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Abstract 
Oracle XML DB integrates XML storage and 
querying using the Oracle relational and object 
relational framework. It has the capability to 
physically store XML documents by shredding 
them as relational or object relational data, and 
creating logical XML documents using 
SQL/XML publishing functions. However, 
querying XML in a relational or object relational 
database poses several challenges. The biggest 
challenge is to efficiently process queries against 
XML in a database whose fundamental storage is 
table-based and whose fundamental query engine 
is tuple- oriented. In this paper, we present the 
'XML Query Rewrite' technique used in Oracle 
XML DB. This technique integrates querying 
XML using XPath embedded inside SQL 
operators and SQL/XML publishing functions  
with the object relational and relational algebra. 
A common set of algebraic rules is used to 
reduce both XML and object queries into their 
relational equivalent. This enables a large class 
of XML queries over XML type tables and views 
to be transformed into their semantically 
equivalent relational or object relational queries. 
These queries are then amenable to classical 
relational optimisations yielding XML query 
performance comparable to relational. 
Furthermore, this rewrite technique lays out a 
foundation to enable rewrite of XQuery [1] over 
XML. 

1. Introduction 
XML processing in the Oracle XML DB is based on the 
XMLType datatype. This is a native datatype introduced 

in Oracle 8i [4].  Built using the object relational 
infrastructure, the XMLType is similar to other built-in 
datatypes such as number and character. Various XML 
related operations are supported on the XMLType.  These 
are useful for shredding the XML data to relational and 
object relational data, for traversing the XML content 
using XPath notation, or for generating XML from 
relational and object relational data. [2] 
 
In particular, users can create tables of XMLType storing 
all XML document instances conforming to a particular 
XMLSchema [11] registered in Oracle XML DB. This is 
referred to as XMLSchema-based storage where the 
XMLType instances are stored in a shredded form in 
object-relational columns. The object relational types and 
columns are generated when the XML schema is 
registered [5]. Collection elements (elements with 
maximum occurrences greater than one) can be stored 
inline as a variable array (VARRAY) of object instances 
or stored in a separate collection table. 
 
Users can also convert existing relational data into logical 
XML values using views. Oracle XML DB supports the 
SQL/XML standard [3,12,13] which allows users to 
leverage a set of SQL/XML publishing functions, such as 
XMLElement, XMLAgg, XMLForest, and XMLConcat to 
flexibly generate XMLType instances from the relational 
data. XMLAgg is an important aggregate function for 
concatenating a rowset of XML values through a 
relational query. 
 
To query XML tables or views, Oracle XML DB provides 
a set of functions, such as Extract, ExistsNode, and 
Extractvalue that use XPath to locate and extract data 
from XML documents [2]. Users can then use SQL/XML 
publishing functions to construct new XML nodes. 
Collection of XML values can be un-nested using the 
table function, XMLSequence that converts a list of XML 
elements into multiple rows. 

 
A simple approach to querying XML in a database is to 
first materialize the entire XMLType instance as a DOM 
and then use an XPath engine to traverse the DOM. 
However, this solution is very expensive due to the cost of 
materializing the entire XML, and is foreign for a 
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relational engine, which is designed to process tuple-
oriented data instead of tree-oriented XML data.  
 
A key observation is that since the XML is constructed 
logically through the underlying relational data in Oracle 
XML DB, it is feasible to rewrite the XPath navigation to 
select just the underlying data that is needed for the 
construction of the result. Further, XPath predicates can 
be transformed to predicates on the underlying relational 
tables. Thus, the original query over XML can be 
logically rewritten into an equivalent relational query. 
This can be then optimized by a standard relational 
optimizer, for instance, by picking the best join order and 
index on the underlying tables. 
 
This approach, referred to as 'XML Query Rewrite', 
enables Oracle XML DB to transform XML queries into 
their equivalent relational queries. The theme of this paper 
is to show the framework that we use in Oracle XMLDB 
to perform such rewrites.  
 
The rest of this paper is organized as follows. Section 2 
provides examples of querying XML in Oracle XDB. 
Section 3 gives an overview of XML query rewrite. 
Section 4 discusses XPath transformation to SQL 
operators. Section 5 discusses operator tree optimizations 
with SQL/XML normalization and optimization algebra 
rules. Section 6 discusses the integration with view 
merging. Section 7 discusses performance experiments. 
Section 8 discusses related work. Section 9 discusses 
future direction and section 10 concludes the paper. 

2. XML Query Motivating Examples 

2.1 Querying an XML view constructed via SQL/XML 
function 

Oracle XML DB enables users to create a view of XML 
type instances via SQL/XML publishing functions over 
relational tables. Consider a classic case of the dept and 
emp tables. The dept table keeps track of all the 
departments and emp table keeps track of all employees. 
The deptno column of the emp table is a foreign key 
referencing the deptno column of the dept table. The 
content of the dept and emp tables are shown in table 1 
and table 2. 
 
Deptno Dname loc 

10 ACCOUNTING NEW YORK 
40 OPERATIONS BOSTON 
Table 1 - content of dept table 

 
empno ename job sal deptno 
7782 CLARK MANAGER 2450 10 
7839 KING PRESIDENT 5000 10 
7934 MILLER CLERK 1300 10 
7954 SMITH VP 4900 40 

Table 2 - content of emp table 

To generate XML from the relational tables dept and emp, 
we create a view dept_xmlview as shown in table 3: 
 
CREATE VIEW dept_xmlview AS 
SELECT XMLElement("Department",  
                   XMLAttributes(deptno as "Deptno"), 
    XMLElement("DeptInfo", 
         XMLForest(dname as "DepartName", loc as "Location")), 
      (SELECT XMLAgg(XMLElement("Employee",  
                            XMLAttributes(empno as "Empid"), 
          XMLForest(ename as "EmpName", job as "Job, sal as "Salary"))) 
      FROM emp e 
      WHERE e.deptno = d.deptno)) AS department 
FROM dept d 
Table 3- SQL/XML constructed XML view dept_xmlview 

This view generates two rows of XMLType instances as 
shown in table 4. For each row in the dept table, it uses 
the SQL/XML standard publishing functions to construct 
an XMLType instance. The SQL query containing 
XMLAgg is a correlated scalar subquery that aggregates 
the XML information from the emp table.  Thus, for each 
dept row, the relevant emp rows are retrieved and 
converted into a collection of employee elements. 
 
