
DB2 Design Advisor: Integrated Automatic Physical Database 
Design 

 
Daniel C. Zilio1, Jun Rao2, Sam Lightstone1, Guy Lohman2 

Adam Storm1, Christian Garcia-Arellano1, Scott Fadden3 
1IBM Toronto Laboratory 

{zilio,light,ajstorm,cmgarcia}@ca.ibm.com 
 

2IBM Almaden Research Center 
{junrao,lohman}@almaden.ibm.com 

 
3IBM Portland 

sfadden@us.ibm.com 
 

Abstract 

The DB2 Design Advisor in IBM® DB2® 
Universal Database™ (DB2 UDB) Version 8.2 
for Linux®, UNIX® and Windows® is a tool 
that, for a given workload, automatically 
recommends physical design features that are 
any subset of indexes, materialized query tables 
(also called materialized views), shared-nothing 
database partitionings, and multidimensional 
clustering of tables. Our work is the very first 
industrial-strength tool that covers the design of 
as many as four different features, a significant 
advance to existing tools, which support no more 
than just indexes and materialized views. 
Building such a tool is challenging, because of 
not only the large search space introduced by the 
interactions among features, but also the 
extensibility needed by the tool to support 
additional features in the future. We adopt a 
novel “hybrid” approach in the Design Advisor 
that allows us to take important 
interdependencies into account as well as to 
encapsulate design features as separate 
components to lower the reengineering cost. The 
Design Advisor also features a built-in module 

that automatically reduces the given workload, 
and therefore provides great scalability for the 
tool. Our experimental results demonstrate that 
our tool can quickly provide good physical 
design recommendations that satisfy users’ 
requirements. 
 

1 Introduction 

Technology advances and competition continue to 
significantly reduce the cost and increase the capacity of 
database systems, making large, complex database 
applications commonplace.  For example, popular 
database applications such as SAP [19] typically contain 
over 30,000 database objects, which include tables and 
indexes.   Concurrently, the cost of skilled database 
administrators (DBAs) to manage those increasingly 
complex systems has relentlessly increased.  These 
economic trends have driven the total cost of ownership 
of systems today to be dominated by the cost of people, 
not hardware or software.  This new reality has sparked 
recent interest in developing self-managing, or autonomic 
[18], systems that can relegate many of the DBAs’ more 
mundane and time-consuming tasks to automated tools 
[6,13].    

Perhaps the best candidate to date for such automation 
is physical database design. DBAs have, for years, 
systematically tuned applications by time-consuming trial 
and error – methodically creating each index, collecting 
statistics on it so that the query optimizer knew its 
properties, recompiling every query that might benefit, 
and then evaluating whether the index was, in fact, 
exploited to improve performance for that workload.  
Each iteration of this painstaking process could take 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the VLDB copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Very Large Data Base Endowment.  To copy 
otherwise, or to republish, requires a fee and/or special permission from 
the Endowment 
Proceedings of the 30th VLDB Conference, 
Toronto, Canada, 2004 

1087

mailto:junrao@almaden.ibm.com


minutes or even hours on today’s terabyte-sized 
databases, and there was no way to assure convergence to 
something considered “optimal”.  Recent research has 
produced powerful utilities that use the query optimizer as 
a “What if?” tool to automate this process for indexes, 
drastically reducing the manual effort while increasing the 
number of promising solutions [5,21]. 

New database features to enhance performance -- such 
as materialized views, parallelism, and different ways to 
cluster data – have only compounded this task by 
providing more options that the beleaguered DBA must 
consider when designing and tuning an application.  To 
make matters worse, these features interact in complex 
ways.  For example, materialized views, being stored 
tables, themselves require indexes.  And one partitioning 
option is to replicate smaller tables among all nodes, 
resembling materialized views. 

This paper describes the DB2 Design Advisor in DB2 
Version 8.2 [9], the first integrated commercial tool to 
automatically determine all aspects of physical database 
design, including not only indexes and materialized views 
(called materialized query tables in DB2 UDB), but also 
partitioning and multi-dimensional clustering of tables.  
As in the individual advisors that this tool integrates, the 
Design Advisor exploits the DB2 Optimizer to 
recommend promising candidate solutions and to evaluate 
alternative solutions. We adopt a novel “hybrid” 
searching approach that not only takes into account 
important interdependencies among different features, but 
also makes the tool easy to extend for supporting new 
features in the future. To improve the scalability of the 
tool, we add a built-in workload compression module that 
automatically reduces the workload size while not 
sacrificing the quality of the design recommendations. 

The rest of the paper is organized as follows. Section 2 
explains the terminology specific to DB2 UDB. We 
summarize related work in Section 3. The overview of our 
design is given in Section 4 and the implementation 
details are provided in Section 5. Section 6 describes the 
workload support, including the workload compression 
module in the Design Advisor. We present our 
experimental results in Section 7. The future work is 
discussed in Section 8 and we conclude in Section 9. 

2 Terminology 

In this section, we define some of the terminology used in 
DB2 UDB.  

A materialized query table (MQT) is a stored and 
maintained query result, more commonly known in the 
literature as a materialized view. MQTs were known as 
Automatic Summary Tables [22] before Version 8.1 of 
DB2, when support for join-only views was added. 

