROW/ADDRESS/ZIPCODE') zip
from Staff_sqlxv e,
 TABLE(xmlsequence(extract(e.staff,
 '/ROW/KIDNAMES/CHLDNAME'))) k1,
 TABLE(xmlsequence(extract(e.staff,
 '/ROW/KIDNAMES/CHLDNAME'))) k2
where extractvalue(value(k1), '/CHLDNAME') = 'girl16'
and extractvalue(value(k2), '/CHLDNAME') = 'boy16'

1145