<Department Deptno="10"> 
  <DeptInfo> 
    <DepartName>ACCOUNTING</DepartName> 
    <Location>NEW YORK</Location> 
    </DeptInfo> 
  <Employee Empid="7782"> 
    <EmpName>CLARK</EmpName> 
    <Job>MANAGER</Job> 
    <Salary>2450</Salary> 
  </Employee> 
  <Employee Empid="7839"> 
    <EmpName>KING</EmpName> 
    <Job>PRESIDENT</Job> 
    <Salary>5000</Salary> 
  </Employee> 
  <Employee Empid="7934"> 
    <EmpName>MILLER</EmpName> 
    <Job>CLERK</Job> 
    <Salary>1300</Salary> 
  </Employee> 
</Department>  
<Department Deptno="40"> 
  <DeptInfo> 
    <DepartName>OPERATIONS</DepartName> 
    <Location>BOSTON</Location> 
  </DeptInfo> 
   <Employee Empid=7954> 
    <EmpName>SMITH</EmpName> 
   <Job>VP</Job> 
   <Salary>4900</Salary> 
  </Employee> 
</Department> 
Table 4 - Two rows of XMLType instances from 
dept_xmlview 

Example 1: Consider an XML query shown in table 5 
that finds all the rows in dept_xmlview where the Deptno 
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attribute is 10. This can be expressed in XPath as 
‘/Department[@Deptno=10]’. The query further extracts 
the DeptInfo element for each such Department.  
 
select Extract(department, '/Department/DeptInfo') 
from dept_xmlview v 
where ExistsNode(department, '/Department[@Deptno= 10]') = 1 
Table 5 - Query dept_xmlview example 1 

This query uses the Extract and ExistsNode functions with 
XPath to query the XML instances from dept_xmlview.  
These are Oracle XMLDB specific SQL functions that 
allow querying XML instances. ExistsNode checks for the 
existence of the node(s) targeted by the XPath expression 
and returns 1 or 0 depending on whether the XPath 
identifies any nodes in the document. The Extract 
function returns an XMLType consisting of the resultant 
nodes from applying the XPath expression on the source 
XML instance. It returns NULL if there are no nodes 
found by the XPath expression. The advantage of 
ExistsNode is that it allows short circuit evaluation if a 
node is found, whereas the Extract function has to find 
and return all matching nodes. The above query returns 
one row containing XMLType instance as shown in table 
6: 
<DeptInfo> 
  <DepartName>ACCOUNTING</DepartName> 
  <Location>NEW YORK</Location> 
</DeptInfo> 
Table 6 - Result from query example 1 

A straightforward evaluation of the query first 
materializes the contents of dept_xmlview by constructing 
the XMLType instances and then evaluates the 
ExistsNode function by evaluating the XPath  
‘/Department[@Deptno=10]’. If the ExistsNode returns 
1, then it evaluates the Extract function by evaluating the 
XPath ‘/Department/DeptInfo’.  An optimal evaluation 
plan, however, exploits the fact that the XPath 
‘/Department[@Deptno=10]’  maps to a predicate on the 
underlying deptno column of the dept table and the XPath 
‘/Department/DeptInfo’ maps to the XML node 
constructed by the function XMLElement(“DeptInfo”, …).  
The query can then be evaluated using a simple relational 
query shown in table 7.  Note that this rewritten query 
does not contain any XPath functions. 
 
select XMLElement(("DeptInfo", 
       XMLForest(dname as "DepartName", loc as "Location")) 
from dept 
where deptno = 10 
Table 7 - Rewritten query for query example 1 

Oracle XML DB uses this optimal evaluation plan by 
rewriting the query in Example 1 to the query shown in 
Table 7 using the XML Query Rewrite technique.  The 
rewritten query in table 7 is a relational query on the 
relational table and the standard relational optimizer can 
select the index on the deptno column of the dept table to 

speed up the query. The execution plan for example 1 
query is shown below in table 8. 
 
>SELECT STATEMENT             
   >TABLE ACCESS BY INDEX ROWID  (DEPT)  
       >INDEX UNIQUE SCAN   (INDEX ON DEPT.DEPTNO) 
         >- access("DEPTNO"=10) 
Table 8 - Execution Plan for query example 1 

Example 1 query only involves XPath traversal on non-
collection elements. Here we show another rewrite 
example where the XPath traversal involves a collection 
element Employee.   
 
Example 2: Consider the XML query shown in table 9. It 
finds all XML instances in dept_xmlview where there 
exists a node satisfying the XPath expression 
'/Department/Employee[@Empid=7839]'). For such 
XML instances, it extracts the 
‘/Department/DeptInfo/Location’ node and attaches it to a 
new Department element node constructed by the 
XMLElement function. 
 
select XMLElement("Department", 
       Extract(v.department, '/Department/DeptInfo/Location')) 
 from dept_xmlview v 
where ExistsNode(v.department, '/Department/Employee[@Empid= 
7839]') =1 
Table 9 - Query dept_xmlview example 2 

This XML query returns one row containing the 
XMLType instance shown in table 10: 
<Department> 
    <Location>NEW YORK</Location> 
</Department> 
Table 10 - Result from query example 2 

Again, the optimal way to evaluate the query is to map the 
XPath predicate as a SQL predicate on the empid column 
of the emp table and map the XPath 
‘/Department/DeptInfo/Location’ to the XMLForest node 
on the loc column of the dept table.  Oracle XMLDB also 
rewrites this query and evaluates it as a relational query as 
shown in table 11. 
 
select XMLElement("DeptInfo", 
    XMLForest(loc as "Location")) 
from emp, dept 
where empno = 7839 and emp.deptno = dept.deptno 
Table 11 - Rewritten query for query example 2 

We now show how to convert a forest of collection 
element nodes into a virtual SQL table using the 
XMLSequence table function and how they get rewritten.  
 
Example 3: Here is an XML query to list the department 
name and the names of the employees that are in that 
department. 
select extractValue(v.department, ‘/Department/DeptInfo/DepartName'), 
        extractValue(value(v2), '/Employee/EmpName')  
 from dept_xmlview v, 
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 table(XMLSequence(Extract(v.department, '/Department/Employee'))) 
v2 
Table 12 - Query dept_xmlview example 3 
This query returns the set of rows shown in table 13. 

ACCOUNTING CLARK 

ACCOUTING KING 

ACCOUNTING MILLER 

OPERATIONS SMITH 

Table 13 - Result from example 3 query  

The Extractvalue function is similar to Extract but 
returns only scalar values. This is a type aware function 
and returns the appropriate type (NUMBER, DATE etc.) 
based on the XMLSchema type information, or the 
underlying SQL expression information, if available, at 
query compilation time. In this particular example all the 
title elements are simple strings, so the result is of type 
VARCHAR2.  
 
XMLSequence is a SQL function that takes an 
XMLType containing a forest of XML element nodes and 
transforms it to a collection of XMLType instances. The 
TABLE function can then be used to convert the 
collection of XML into multiple rows. Multiple correlated 
TABLE functions containing XMLSequence and Extract 
expressions can be used to un-nest the hierarchical 
information contained in the XML document. The query 
is optimized into a simple relational query (shown in table 
14) over the underlying relational tables contained in the 
dept_xmlview. 
 
select dname, ename 
from dept d ,  emp e 
where d.deptno = e.deptno 
Table 14 - Rewritten query for example 3 query 

All previous query examples are on an XML view 
constructed via SQL/XML functions. We now show the 
examples of XMLType table storing XMLType instances 
conforming to an XML schema. 