A multi-dimensional clustering (MDC) table [15] 
organizes a table in a multi-dimensional cube. Each 
unique combination of dimension attribute values is 
associated with one or more physical regions called 

blocks. A block is a basic unit of clustering and typically 
contains tens of pages. Indexes are created at the block 
level for fast access. Since data is clustered in an MDC 
table, range queries (especially with more than one 
dimension) can be answered much more efficiently than 
secondary indexes. The design of an MDC table involves 
choosing the dimensions as well as the granularity (i.e., 
the number of distinct values) of each dimension. 

The DB2 Enterprise Server Edition has a data 
partitioning feature (DPF) that enables a shared-nothing 
parallel architecture [3], where independent processors are 
interconnected via high-speed networks. Each processor 
stores a horizontally hash-partitioned (referred to simply 
as partitioning in the rest of the paper) portion of the 
database locally on its disk. The design of a partitioning 
includes selecting a set of columns as the partition key, as 
well as a set of nodes to which the data will be distributed. 
A good partitioning design minimizes the movement of 
data by allowing operations such as joins and 
aggregations to be done at each node locally and thus are 
much cheaper to execute. In DB2 UDB, an index does not 
have its own partitioning, but rather shares the 
partitioning with the table on which it is defined. 

3 Related Work in Database Design  

The design of many individual physical features has been 
well studied in the literature. We cannot possibly list all 
the related references here. Instead, we simply point out 
that many works on the selection of indexes, materialized 
views and partitionings are referenced in [5], [1,23], and 
[17], respectively.  

Work in self-managing databases started as early as 
1988 [7], in which the authors proposed to use the 
optimizer to evaluate the goodness of index structures.  

Microsoft Research's AutoAdmin project [1,5] has 
developed wizards that automatically select indexes and 
materialized views for a given workload.  Their tools also 
exploit the cost model used by the optimizer to estimate 
the benefit of suggested indexes and materialized views. 
More recently, their tools have been extended to support 
both vertical and horizontal partitions in a research 
prototype [2]. 

DB2 UDB has had an Index Advisor [21] since 
Version 6. A tool [17] that recommends the partitionings 
in a shared-nothing database system has also been 
prototyped in DB2 UDB. More details on the architecture 
of these tools is given in Section 1.1. 

Other commercial database vendors such as Informix 
(bought by IBM in 2001) [11] and Oracle 8i [14] have 
made similar efforts to build such design tools.  

However, most of those existing tools only handle the 
design of one or two features. The only exception is the 
tool in [2] where as many as four features can be 
recommended. [2] uses integrated search among all 
candidates in order to take into consideration the 
interactions among features. In comparison, we employ a 

1088



hybrid approach for both the quality of design 
recommendations and the extensibility of the tool. The 
Design Advisor also has a built-in workload compression 
module for scalability. Finally, the DB2 Design Advisor 
is the first product to recommend a total of four features 
so far. In the rest of this paper, we address the challenges 
that we faced when building this tool. 

4 Overview 

We first formally defined the problem that we were trying 
to solve: Given a workload W (a set of SQL statements 
that may include queries, inserts, updates and deletes), a 
set of selected features F, and a disk space constraint D, 
find a set of recommendations for F that reduces the total 
cost of W the most, while using no more space than D. 
Our Design Advisor currently supports an F that is any 
subset of {index, MQT, partitioning, MDC}. Notice that 
while indexes and MQTs are auxiliary data structures, 
partitionings and MDCs are modifications to existing 
structures. 

It was clear from the beginning that the Design 
Advisor would face a huge design search space. Suppose 
that for a given workload, the number of possible indexes, 
MQTs, partitionings, and MDCs is NI, NM, NP, and NC, 
respectively.  The combined search space could be as 
large as 2NI+NM+NP+NC, because different features could 
potentially interact with one another. Therefore, we 
needed a novel approach to solving this problem. In 
Section 4.1, we discuss two potential approaches to this 
problem, and compare the pros and cons of each. We then 
discuss in detail the dependencies among the four features 
in Section 4.2. Finally, in Section 4.3, we introduce a 
“hybrid” approach that combines the advantages of the 
two previous ones. 

4.1 Iterative vs. Integrated Approach 

A relatively straightforward approach to our problem is to 
use an iterative approach, which selects each feature one 
at a time. However, the problem with this approach is that 
it ignores the interactions among different design features. 
For example, as explained in [1,23], indexes and MQTs 
are closely dependent on each other. An MQT, like a 
regular table, normally needs indexes defined on itself in 
order to be attractive to a query. The selection of an MQT, 
on the other hand, can also make an index useless, and 
vice versa. As another example, in a DPF-enabled 
database, an MQT can be partitioned. The selection of the 
partitioning can make an MQT more or less useful to a 
given query. It is such a dependency among features that 
significantly complicates our problem. The iterative 
approach does have an advantage, though. It can treat the 
selection of each feature as a black box, and does not need 
to know the implementation details inside a feature, which 
makes future extension much easier. To support a new 
feature f, we can just plug in a new component 
implementing the selection of f. It also gives flexibility to 

the implementation of each feature selection, since a 
different searching algorithm can be used for each feature. 

An alternative to the iterative approach is an integrated 
one, in which joint searching is performed directly in the 
combined search space, and heuristic rules are applied to 
limit the candidate sets being considered. The advantage 
of the integrated approach is that it can better handle the 
interdependencies among different features. For example, 
by jointly enumerating indexes and MQTs together, it is 
very likely to identify the optimal index and MQT 
combination. For this particular reason, The Microsoft 
Tuning Wizard [1,2] uses an integrated approach to 
recommend indexes and materialized views. 

 The main drawback of the integrated approach is its 
extensibility. While it may be suitable for selecting a 
couple of features, it will not scale with the addition of 
new features since the search space grows combinatorially 
with respect to the number of new search points.  Also, to 
support an additional feature, a large portion of the code 
needs to be changed to support joint searching with the 
new feature, which makes the reengineering cost high and 
can lead to a higher cost of ownership for customers. As a 
result, neither the iterative nor the integrated approach 
alone solves our problem well. 

4.2 Feature Dependency 

We recognize that although interdependencies often 
exist, the degree of interdependencies among different 
pairs of features is not always the same. We say that 
feature A “strongly” depends on feature B, if a change in 
selection of B often results in a change in that of A. 
Otherwise, we say A “weakly” depends on B. We argue 
that weak dependencies are likely to exist because a new 
physical design feature is normally introduced to help the 
areas where existing features do not apply or do not 
perform well. It’s unlikely for a system to support two 
features that duplicate each other on functionalities. 

We categorize the degree of dependencies among the 
four features that we currently support in Table 1, where 
an S represents strong and a W represents weak. We 
explain how the dependency of each feature pair is 
decided by sweeping through the table diagonally from 
the upper left.  

 
A \  B Index MQT Partitioning MDC 
Index  S W W 
MQT S  W S 
Partitioning W S  W 
MDC W S W  

Table 1. Classification of Dependencies of A on B 

 
As we described earlier in Section 4.1, indexes and 

MQTs mutually depend on each other a lot, and thus it’s 
clear that their interdependencies should be classified as 
strong.  One of the complexities comes from the fact that 

1089



MQTs can have indexes which competes with indexes on 
base tables. 

The interaction between indexes and partitionings is 
different. First of all, indexes for local predicates are 
relatively insensitive to how data is partitioned. 
Partitioning keys are usually determined by joins and 
aggregations.  Next, consider those indexes selected for 
nested loop joins. It is true that changing which indexes 
are available can possibly change the join methods in the 
execution plan, and therefore may affect the selection of 
partitionings. However, good partitionings are more 
influenced by intermediate result sizes, which depend 
only on cardinalities and predicate selectivities 
(independent of the existence of indexes or not). 
Conversely, although the selection of a table’s 
partitioning can potentially influence the selection of join 
methods and consequently the selection of indexes, such 
influence is not as strong as that of predicate selectivities. 
Consider the following SQL query on a TPC-H[20] 
database as an example. 

 
Q1.  SELECT L_ORDERKEY, O_ORDERKEY, 
                        P_PARTKEY 
         FROM LINEITEM, ORDERS, PART 
         WHERE L_ORDERKEY = O_ORDERKEY 
              AND L_PARTKEY = P_PARTKEY 
              AND P_NAME = ‘SOME PART’ 
 
Notice that a good set of indexes for Q1 probably 

should include I1=(p_name, p_partkey) on PART, 
I2=(l_partkey, l_orderkey) on LINEITEM and I3 = 
(o_orderkey) on ORDERS, where I1 helps the evaluation 
of the local predicate and I2 and I3 can be used in nested 
loop joins. Such a choice is mostly based on the fact that 
the local predicate on PART is very selective, not much 
based on how tables are partitioned. We observe that 
whether I2 and I3 exist or not affects the join methods and 
thus can affect the partitioning selection. For example, 
LINEITEM can be chosen to be partitioned on l_orderkey 
in one case and on l_partkey in another. However, since 
all intermediate results are small in both cases, the 
performance difference on two partitioning selections will 
also be small, if any. Based on the above analysis and the 
finding in [8] that complex queries tend to use hash joins 
more often, we classify that indexes and partitionings 
weakly depend on each other. 

A similar argument can be made on the dependencies 
between MQTs and partitionings. The only difference is 
that MQTs themselves can have partitionings, which 
makes partitionings strongly dependent on MQTs, but not 
vice versa. This is an interesting example where the 
degree of dependencies is not necessarily symmetric.  

We classify the dependencies between indexes and 
MDCs as weak, which seems somewhat controversial. 
Indeed, MDC enables and requires a special kind of 
index. However, MDC was actually developed to serve a 
different class of queries than traditional indexes serve. 

For example, a secondary index is typically useful when 
the number of matching records is relatively small. On the 
other hand, an MDC organization is especially beneficial 
for OLAP types of queries, taking slices of the multi-
dimensional cubes, for which there are typically many 
matches, since the matching records have all been pre-
clustered together. There is, in fact, a strong interaction 
(similarity) between a one-dimensional MDC and a 
conventional clustered index. We address this issue in 
Section 5.3.  

Finally, we do find that MDCs are very similar to 
indexes in their relationship to MQTs and partitionings, 
which means that MDCs and MQTs are strongly coupled 
while MDCs and partitionings are weakly coupled. 
Similar to partitioning, an MQT can be further clustered 
through an MDC organization. 

4.3 The Hybrid Approach 

We observe that mutual strong dependencies are difficult 
to break and thus are better handled using an integrated 
approach. We decouple other dependencies (unilateral 
strong and weak) and apply the iterative approach. To 
minimize the impact of doing so, we carefully choose the 
ordering within an iteration and add special cases within a 
component whenever necessary. We are now ready to 
outline our “hybrid” approach.  