2.2 Querying schema based XML table examples 
We first define an XML schema 
‘http://www.oracle.com/dept.xsd’ as shown in table 15 
and have registered it with the Oracle XML DB. Then we 
create an XMLType table dept_xmltab containing 
XMLType instances that conform to the 
‘http://www.oracle.com/dept.xsd’ schema as shown in 
table 16. The table dept_xmltab table now contains the 
hidden columns designated as deptid_hc, deptname_hc, 
deptloc_hc for storing the department id, name, location 
values and the collection of employees are stored as a 
separate storage table emp_col_tab. The object relational 
infrastructure is used to create object types, collection 
types and subtypes to reflect the various XML Schema 
constructs. See reference [5] for more details on schema-
based storage. 

<schema xmlns="http://www.w3.org/2001/XMLSchema" 
  targetNamespace="http://www.oracle.com/dept.xsd" version="1.0” 
 xmlns:xdb="http://xmlns.oracle.com/xdb" 
  elementFormDefault="qualified"> 
  <element name "Department"> 
    <complexType> 
      <sequence> 
        <element name = "DeptInfo"> 
          <complexType> 
            <sequence> 
              <element name = "DepartName" type = "string"/> 
              <element name = "Location" type = "string"/> 
            </sequence> 
          </complexType> 
        </element> 
        <element name = "Employee" maxOccurs = "unbounded"> 
         <complexType> 
           <sequence> 
             <element name = "EmpName" type = "string"/> 
             <element name = "Job" type = "string"/> 
             <element name = "Salary" type = "positiveInteger"/> 
          </sequence> 
          <attribute name="Empid" type="positiveInteger"/> 
         </complexType> 
        </element> 
      </sequence> 
      <attribute name="Deptno" type="positiveInteger"/> 
    </complexType> 
  </element> 
</schema> 
Table 15 - dept.xsd XML schema 

 
create table dept_xmltab of xmltype 
      xmltype store as object relational 
    xmlschema "http://www.oracle.com/dept.xsd" element "Department" 
Table 16 - dept_xmltab schema based XML table 

When XMLType instances are inserted into the 
dept_xmltab table, they are appropriately shredded and 
the values are inserted into the underlying hidden columns 
of dept_xmltab and emp_col_tab. The collection table 
internally has a hidden column nested_table_id to join 
with the hidden set_id column of the parent table 
dept_xmltab. 
XML queries on the XMLType table dept_xmltab are 
optimized through the rewrite technique similar to those 
on dept_xmlview view as shown in examples 1, 2 and 3. 
 
Example 4: The equivalent of the query in example 1 on 
the dept_xmltab and its rewritten counterpart are shown in 
table 17. For the rewritten query, mkxml is a SQL 
primitive operator converting an object type instance 
constructed by the object constructor (ocons) into XML.  
 
select Extract(value(t), '/Department/DeptInfo', 
   'xmlns="http://www.oracle.com/dept.xsd"') 
from dept_xmltab t 
where ExistsNode(value(t), '/Department[@Deptno = 10]', 
  'xmlns="http://www.oracle.com/dept.xsd"') = 1 
select  mkxml(ocons(‘deptInfo’, t.deptname_hc, t.deptloc_hc),…) 
from dept_xmltab t 
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where t.deptno_hc = 10 
Table 17 – Query on dept_xmltab table example 4 

Example 5: The equivalent of the query in example 2 on 
the dept_xmltab and its rewritten counterpart are shown in 
table 18. 
select XMLElement("Department", 
    Extract(value(t), '/Department/DeptInfo/Location', 
       'xmlns="http://www.oracle.com/dept.xsd"')) 
from dept_xmltab t 
where ExistsNode(value(t), '/Department/Employee[@Empid = 7839]', 
    'xmlns="http://www.oracle.com/dept.xsd"') =1 
select  XMLElement("Department", mkxml(deptloc_hc,...)) 
from emp_col_tab col, dept_xmltab as t 
where col. empid = 7839 and col.nested_tabl_id=t.set_id 
Table 18 – Query on dept_xmltab table example 5 

Example 6:. Equivalent of example 3 query on 
dept_xmltab and its rewritten query are shown in table 19. 
select extractValue(value(t), '/Department/DeptInfo/DepartName', 
         'xmlns="http://www.oracle.com/dept.xsd"'), 
       extractValue(value(t2), '/Employee/EmpName', 
         'xmlns="http://www.oracle.com/dept.xsd"') 
from dept_xmltab t, 
    table(XMLSequence(Extract(value(t), 
                      '/Department/Employee', 
                      'xmlns="http://www.oracle.com/dept.xsd"'))) t2 
 select t.deptname_hc, col.empname 
from dept_xmltab t, emp_col_tab col 
where col.nested_table_id = t.set_id 
Table 19 – Query on dept_xmltab table example 6 

3. XML Query Rewrite Overview 
As shown in the previous examples, the XML Query 
Rewrite technique rewrites XPath operations to XML 
data, which is physically stored relationally, to directly 
operate on the underlying data. This enables further 
optimizations by the classic relational optimizer in terms 
of optimal index access methods and join-order, and thus 
avoids the need to physically materialize the XML in 
memory. 
 
The query rewrite happens at query compilation time. 
After a query passes through the parser, semantic analyzer 
and pre-type checking phases, it is internally represented 
as a query tree composed of query blocks and operator 
trees. We walk through all the query blocks to identify 
XPaths in every Extract, Extractvalue and ExistsNode 
function and convert them into SQL operator trees with 
possible subquery blocks. The query tree is then further 
optimized through view merging and subquery to join 
conversion and operator tree optimization. The resultant 
query tree is then given to the relational optimizer, which 
generates the execution plan for the execution engine.  
Figure 1 shows the logic flow of rewrite during the query 
compilation phases. 
 
The key to implementing this query rewrite idea is to 
develop a new set of primitive SQL operators for XPath 

navigation and SQL/XML publishing functions. Some of 
the operators are directly exposed to the user while others 
are not. We have also developed a new set of algebra 
rules to optimize those primitive SQL operators. The new 
operators and their algebra rules are directly integrated 
with the existing relational and object relational algebra in 
Oracle. Since the backbone storage of the XML is 
relational or object relational, this approach leverages the 
existing relational and object relational algebra 
framework. 
 
The XML Query rewrite technique consists of the 
following key modules:  
• XML input analysis 
• XPath Expansion based on input XML meta-data 
• XPath step meta-data annotation 
• XPath transformation to the SQL operator tree 
• SQL/XML publishing function normalization 
• Operator tree optimization based on a new set of 

XML operator algebra rules.  
The technique also integrates with relational algebra rules 
for view merging, object relational algebra rules for object 
construction and attribute access, and collection view 
merging. 
 
 
 
 
 
 
 
 
 
 
Figure 1 - Query Rewrite Logic Flow 

4. XPath Rewrite 

4.1 XML Input Analysis 

During the compilation of a query, we examine the XML 
input to each XML Query function, Extract, ExistsNode 
and Extractvalue, and rewrite them  if the underlying 
XML input data satisfies one of the following criteria: 
• The input XML is stored in a schema-based 

XMLType table or column. 
• The input XML is generated by an object view using 

an XML generation function that relies on the default 
mapping of object-relational data to XML. 

• The input XML is generated from standard 
SQL/XML publishing functions, such as 
XMLElement, XMLAgg, and XMLForest. 

• The input XML is from a view column, which is 
constructed on top of the above three cases.  

 Parse, Semantic Analyze, Type Check 

XPath Rewrite View Merge 

Subquery Transform Operator Tree Optimization 

Optimizer 

Execution  
Engine 
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We do not do rewrite if the underlying XML input 
structure is opaque to the query compiler, such as when 
the input XML is CLOB based storage or generated from 
arbitrary user defined functions returning XMLType. The 
idea is that we need to know the meta-data that describes 
the structure of the input XML in order to optimize the 
XPath operation on top of it. The input XML meta-data 
itself, on the other hand, can be very flexible - it can be an 
XML schema annotated with shredding information of the 
mapping object meta-data and object relational table, or 
merely object meta-data descriptor, or an arbitrary 
SQL/XML operator tree constructing the XML input.  For 
an XML input whose structure is opaque, the user can still 
use a functional index or a text index to do query 
optimization. However, the discussion of optimization 
using a functional or text index is beyond the scope of this 
paper. 

4.2 XPath Expansion based on input XML meta-data 

For each XPath that is a compile time constant used in the 
Extract, ExistsNode and Extractvalue functions, we 
expand the XPath if it contains wildcard character 
matching and double slash abbreviation based on the 
meta-data information of the input XML that we gathered 
from the input XML analysis . We expand the double 
slash into its constituents. For example, an XPath ‘/a//d’ 
can be rewritten as ‘/a/b/c/d’ if we know from the meta-
data that all the possible elements between element ‘a’ 
and element ‘d’ is element ‘b’ followed by element ‘c’.  
We also expand wildcard character ‘*’ based on meta-
data information. For example, the XPath ‘/a/b/*/d’ is 
rewritten to ‘/a/b/c/d’.   

4.3 XPath Step Meta-data Annotation 

After the expansion of the XPath, we annotate each step 
of an XPath with the meta-data from the underlying input 
XML meta-data. The meta-data of an XPath element may 
contain the object attribute meta-data to which this 
element is mapped or a sub-tree of the SQL/XML 
operator tree from which this element is constructed.  
 
The XPath step meta-data also indicates whether this step 
is feasible. For example, for an XPath ‘a/b’, if ‘b’ is not a 
possible child element of element ‘a’ based on the meta-
data, then the element ‘b’ step is marked as a not feasible 
step. A non-feasible step is transformed to the SQL 
NULL constant in the subsequent ‘XPath Transformation 
to SQL operator tree’ section. 
 
We annotate each element step with the element 
cardinality information. This information can be used by 
other XPath transform functions to determine if the 
element is a collection or scalar element. For example, for 
an XPath step that matches the element ‘employee’, if the 
maximum occurrences property for that element in the 
XML schema is more than 1 or it maps to a collection 

object type, then element ‘employee’ is a collection 
element. With neither an XML schema nor an object 
descriptor, we can derive this information from the input 
SQL/XML operator tree. For example, if the ‘employee’ 
element is constructed by applying XMLAgg to a set of 
rows as a query ‘select XMLAgg(XMLElement(“employee”…)) from 
emp’  or is constructed from an XMLConcat expression, 
such as ‘XMLConcat(XMLElement(“employee” ,‘Miller’), 
XMLElement(“employee”, ‘Smith’))’, then the element is a 
collection element.  

4.4 XPath Transformation to SQL operator tree   

After we finish the annotation of meta-data of each XPath 
step, we transform the entire XPath into a SQL operator 
tree.  The transformation engine walks through the input 
XPath expression and recursively applies the following 
rewrite functions depending on the node type of the XPath 
expression tree. The rewrite functions are  
• Rewrite of XPath steps 
• Rewrite of XPath predicates 
• Rewrite of XPath expressions, such as relation 

operators, logical operators, arithmetic operators and 
XPath built-in functions.  

4.4.1 Rewrite of XPath Steps 

We convert each step of element or attribute extraction 
into a primitive SQL operator that extracts that node out 
of the underlying construction XML operator. If the 
element is a collection element, we further expand the 
result of the extraction into a subquery block, which 
represents the selection of a logical table formed by the 
conversion of collection elements into relational rows. 
The purpose of transforming XPath steps into a SQL 
operator tree along with subquery blocks is that when they 
are applied to the input XML construction SQL operator 
tree by the operator tree optimization and view merge 
module, many operators can be cancelled so that an 
optimal operator tree is derived. 
 
The SQL extraction operators are primitive SQL 
operators, XATG and OATG. If the element is constructed 
from a SQL/XML operator tree, then XATG is used. For 
example, Extract(XMLElement(“foo”, 3), ‘./foo’) is transformed 
into XATG(XMLElement(“foo”, 3), ‘.’, ‘foo’), which can be 
further optimized by the operator tree optimization 
module into just XMLElement(“foo”,  3).  XATG is a 
primitive SQL operator not exposed to the user. 
Semantically, XATG(xmltype, ‘.’, ‘A’) is equivalent to 
Extract(xmltype,’A’) and XATG(XATG(xmltype, ‘.’, ‘A’), ‘A’, ‘B’) is 
equivalent to Extract(xmltype, A/B’). 
 
If the element is constructed from object relational data, 
then the OATG operator is used. For example,  
Extract(MKXML(OCONS(‘obj’, attr1Val, attr2Val)), ‘attr2’)   
is transformed into 
(MKXML(OATG(OCONS(‘obj’, attr1Val, attr2Val), ‘attr2’)).  
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This can be further optimized by the operator tree 
optimization module into just MKXML(attr2Val).  Here 
the OCONS is an object constructor SQL operator which 
constructs an object of type ‘obj’ containing two attributes 
‘attr1’ and ‘attr2’ and the MKXML is a SQL operator 
which converts an object value instance into an 
XMLType instance value.  Details of these SQL 
operators, such as MKXML, OCONS and OATG, are 
discussed in  Section 5.4. 
 