In general, for a pair of features A and B, if A and B 
are mutually strongly dependent on each other, we will 
create a component that jointly searches both A and B. If 
only B strongly depends on A, we will iteratively search 
A and B, but make sure that A is searched before B so 
that B is properly influenced by A. Finally, if A and B are 
weakly coupled, we will again separate them into 
different components, but can iterate through them in any 
order. Furthermore, we try not to lose the weak 
dependencies completely; we allow each component to 
optionally implement a quick and simple search of a 
feature in another component to account for the weak 
relationship. Our hybrid approach enables us to break the 
implementation of different features into smaller 
components while capturing the most important 
interdependencies among them. Such an approach makes 
it possible for us to build a tool that can handle the design 
of all four features and be able to extend in the future. In 
the next section, we describe in detail how we developed 
the hybrid approach in the Design Advisor. 

5 The Implementation of the Hybrid 
Approach 

We developed the hybrid approach by extending the 
infrastructure of the existing Index Advisor in DB2 UDB. 
In Section 1.1, we revisit the architecture of the Index 
Advisor. We then describe the necessary extensions in 
Section 5.2. In Section 5.3, we describe the main 
algorithm used in the Design Advisor. Finally, we discuss 

1090



some of the issues concerning MQT selection in Section 
5.4 and unused structures in Section 5.5. 

5.1 Index Advisor Revisited 

 

Figure 1.  Architecture of an Index Advisor 

 
The DB2 Index Advisor [21] uses an architecture as 
depicted in Figure 1. The database server is augmented 
with two special “EXPLAIN” modes—RECOMMEND 
INDEXES and EVALUATE INDEXES. Under a special 
explain mode, a given statement is compiled but not 
executed. In the RECOMMEND mode, the optimizer is 
extended such that it will generate promising “virtual” 
indexes for a given statement on the fly. Virtual indexes 
are then considered during optimization as if they are 
physically present. Those indexes that are part of the final 
best execution plan are treated as the best index 
candidates for the given SQL statement.  They are 
collected by the optimizer and are written to a special 
advise_index table. In the EVALUATE mode, the 
optimizer obtains from the advise_index table those 
candidates marked as “in_use” and generates the 
corresponding virtual indexes before optimization starts.  
In other words, the EVALUATE mode causes the virtual 
indexes in the advise_index table to act as a temporary 
extension to the DB catalog information. The 
optimization then continues to compute the best execution 
plan assuming those virtual indexes are physically 
present.  

The client side of the Index Advisor first collects a 
workload. It then compiles each statement in the 
RECOMMEND mode and collects the best index 
candidates for each. An enumeration algorithm then 
combines those candidates in various ways, and for each 
combination compiles the workload in the EVALUATE 
mode to get a corresponding cost estimation for each 
statement in the workload. Finally, the combination with 
the lowest total cost is returned as the best solution for the 
workload. One of the advantages of this architecture is 
that it uses the RECOMMEND mode to suggest index 

candidates. Since the RECOMMEND mode is integrated 
inside the database engine, it is able to find candidates 
quicker and more accurately. 

5.2 Explain Mode Extension 

We extend the methodology used for the Index Advisor to 
the three other features as well. For each additional 
feature we intend to support, we add two special 
EXPLAIN modes, one for recommending the feature and 
the other for evaluating the feature. We also add a 
corresponding “advise” table to store the candidates. Most 
importantly, we extend the EXPLAIN register from a 
single value to a bit set such that multiple EXPLAIN 
modes can be set at the same time. Such an extension is 
very powerful, since it provides the capability of 
conducting both joint searching and iterative searching. 
For example, by setting RECOMMEND INDEXES and 
RECOMMEND MDC together, the optimizer is able to 
suggest RID index and MDC dimension candidates 
together. In another example, by setting EVALUATE 
INDEXES and RECOMMEND PARTITIONINGS mode 
together, the optimizer can try to generate the best 
partitionings for a statement while assuming the existence 
of indexes suggested from a previous iteration. Note that 
although the infrastructure appears to be the same for each 
feature, it does not prevent each feature (if in a separate 
component) from using a different searching method in 
the try candidates phase. Finally, the bit set representation 
can easily support additional features in the future.  

5.3 The Hybrid Algorithm 

We divide the Design Advisor into three components, IM, 
P, and C, where IM is responsible for index and MQT 
recommendation, and P and C are responsible for 
partitionings and MDCs, respectively. Each component F 
recommends candidates within its own disk constraint DF. 
The components are iterated in the order of IM, P, and C. 
This closely reflects the degree of dependencies as 
described in Table 1, except for the relationship between 
MQTs and MDCs. We chose not to integrate the selection 
of MDCs with indexes and MQTs for several practical 
reasons. First, we want to limit the search space within a 
single component. Second, we feel that MQTs are more 
closely coupled with indexes than with MDCs. Finally, 
MDCs do not compete for as much space as both indexes 
do since they use block indexes instead of RID indexes, 
and we wanted to integrate only the resource-intensive 
features together. 