For the extraction of collection elements, we also form a 
subquery block that represents a selection from a logical 
table.  For schema based XML or XML formed by object 
relational data, the logical table is either the physical 
storage table for the collection object if the collection 
object is stored out of line or constructed via conversion 
of a collection object type instances into a tuple stream if 
the collection object is stored inline with the main table. 
For SQL/XML generated XML, the logical table is 
mapped to the result of the SQL query that contains the 
XMLAgg. This subquery block can then be view merged 
into the parent query block recursively through the 
relational view merge and collection view merge process. 
Consequently, this logical table does not have to be 
materialized at run time. 

4.4.2 Rewrite of XPath Predicates 

XPath predicates are transformed into SQL predicates. In 
the case of predicates on collection elements, the SQL 
predicate created is attached to the subquery created 
corresponding to the collection element. This effectively 
pushes down the predicate to the source table so that the 
relational optimizer can do its optimization job. 
 
XPath predicates on scalar elements are transformed into 
SQL CASE expressions where are further optimized using 
algebra rules that are applied by the operator tree 
optimization module. 

4.4.3 Rewrite of XPath Expressions 

We transform XPath operators, such as logical operators, 
arithmetic operators, relational operators, etc, into their 
equivalent SQL operators.  We also transform XPath 
built-in functions into their equivalent SQL functions.  
Most of these transformations are straightforward. The 
principle here is that if we do not find an equivalent SQL 
operator, we can create one that implements the semantics 
required by the XPath. This is an advantage of rewriting 
these XML queries inside the database server since we 
can always extend it with new SQL operators. It also 
enables us to expose PL/SQL and other SQL functions as 
XPath functions.  
 
The XPath comparison operators, such as equality, 
greater-than, lesser-than etc., have existence semantics if 
either of their arguments are collection elements. From 

the XPath step meta-data, we know if the step results in a 
collection element or not. So, for an XPath predicate 
containing the comparison operator, such as ‘[b = c]’, we 
transform it differently depending on the element 
cardinality.  
 
• If both element ‘b’ and element ‘c’ are scalar 

elements, then this is transformed into the equivalent 
SQL ‘=’ operator.  

• If both element ‘b’ and element ‘c’ are collection 
elements, then this is transformed into an EXISTS 
SQL operator with a subquery block testing the 
existence relationship. So it is transformed into  

           EXISTS (select null   from  collection_b   
                         where EXISTS ( 
                              select null from collection_c  
                              where collection_b.column_value =        
                                           collection_c.column_value). 
• If one element is a scalar and the other element is a 

collection, (say ‘b’ is scalar element), then it is 
transformed into   
     EXISTS(select null from collection_c  
                  where collection_c.column_value = b).    

For input to logical operators, such as AND and OR, we 
again convert the subquery input which represents 
collection elements into EXISTS SQL operator 
representing existential check.  
 
Rewriting into exists subquery blocks enables further 
transformation into semi-joins by the regular relational 
subquery transformations.  
 
After an XPath is transformed into SQL operators for the 
Extract function, the rewrite is done. For ExistsNode, we 
apply a final SQL operator to compute the effective 
boolean value of the result XML. If the result XML is a 
collection element node, then we apply EXISTS SQL 
operator, otherwise, we apply the SQL CASE operator. 
For ExtractValue, we apply a final SQL operator that 
atomizes the node by extracting the text value and cast it 
into an appropriate SQL type. 
 
We also handle the rewrite of query over XML with XML 
schema having Choice, substitution groups and 
inheritance construct by exploiting object type 
inheritance, SQL CASE and TREAT operators. However, 
the discussion of such is beyond the scope of this paper. 

5. Operator Tree Optimization 
Algorithmically, operator tree optimization is an algebraic 
transformation of the operator tree by applying a set of 
algebraic rules for each operator node in the tree. We do 
this recursively, from bottom up, so that an optimal 
operator tree is derived. Optimization arises from the 
elimination of unnecessary operator nodes and overall 
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simplification in the operator tree.  The extraction and 
generation operators can be cancelled when the two 
operators are the inverse of each other. Operator nodes of 
the XML generation tree that are not selected by the 
XPath are also eliminated. Consequently, the operator tree 
is reduced down to a minimal set of operator nodes that 
are needed to compute the query result. 
 
For each SQL operator, we define a set of algebraic rules 
to optimize the operator. The algebraic rules fall into the 
following categories:   
• Nullification rule: The nullification rule is cost-

reductive because it simplifies the operator if any 
argument to the operator is SQL NULL. The 
nullification rule usually simplifies the operator by 
replacing it with NULL, if all the arguments are 
NULL, or by eliminating any arguments that are 
NULL.  

• Elimination rule: This rule is cost-reductive because 
it eliminates unnecessary intermediate operators.  

• Distribution rule: This rule applies an operator f to 
another operator g by distributing operator f to all the 
children of operator g. 

• Cancellation rule: This rule cancels two operators 
that are the inverse of each other.  

• Normalization rule: Normalization does not reduce 
the number of SQL operators in the operator tree, 
however it canonicalizes all the syntax exposed to the 
user to the low-level operators so that fewer algebra 
rules need to be added into the system. Thus, the 
operator tree optimization needs to deal with fewer 
possible cases of input operators. This is especially 
useful when a language provides a large number of 
high-level syntactic variations to the users. 

5.1 SQL/XML publishing function normalization  

We normalize SQL/XML publishing functions into a set 
of primitive SQL operators that generate XML. 
Normalization is to transform user-exposed functions, 
such as a SQL/XML publishing function, into an operator 
tree composed of primitive SQL operators. The higher-
level operators can be viewed effectively as syntactic 
sugar for the primitive operators. 
 
Consider the SQL/XML function XMLForest. XMLForest 
examines each input argument expression, and if the 
argument expression is not null, then a new XMLElement 
node is formed with the input tag name, otherwise, the 
result is null. The rest is XMLConcat applied on each of 
the new XMLElement nodes. For example, the expression 
XMLForest(name as “DeptName”, location as 
“DeptLocation”) generates the following XML fragment 
if name column value is ‘Engineering’ but location 

column value is NULL: 
<DeptName>Engineering</DeptName>. 
The above XMLForest expression can be syntactically 
transformed into the following equivalent: 
  XMLConcat( 
     CASE WHEN name IS NOT NULL, THEN  
        XMLElement(“DeptName”, name) ELSE NULL END,  
   CASE WHEN location IS NOT NULL THEN     
       XMLElement(“DeptLocation”, location) ELSE NULL END) 

5.2 New SQL/XML Algebra Rules 

In the examples below, we designate XE, XC, XAG, CS, 
and INN to represent the SQL functions  XMLElement, 
XMLConcat, XMLAgg, CASE WHEN, and IS NOT NULL 
respectively. We use “T” and “U” to represent XML 
element tag name, e to represent an expression, and c to 
represent conditional expression. For example, 
XMLElement(“T”, e1, .., en)  is represented as XE(“T”, e1, .., en). 
CASE WHEN c1 THEN e1 WHEN c2 THEN e2 ELSE ed END is 
represented as CS(c1, e1, c2, e2, ed). 
Note that the list in this section is not exhaustive – it is a 
subset, and is meant to provide a flavor of the algebraic 
rules used in Oracle XML DB. 
 