The implementation of each of the three components 
has been described in detail in [12,17,23] and is not the 
focus of this paper. We just want to point out that the 
searching algorithm used for each component is 
customized. For example, a knapsack algorithm followed 
by a random-swapping phase was used for the IM 
component [23], and a rank-based search was used for the 
P component [17]. While components are relatively 

Advisor client Database Server 

get workload 

get candidates 

try candidates 

output  results 

RECOMMEND 

EVALUATE 

1091



independent of each other, they are aware of the presence 
of others whenever needed. For example, we support 
using sampling in each component to obtain more 
accurate statistics. When this occurs, components share as 
much sampling as possible. Each component can be 
disabled. This is useful when a feature is not available on 
a particular platform (e.g., partitioning is only available 
when DPF is enabled) or the user does not select all the 
features. 

 

Figure 2. Main Algorithm 

 
Our main hybrid algorithm used in the Design Advisor 

is presented in Figure 2. As usual, the advisor first obtains 
the workload, information on the database (e.g., DB 
name, user ID, and password) and a disk constraint D. If 
D is not provided, the Advisor automatically recommends 
a D based on such information as the amount of available 
space and used space in a database. Each statement in the 
workload is then compiled to get an optimizer-estimated 
initial workload cost. After that, the algorithm starts to 
iterate through each enabled component. The total disk 
constraint is divided among all components. More space 
is given to indexes and MQTs than partitionings and 
MDCs because the latter two tend to use less space. (The 
only type of partitioning that takes extra space beyond the 
base data is replication.) After invoking a component with 
an allocated constraint DF, the suggested candidates for F 
are recorded in the corresponding advise table (with the 
“in_use” field marked).  Note that if a component does 
not use all the allocated space, unused space is passed to 
the next component and can be consumed by other 
features. The current workload cost (with the solutions for 
F) is used to compare against the best workload cost. If 
the current cost is smaller, the new solution for F is 
accepted and the best cost is updated. Otherwise, the new 
solution is discarded by unmarking the “in_use” field in 
the advise table. We then turn on the EVALUATE F 
mode in the special explain register so that the solutions 
for F become visible by subsequent components. As a 

special case, we let the C component handle all clustered 
indexes. If an MDC solution has only one dimension, the 
C component will decide whether to use an MDC 
organization or simply create a conventional clustered 
index. 

The main algorithm is capable of iterating through 
each component F more than once, and therefore solutions 
for F can change after the design of other features is 
exposed. Such iterations continue until some stopping 
criteria are met, which can either be that solutions do not 
improve the workload any more, or a user-specified time 
limit is reached. In a prototype we implemented that 
repeats the iteration between component IM and P, we 
found that the second invocation of IM (with the solutions 
for partitioning) does not change the previous index and 
MQT recommendations significantly.  This actually 
verifies our assumption that indexes and MQTs only 
weakly depend on partitionings. Therefore, we currently 
only iterate through each component exactly once.  

We add a special support in the IM component to 
address MQTs’ weak dependency on partitionings. 
Observe that although the influence of partitionings on 
MQTs is relatively weak, a terrible partitioning key for an 
MQT can still reduce its potential benefit, especially when 
maintenance cost needs to be considered. Hence, we 
extend IM by adding a module that quickly selects a 
reasonable initial partitioning for each MQT to prevent a 
good MQT from being pruned. Every incrementally 
maintainable MQT in DB2 UDB has an implied unique 
key [22]. For instance, the implied key is the grouping 
columns for an aggregate MQT. For a join MQT, the 
implied key is the concatenation of the key on each joined 
table. We choose an arbitrary column from the implied 
key to serve the initial partitioning key of the MQT. 
During incremental maintenance, such a partitioning key 
(a subset of the implied key) allows the join between the 
MQT and the “delta” to be performed locally at each 
node, and thus reduces the maintenance cost. 
Subsequently, the partitioning of the MQTs will be further 
tuned by the P component. 

5.4 MQT Selection 

The goal of the Design Advisor is to allow users to select 
any subset of the supported features. If a feature is not 
requested by the user, normally, we can simply bypass the 
corresponding component during the iteration. However, 
when the user only asks for MQTs, the semantic is a little 
bit tricky. If we faithfully follow the request and suggest 
only MQTs and nothing else, such MQTs may not be 
usable because they typically need some indexes on them. 
On the other hand, since the users probably have some 
confidence in existing indexes, we probably should not 
voluntarily perform a full index search. As a solution, we 
decide that if MQT is the only feature requested by the 
user, the Design Advisor will automatically recommend 
indexes and partitionings (if DPF is enabled) on suggested 

1. get the workload information, database and 
system characteristics and the disk constraint D 

2. get initial cost of the workload  
3. while (stop criteria met) { 
4.   for each enabled component F of IM,P,C { 
5.     invoke F with DF 
6.     (solutions for F now stored in advise_F) 
7.     if (current_cost < best_cost)  
8.       best_cost =current_cost 
9.     else  
10.       unmark candidates in advise_F 
11.     turn on EVALUATE F in explain register  
12.   } 
13. } 
14. output solutions 

1092



MQTs. We choose not to cluster suggested MQTs using 
MDC since it is a more advanced feature.  

In order to support this, we introduce another 
EXPLAIN mode VIRTUAL_MQT. When this mode is 
enabled in the EXPLAIN register bit set, indexes and 
partitionings are only recommended and evaluated for 
newly recommended (virtual)  MQTs.  

5.5 Unused Structures 

While the Design Advisor recommends new design 
structures, would it make sense for it to remove structures 
that are not used at all? House-cleaning often has lower 
priority than adding new designs, so it’s common to have 
indexes and MQTs that are out-of-date. However, the 
danger is that the Design Advisor may not see the 
complete workload. Although more built-in workload 
supports have been added to the Design Advisor (Section 
6.1 describes the details), infrequent queries are still hard 
to collect. Therefore, we may delete an index that seems 
useless but is very important for a CEO query that runs 
only every quarter. Because of this, the Design Advisor 
does not recommend any deletion of existing structures. 
Instead, it reports a list of existing indexes and MQTs that 
are useful to the given workload. The set of unused 
indexes and MQTs can be inferred from this list. 

6 Workload Support 

Since the Design Advisor is a workload-driven tool, we 
pay a lot of attention to workload-related issues. In 
Section 6.1, we describe additional ways in the Design 
Advisor for users to conveniently obtain a workload. In 
Section 6.2, we introduce the built-in workload 
compression method for scalability. 

6.1 Obtaining a Workload 

The DB2 Index Advisor accepts a workload from the 
command line (a single statement), a file, or an 
advise_workload table. In the Design Advisor, we add 
two additional workload sources, one from the dynamic 
statement cache and the other from the Query Patroller.  

The dynamic statement cache stores the plans for all 
dynamic SQL queries submitted to a database engine to 
avoid recompilation. As a side effect, each dynamic SQL 
statement itself is cached, together with the frequency of 
execution. Therefore, the statement cache serves as a 
good source for a typical workload. With this new option, 
users can run their favourite applications for a while and 
then invoke the Design Advisor, which will then collect 
the SQL statements and associated frequencies from the 
cache automatically.  

Query Patroller [16] is a powerful query management 
tool included in DB2 Data Warehouse Enterprise Edition. 
It provides the capability of classifying queries into 
classes, prioritizing queries, and tracking runaway 
queries. We add an option in the Design Advisor so that 

we can fetch all statements passed through Query 
Patroller.   

6.2 Built-in Workload Compression 

A key factor that affects the scalability of the Design 
Advisor is the size of the workload. Since each statement 
in the workload needs to be compiled by the optimizer 
(most likely more than once) in order to obtain the 
estimated cost, the larger the workload, the longer it takes 
the advisor to run. As a matter of fact, the time to run 
design tools such as Microsoft Tuning Wizard and DB2 
Index Advisor typically grows exponentially with a linear 
increase of the workload size (verified through 
experiments). Thus, workload compression is imperative 
for the scalability of these design tools.  

A simple workload compression technique is to merge 
statements that are exactly the same, but with different 
parameter bindings. In fact, for workloads that are 
obtained from the dynamic package cache, such 
compression has already been done. One study [4] 
proposes a more sophisticated workload compression 
technique that employs mining-like methods to 
summarize the workload. The authors demonstrate that 
using the reduced workload, both the Microsoft Tuning 
Wizard and DB2 Index Advisor can provide design 
recommendations very close to those based on the full 
workload. However, to get the reduced workload, the 
technique requires relatively intensive computation such 
as calculating the distance between pairs of statements in 
the original workload.  

We see a benefit in adding workload compression as a 
built-in module for the Design Advisor. The Design 
Advisor will invoke the workload compression module if 
it feels that the workload is too large and the analysis 
cannot finish in a reasonable amount of time. One 
important requirement for the compression module is 
efficiency. We want to spend a relatively small fraction of 
the total amount of time on compression the workload. 
Therefore, we take an approach that only keeps the top K 
most expensive queries, whose total cost is no more than 
X% of the original workload cost. The Design Advisor 
already compiles each statement in the workload to obtain 
an estimated cost (line 2 in Figure 2). We then sort the 
statements in descending cost order and keep selecting 
statements from the top into a reduced workload until the 
cost of the reduced workload is less than or equal to X% 
of the original workload. Our approach, although simple, 
is quite effective in reducing the workload size, especially 
when the distribution of statement cost is skewed. The 
reduced workload includes the most time-consuming 
statements, which typically need tuning.  

We can control the compression ratio by scaling the 
percentage X. Instead of burdening the users to come up 
with an appropriate value for X, we expose only three 
compression levels: low, medium and high, with X set to 
60, 25, and 5, respectively. By default, medium 

1093



compression level will be used. Once compression is 
done, the hybrid algorithm simply works on the reduced 
workload and gives recommendations accordingly. It 
makes one final pass over the original workload at the end 
to obtain the cost for the whole workload with the 
recommendations based on the reduced workload.  
Finally, we allow the user to turn off workload 
compression completely for more accurate design tuning. 

7 Experimental Results 

In this section, we select two sets of experiments to 
present. All experiments were conducted on a regular 
build for DB2 UDB Version 8.2. In Section 7.1, we test 
the Design Advisor by selecting all four features. In 
Section 7.2, we focus on the selection of indexes and 
MQTs only, and demonstrate the benefit of our built-in 
workload compression module. We summarize our 
experimental results in Section 7.3. 

7.1 TPCH Results 

The first experiment was to demonstrate how well the 
Design Advisor recommends all design features. This was 
done using a 1 GB TPCH [20] database stored on an 8 
CPU AIX® 5.2 system with 4 logical partitions. The 
workload contains all the 22 TPCH queries.  