The second column of the tables of algebraic rules uses 
the following abbreviations for the classification of 
algebraic rules: N: Nullification Rule; E: Elimination 
Rule; D: Distribution Rule; O: Normalization Rule 

5.2.2 Algebraic rules for XMLElement  
XE(“T”, NULL)  
   =      XE(T) 

N1 If the input argument to XMLElement is 
SQL NULL itself, then it merely creates an 
element with empty content 

XE(“T”, e1, .., 
NULL, .. en) =  
  XE(“T”, e1, … 
en)   

N2 If any of the input argument to XMLElement 
is NULL, then that argument can be 
eliminated from the input 

XE(“T”, e1, .., 
 XC(ei, .., ej), . en) 
=  
XE(“T”, e1, .., ei,  
..,    ej, .. en ) 

E1 If any input argument to XMLElement is 
XMLConcat, then all the arguments to 
XMLConcat can be merged into the parent 
XMLElement as its argument. The 
intermediate XMLConcat operator is 
eliminated. 

5.2.3 Algebraic rules for XMLForest 
XMLFOREST(e1 as “T1”, .., en as 
“Tn”) = XC(CS(INN(e1), XE(“T1”, 
e1), NULL), .., CS(INN(en), XE(“Tn”, 
en0), NULL)) 

O1 Normalize XMLForest 
into XMLConcat of 
CASE of XMLElement 

5.2.4 Algebraic rules for XMLConcat 

XC(NULL) = 
NULL 

N1 If the input argument t to XMLConcat is 
SQL NULL itself, then the output is SQL 
NULL. 

XC(e1, .., NULL, .. 
en) = XC(e1, .., en) 

N2 If any of the input arguments to 
XMLConcat is NULL, then that argument 
can be eliminated from the input 

XC(e1, .., XC(ei, .., 
ej), .., en) = XC(e1, 
.., ei, .., ej, .., en) 

E1 If any input argument to XMLConcat is 
XMLConcat, then all the arguments to 
XMLConcat can be merged into the parent 
XMLConcat as its argument. The 
intermediate XMLConcat function is 
eliminated. 

XC(e) = e E2 XC with single input argument can be 
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eliminated. 
5.2.5 Algebraic rules for the XATG operator 

XATG(NULL, “T”, “U”) = 
NULL 

N1 If the input argument t to 
XATG is SQL NULL itself, 
then the output is SQL NULL. 

XATG(XE(“T”, e), ‘.’, ‘T’) = 
XE(“T”, e) 

 

E1 This rule eliminates the XATG 
operator. 

XATG(XE(“T1”, e), ‘T1’, ‘T2’) 
= XATG(e, ‘.’, ‘T2’) 

E2 This rule eliminates the 
XMLElement function. “e” is 
assumed to be an XMLType 

XATG(XE(“T”, e), ‘.’, ‘T1’= 
NULL 

E3 This rule eliminates the XATG 
and XE operators because tag 
‘T’ and ‘T1’ does not match 

XATG(XC(e1, .., en), ‘T’, ‘U’) 
= XC(XATG(e1, ‘T’, ‘U’), .., 
XATG(en, ‘T’, ‘U’)) 
 

D1 This rule distributes XATG 
operator to all the arguments 
to XMLConcat function. 

XATG(CS(c1, e1, .., cn, en, ed), 
‘T’, ‘U’) = CS(c1, XATG(e1, 
‘T’, ‘U’), .., cn, XATG(en, ‘T’, 
‘U’), XATG(ed, ‘T’, ‘U’)) 

D2 This rule distributes XATG 
operator to all the branches of 
a CASE operator. 

XATG(XAGG(e), ‘T’, ‘U’) = 
XAGG(XATG(e, ‘T’, ‘U’)) 

D3 This rule distributes XATG 
operator to the argument of 
XAGG. 

5.2.6 Algebraic rules for IS NOT NULL (INN) expression 

INN(NULL) = false N1 If the input argument t to INN is SQL 
NULL itself, then the output is false. 

INN(not_null_e) = 
true 

 

E2 If the input argument to INN is a not 
null expression (such as a non-nullable 
column), then the output is true. 

5.2.7 Algebraic rules for CASE expressions (CS) 

CS(true, e1, e2)   = e1 E1 Eliminates the CS operator when the 
case value is known to be true. 

 

CS(false, e1, e2)   = e2 

E2 Eliminates the CS operator when the 
case value is known to be false. 

CS(c, e, e)   = e E3 Eliminates the CS operator when the 
branched expressions are equivalent. 

5.3 Example of operator tree optimization by 
application of algebraic rules 

Assume colb is a nullable column and colc is a non-
nullable column. The following is an example to show 
how Extract(XMLElement("a", XMLForest(colb as "b", 
colc as "c")), './a/c') is optimized to just XMLElement("c", 
colc) by applying the algebraic rules. 
 
• Applying normalization of XMLForest and 

transformation of XPath into XATG operators yields: 
XATG(XATG(XE("a", XC(CS(INN(colb), XE("b", colb), NULL),   
CS(INN(colc), XE("c", colc), NULL))), '.', 'a'), 'a', 'c') 

• Applying INN-E2 and CS-E1 (note colc is not a 
nullable column) yields: 
XATG(XATG(XE("a", XC(CS(INN(colb), XE("b", colb), NULL),  
XE("c", colc))), '.', 'a'), 'a', 'c') 

• Applying XATG-E1 to eliminate the inner XATG 
yields:  
XATG(XE("a", XC(CS(INN(colb), XE("b", colb), NULL), XE("c", 
colc))), 'a', 'c'). 

• Applying XATG-E2 to eliminate the outer XE yields: 
XATG( XC(CS(INN(colb), XE("b", colb), NULL), XE("c", colc)), 
'.', 'c') 

• Applying XATG distribution rules XATG-D1 and 
XATG-D2, and XATG-N1  yields: 
XC(CS(INN(colb), XATG(XE("b", colb), '.', 'c'), NULL),   
XATG(XE("c", colc), '.', 'c')) 

• Applying XATG-E3 to eliminate the first XATG and 
XATG E1 rule to eliminate the second XATG yields: 
XC(CS(INN(colb), NULL, NULL), XE("c", colc)) 

• Applying CS-E3 yields: 
XC(NULL, XE("c", colc)) 

• Applying XC-N2 yields the final optimal tree: 
XE("c", colc) 

5.4 Integration with Object Relational Algebra Rules 

Oracle uses a set of algebraic rules to optimize object 
operations. These rules can be used seamlessly with the 
XML algebraic rules to perform XML optimizations in 
the presence of object operands, and object optimizations 
in the presence of XML.  
 