We started with a baseline design that stored the tables 
across all 4 partitions and used the primary key as the 
partition key for all tables except for LINEITEM, which 
was partitioned on L_PARTKEY, part of the primary key. 
The LINEITEM partitioning was chosen based on the fact 
that L_PARTKEY is used in quite a few of the 22 queries. 
The rest of the baseline physical DB design is derived 
from a TPCH benchmark. 

 
Design Feature 
 

Number 
Recommended 

Indexes 20 
MDC dimensions 6 
Partitioning Changes 4 
Materialized Views 2 

Table 2.  Design Advisor Recommendations for a 
TPCH 1GB Database 

 
The Design Advisor was able to finish the design of 

all features in about 10 minutes. Table 2 shows how many 
recommendations the advisor made for each design 
feature. For example, we show below one of the MQTs 
recommended (MQT2) that contains the subquery in Q18 
using LINEITEM. In this MQT, the partitioning key was 
also properly selected on C1, because the MQT 
sometimes needs to be further joined with the ORDERS 
table. An index IDX3 was also recommended on MQT2. 
Notice that the index key is ordered in (C0,C1). This is 

because the subquery result in Q18 was subsequently 
filtered though a range predicate on L_QUANTITY. 

 
 
An MDC recommendation from this experiment is 

also given below. The recommendation was for the 
PARTSUPP table to be MDC clustered (as shown by the 
ORGANIZE BY clause) based on a newly generated 
column. This column groups the values of PS_PARTKEY 
such that each group falls into a clustered block of the 
MDC. In this particular case, a single-dimensional MDC 
is better than a conventional clustered index because the 
generated column condenses the value domain. 

 
Finally, we note that besides the partitionings 

recommended for MQTs, the partitioning key of 
LINEITEM is also changed from L_PARTKEY to 
L_ORDERKEY. The latter is useful for fewer, but much 
more expensive, queries. 

The DB2 Design Advisor makes its recommendations 
based on estimated response times for workloads using 
the cost model in the optimizer. In this experiment, we 
obtained an estimated response time improvement over 
the baseline (without recommendations from the Design 
Advisor) of 88.01%. We implemented all the 
recommendations made by the Design Advisor and 
measured the actual cost of the workload. Figure 3 shows 
the real performance improvement as 84.54% (the 
baseline is normalized to 100%), which is very close to 
the optimizer’s estimation.  

 

CREATE TABLE TPCD.PARTSUPP ( 
      PS_PARTKEY INTEGER NOT NULL ,           
      PS_SUPPKEY INTEGER NOT NULL ,                                      
      PS_AVAILQTY INTEGER NOT NULL ,                                     
      PS_SUPPLYCOST DOUBLE NOT NULL ,                         
      PS_COMMENT VARCHAR(199) NOT NULL,                               
      MDC040303204738000 GENERATED  
            ALWAYS AS (  
                 INT((PS_PARTKEY-11)/(792))) ) 
PARTITIONING KEY (PS_PARTKEY)                                    
IN TPCDTDAT                                                        
ORGANIZE BY (MDC040303204738000 )                                       
                                           
 

CREATE SUMMARY TABLE MQT2 AS ( 
      SELECT SUM(L_QUANTITY) AS C0,  
                     L_ORDERKEY AS C1  
      FROM TPCD.LINEITEM  
      GROUP BY L_ORDERKEY)  
DATA INITIALLY DEFERRED  
REFRESH DEFERRED 
PARTITIONING KEY (C1) 
IN TPCDLDAT 
 
CREATE INDEX IDX3 ON MQT2  
(C0 DESC, 
 C1 DESC)  
ALLOW REVERSE SCANS    

1094



0

20

40

60

80

100

120

Baseline New Design

R
el

at
iv

e 
W

o
rk

lo
ad

 E
xe

cu
ti

o
n

 
T

iim
e 

(%
)

 

Figure 3.  1 GB TPCH Real Workload Performance 
Improvement 

7.2 MOLAP Results 

In the next set of experiments, a DB was set up as a 
classic MOLAP schema. Both the data and the workload 
are synthetic, but represent similar characteristics seen in 
various customer MOLAP schemas.  The DB has a fact 
table with 8 measures, and there are 16 hierarchical 
dimensions. Table 3  shows the number of levels in each 
hierarchy and the cardinality of each dimension. 

Experiments were run on a Windows® 2000 Server 
SP4 with four 400 MHz CPUs. We set up the database to 
have four logical partitions. Note that these experiments 
only selected indexes and materialized views. 
 

Dimension Number of  
Levels in 
Hierarchy 

Cardinality 

1 2 4 
2 2 3 
3 2 2 
4 4 52 
5 3 3000 
6 2 7 
7 2 4 
8 3 300 
9 2 331 

10 2 2 
11 4 189 
12 2 11 
13 3 3000 
14 4 372 
15 2 2 
16 2 2 

Table 3.  MOLAP Schema Characteristics 

 
We demonstrate the usefulness of our workload 

compression with respect to reducing the Design Advisor 
execution time. Medium compression was compared to no 
compression with workloads of varying numbers of 

queries. All queries include range predicates, join one or 
two dimensional tables with the fact table, and aggregate 
at various levels in the hierarchy. Figure 4 shows the 
results. Note that we only show the 80 to 150 query cases 
for no compression because that is where the interesting 
differences occur. The results indicate that as the number 
of queries increases, the advisor execution time also 
increases with and without compression. However, under 
the medium compression, the Design Advisor runs twice 
as fast when there are 80 and 100 queries in the workload, 
and an order of magnitude faster when there are 150 
queries (note the logarithmic scale on the y-axis). 
Although not shown here, a higher level of compression 
provides a more significant reduction of the execution 
time of the Advisor. There is a slight increase at the 80 
query workload mainly because its random-swapping 
phase was longer than that in the 100 query case. In the 
100 query case, the advisor found a very good solution 
early and thus finished the algorithm earlier. We also 
compared these results to our competitors’ and found that 
the Design Advisor achieved a more significant reduction 
in the execution times. 
 