Object operators in Oracle include OCONS for object 
construction, and OATG for attribute access. As an 
example of object algebraic optimization, consider the 
following rule : 
OATG(OCONS(‘obj’, attr1Val, attr2Val), ‘attr2’) = attr2Val . 
This rule states that to get ‘attr2’ attribute of an object 
constructed with attr1 having value attr1Val and attr2 
having value attr2Val, the result is just attr2Val. 
 
In order to integrate with XML, two new operators 
MKXML and UMKXML have been developed. MKXML 
converts an object instance into an XMLType instance 
and UMKXML converts an XMLType instance back into 
an object instance.  MKXML and UMKXML  are the 
inverses of each other.  
 
Algebraic rules are used to specify the transformation of 
XPath steps over XML constructed from object instances 
– this will results in a tree with OATG over OCONS. 
Consider the following SQL expression: 
extractValue(MKXML(OCONS(‘obj’, attr1Val, attr2Val)), ‘attr2’), 
This is transformed into an equivalent SQL expression :   
OATG(UMKXML(MKXML(OCONS(‘obj’, attr1Val, attr2Val))), ‘attr2’),  
This is optimized by the operator tree optimization into 
just the simple attr2Val SQL expression.. 

6. Integration with relational view Merging 
Relational view merge merges a query or a view 
definition in the FROM clause into the main query. For 
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example, the following query select * from (select * from 
t) may be optimized into select * from t. 
 
In an object-relational system, an XPath query over a 
collection column, with or without a predicate, (e.g. 
‘/Department/Employee[EmpName = ‘CLARK’]’) 
is converted into a subquery selecting from a logical table:  
select * from table(cast(multiset( 
     select * from table where pred) as collectionType)) 
Here tab is the underlying storage table for the instances 
of collectionType. The predicate pred is present only if 
the XPath query has a predicate. Collection view merge 
cancels the table function with the cast(multiset(query) as 
collectionType) operation, leaving the query as  
select * from (select * from tab where pred).  
This is then further optimized via relational view merge 
into the simple query :  
select * from tab where pred.   
Alternatively, in a relational system, collections may be 
constructed using the XMLAgg function to aggregate 
XMLType values. In this case, the rewritten query for an 
XPath such as ‘/Department/Employee[EmpName=’JO’] is of the 
form 
select xmlagg(v.column_value) 
 from table(XMLSequence( 
    select xmlagg(XMLElement(..)) from t where pred))) v 
This query can be effectively transformed into the 
following form:  
select xmlagg(v.column_value) 
 from table(cast(multiset(select XMLElement(...) from t where pred) 
      as xmlsequenceType) v,  
Note that the XMLSequence over XMLAgg has been 
transformed into a cast(multiset()). Here, 
XMLSequenceType represents an array of XMLType.  
Collection view merge then optimizes the query to :  
select xmlagg(v.column_value) from(select XMLElement(…) from t 
where pred) v 
Relational view merge then optimizes the query to:  
select xmlagg(XMLElement(…)) from t where pred.  
Through the relational and collection view merge, the 
query over the underlying storage table or view 
constructing the collection elements is folded into the 
parent query. The predicates on the collection elements 
automatically become the predicates on the underlying 
collection storage table or view. This effectively pushes 
the predicate down, and various access methods can be 
better exploited. No run-time materialization of the 
collection elements is needed.  

7. Performance  
To measure the performance of XML query rewrite over 
SQL/XML viewed over relational data, we create the 
SQLX-Bucky benchmark based on Bucky[10] 
benchmark.  We use SQL/XML publishing functions to 
create XMLType views over relational tables. To measure 
the performance of XML query rewrite over schema 
based XML table, we use XMark[14]. In both 
benchmarks, we express the query using Extract, 

ExistsNode, ExtractValue, XMLSequence and SQL/XML 
publishing functions. 
 
The performance objectives are two-fold. The first is to 
compare the performance of rewritten XML queries with 
the performance of the same query without rewrite. 
Without query rewrite, XML needs to be materialized 
followed by XPath evaluation. The performance of 
rewritten queries, however, scales gracefully similar to 
that of relational queries. Rewritten queries are orders of 
magnitude faster than non-rewritten queries since they can 
use indexes. 
  
Our second objective is to compare the performance of 
the XML queries against their semantically equivalent 
object relational or relational queries combined with 
SQL/XML publishing functions. We find that the 
performance of the two is comparable for both XMark 
and SQLX-Bucky benchmark. Figure 2 and Figure 3 
show the ratio of the query performance using query 
rewrite to the semantically equivalent relational or object 
relational query written directly over the underlying 
storage tables. This demonstrates that query over XML 
combined with rewrite yields performance comparable to 
that of queries directly on the underlying data. 

0

0.5

1

1.5

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

 
Figure 2 – Query Speed Ratio for SQLX-Bucky 
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Figure 3 – Query Speed Ratio for XMark 

8. Related Work 
Many of the concepts presented in this paper have been 
studied in other contexts. XML algebra [6][7] and 
optimizing queries of XML views of relational data in the 
middleware [8][9], in particular, have been the subject of 
much research. 
 
Our work is unique in the following respects. First, our 
query optimization rules are based on optimizing XPath 
expressions over SQL/XML and object relational SQL. 
Second, query processing is performed inside a popular, 
commercial database server, as opposed to non-integrated 
mid-tier solutions. Our solution does not materialize large 
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volumes of XML in the middleware. We primarily 
optimize queries over XML whose underlying storage is 
relational and object-relational. Third, our algebraic rules 
for XML processing and optimization is tightly integrated 
with existing relational and object-relational rules. This 
enables optimization involving a mix of relational and 
XML queries. 
 
Since the majority of business data is stored in relational 
and object-relational database, Oracle XML DB focuses 
on a practical subset of XML querying problems that, we 
believe, are the most useful for customers. We bridge the 
relational and XML worlds within Oracle XML DB by 
leveraging the relational and object relational algebra, and 
its optimization infrastructure. 

9. Future Direction 
As XQuery [1] becomes the standard to query XML, and 
the SQL/XML standard embraces XQuery functionality, 
Oracle XML DB will optimize XQuery over XML data. 
The XML Query Rewrite techniques presented in this 
paper has laid out the groundwork to fully optimize 
XQuery over XML stored object-relationally  or 
generated by SQL/XML functions from relational data. 
We will discuss this in our future paper 
 
XML data can be recursive. Such XML can be 
constructed using the Oracle CONNECT BY expression 
and hierarchical XML generation methods. The rewrite of 
queries over such recursive constructs has scope for future 
investigation. 

10. Conclusion 
In this paper, we have focused on a technique of 
optimizing queries on XML whose underlying storage is 
relational or object-relational. The idea is to transparently 
transform the XML query into its equivalent relational or 
object-relational equivalent through query rewrite 
techniques at compile time, so that a classic optimizer can 
further optimize it and a tuple-oriented execution engine 
can efficiently execute it. We create a set of new SQL 
operators for XPath navigation, and incorporate a new set 
of algebra rules for SQL/XML operators with existing 
relational and object relational algebra rules in the Oracle 
database server. Our experience has shown that this 
technique enables customers to leverage their existing 
relational and object relational systems, and to provide 
interoperability between XML and their existing data and 
applications.  
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Appendix Benchmark Query 
For reference, we list a sample of XMark queries and 
SQLX-Bucky queries that we use for our performance 
experiments.  

 
XMark Benchmark 
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The XMLdata is stored in a schema based XMLType 
table site_tab, with the XML schema derived from the 
XMark Internet auction site.   

 
Q1: Return the name of the person with ID ‘person0’: 

select extract(value(v), '/person/name') 
from site_tab v0, 
     table(xmlsequence(extract(value(v0), '/site/people/person'))) v 
where extractValue(value(v), '/person/@id') = 'person0' 
 

Q5: How many sold items cost more than 40: 
     select count(*) 

from (select extract(value(v), '/closed_auction/price') 
      from site_tab v0, table(xmlsequence(extract(value(v0), 
                        '/site/closed_auctions/closed_auction'))) v 
 where extractValue(value(v), '/closed_auction/price') >=40 )v 

 
Q7: How many pieces of prose are in our database ?: 
     select xmlelement("cnt", 

  (select count(*) 
     from table(xmlsequence(extract(value(v), '/site//description')))) + 
  (select count(*) 
     from table(xmlsequence(extract(value(v), '/site//annotation')))) + 
      (select count(*) 
       from table(xmlsequence(extract(value(v), '/site//email'))))) 
from site_tab v0, table(xmlsequence(extract(value(v0), '/site'))) v 
 

Q9: List the names of persons and the names of the items 
they bought in Europe: 
   select xmlelement("person", 

    xmlattributes(extractValue(value(p), '/person/name') as "name"), 
   (select xmlagg(xmlelement("item", 
          (select xmlagg(extract(value(t2), '/item/name')) 
           from site_tab v000, 
            table(xmlsequence(extract(value(v000), 
                     '/site/regions/europe/item'))) t2 
          where extractValue(value(t),     
                    ‘/closed_auction/itemref/@item')= 
                 extractValue(value(t2), '/item/@id') ))) 
      from site_tab v00, table(xmlsequence(extract(value(v00), 
                    '/site/closed_auctions/closed_auction'))) t 
      where extractValue(value(p), '/person/@id' )= 
               extractValue(value(t),'/item/buyer/@person') ) ) 
from site_tab v0, 
    table(xmlsequence(extract(value(v0), '/site/people/person'))) p 
 

Q13: List the names of items registered in Australia along 
with their descriptions: 
 select xmlelement("item", 

 xmlattributes(extractValue(value(i), '/item/name/text()') as "name"), 
   extract(value(i), '/description') ) 

 from site_tab v0,  table(xmlsequence(extract(value(v0),  
                                 '/site/regions/australia/item'))) i 
 
Q20: Group customers by their income and output the 
cardinality of each group: 
 select xmlelement("result", 

 xmlelement("preferred", 
    (select count(*) from site_tab v, 
          table(xmlsequence( extract(value(v), 
            '/site/people/profile[@income >= 100000]'))))), 
 xmlelement("standard", 
      (select count(*) from site_tab v, 
           table(xmlsequence( extract(value(v), 
                      '/site/people/profile[@income < 100000  
          and @income >= 30000]'))))), 
 xmlelement("challenge", 

      (select count(*) from site_tab v, 
             table(xmlsequence( extract(value(v), 
               '/site/people/profile[@income < 30000]'))))), 
 xmlelement("na", 
      (select count(*) from site_tab v 
       where existsNode(value(v), 'site/people/person/@income') = 0 
               )))   from dual 

 
SQLX-Bucky Benchmark 
Relational tables are created to hold base data and 
SQL/XML views are created on the relational tables.   

 
Q1: Find the address of the staff member with id 6966: 
      select extractvalue(staff, '/ROW/NAME') name, 

        extractvalue(staff, '/ROW/ADDRESS/STREET') street, 
        extractvalue(staff, '/ROW/ADDRESS/CITY') city, 
        extractvalue(staff, '/ROW/ADDRESS/STATE') state, 
        extractvalue(staff, '/ROW/ADDRESS/ZIPCODE') zip 
from Staff_sqlxv e 
where extractvalue(staff, '/ROW/SSN') = 6966; 
 

The Staff_sqlxv is a SQL/XML view created on top of the 
rf_person table as: 
 Create  View Staff_sqlxv AS 

 SELECT XmlElement("ROW", 
     XmlElement("SSN", id), XmlElement("NAME", name), 
     XmlElement("ADDRESS",    XmlElement("STREET", street), 
        XmlElement("CITY", city),   XmlElement("STATE", state), 
        XmlElement("ZIPCODE", zipcode)), 
     XmlElement("BIRTHDATE", birthdate), 
     XmlElement("KIDNAMES", 
       (select XMLAgg(XmlElement("CHLDNAME", kidname)) 
        from rf_Kids k      where k.id = p.id)), 
     XmlElement("PICTURE", picture), 
     XmlElement("PLACE", XmlElement("LATITUDE", latitude), 
                   XmlElement("LONGITUDE", longitude)), 
                   XmlElement("DATEHIRED", DateHired),       
                   XmlElement("STATUS", status),  
                  XmlElement("WORKSIN", worksin), 
                 XmlElement("ANNUALSALARY", annualSalary)) as staff 
 FROM rf_PersonFlat p 
 WHERE p.type=10;– type code for staff in table rf_person. 

 
Q8: Find all staff whose children are named “girl16” and 
“boy16”: 
  select distinct extractvalue(e.staff, '/ROW/NAME') name, 

       extractvalue(e.staff, '/ROW/ADDRESS/STREET') street, 
       extractvalue(e.staff, '/ROW/ADDRESS/CITY') city, 
       extractvalue(e.staff, '/ROW/ADDRESS/STATE') state, 
       extractvalue(e.staff, '/ROW/ADDRESS/ZIPCODE') zip 
from Staff_sqlxv e, 
   TABLE(xmlsequence(extract(e.staff,  
             '/ROW/KIDNAMES/CHLDNAME'))) k1, 
      TABLE(xmlsequence(extract(e.staff,  
              '/ROW/KIDNAMES/CHLDNAME'))) k2 
where  extractvalue(value(k1), '/CHLDNAME') = 'girl16' 
and extractvalue(value(k2), '/CHLDNAME') = 'boy16' 
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