100

1000

10000

100000

1 40 60 80 100 150
Number of Queries

A
d

vi
so

r 
E

xe
cu

ti
o

n
 T

im
e 

(s
ec

s)
(l

o
g

ar
it

h
m

ic
 s

ca
le

)

MED

OFF

 

Figure 4. Medium (MED) and no (OFF) workload 
compression advisor execution time comparison using 
the MOLAP schema workload  

 
There is a trade-off between workload compression 

and the quality of the design recommendations. The 
higher the compression level, the faster the advisor runs, 
but potentially the lower the quality of the 
recommendations. In Figure 5, we present the progress 
made by the Design Advisor with and without workload 
compression. Each point in the figure represents the 
workload improvement achieved by the Advisor after 
running for a certain amount of time.  In the end, the 
advisor ended up with a 77% estimated improvement with 
the medium compression, and an improvement of 93% 
with no compression. However, with medium 

1095



compression, the advisor finished about 4,300 seconds 
sooner than with no compression. As a result, medium 
compression provides a good compromise between 
execution time and design quality. Figure 5 also 
demonstrates that a large portion of the performance 
improvement is achieved in a relatively short amount of 
time by the Design Advisor (both with compression and 
without). Subsequent searching only further improves the 
performance marginally. This is very useful for designing 
the stopping criteria in our main algorithm. It becomes 
reasonable to stop the Advisor when no improvement has 
been made after the advisor has executed for a certain 
number of iterations. 
 

0

20

40

60

80

100

0 5000 10000

Advisor Execution Time (secs)

E
st

im
at

ed
 R

es
p

o
n

se
 

T
im

e 
Im

p
ro

ve
m

en
t 

(%
) MED

OFF

 

Figure 5.  Workload improvement vs. advisor 
execution time for medium (MED) and no (OFF) 
workload compression for the 80 query MOLAP 
schema workload 

7.3 Summary 

To summarize, our experiments demonstrate that the 
Design Advisor is capable of recommending a design that 
includes all the four features, significantly improves the 
performance of the workload over a benchmark baseline, 
and completes in a reasonable amount of time. We also 
validate the effectiveness of our workload compression 
technique that allows the Design Advisor to scale with the 
increase of workload size. Our analysis shows that a 
medium compression level reduces the Advisor execution 
time considerably without compromising the quality of 
the recommendations. 

8 Future Work 

While we categorize the interaction between MQTs and 
partitionings as weak in Table 1, a novel usage of MQTs 
can change that. For example, suppose that two queries 
Q1 and Q2 prefer a table T to be partitioned using P1 and 
P2 respectively. Normally, we can only choose one of the 
partitionings for table T. However, it’s possible to define 
an MQT that duplicates T and also carries a different 
partitioning than T. That way, we can use T to serve one 

of the queries, say Q1, and use the MQT to serve Q2. 
When used this way, MQTs become strongly coupled 
with partitionings. We’d like to investigate an efficient 
way to support this special case in the future, although we 
have addressed this issue partially through the replicated 
partitioning recommendations made by the P component. 

The Design Advisor is currently focused on physical 
database design. In the future, we’d like to investigate the 
possibility of extending it to support logical designs as 
well. Logical design is currently done by tools such as 
Rational® Rose® and XDE™ [10], when database 
schemas are derived from modelling specifications such 
as UML. How to integrate the Design Advisor with such 
tools is an interesting study for the future. 
 

9 Conclusion 

The DB2 Design Advisor is the first comprehensive 
physical database design tool to recommend indexes, 
materialized views, partitioning, and clustering for 
multiple dimensions in an integrated and scalable fashion.  
We have described a framework that permits any 
combination of recommending some features while 
holding others fixed to a given solution, as well as a 
hybrid algorithm that efficiently searches through the 
enormous space of possible solutions while taking into 
consideration the interactions of related features.  The 
Design Advisor also has built-in workload compression 
for reducing the execution time of the Advisor without 
sacrificing quality in the solution.  Initial experimental 
results verify that solutions selected by the Design 
Advisor improve by almost 100% the performance of 
workloads of hundreds of queries after running for under 
three hours, less time than it would take a human DBA to 
evaluate a handful of possible solutions, and represents a 
major advance in automating perhaps the most complex 
and time-consuming task that DBAs now perform. 

References 

1 Sanjay Agrawal, Surajit Chaudhuri and Vivek R. 
Narasayya, Automated Selection of Materialized 
Views and Indexes in SQL Databases, Proceedings 
of 26th International Conference on Very Large Data 
Bases, 2000: 496-505.  

2 Sanjay Agrawal, Vivek R. Narasayya, Beverly Yang, 
Integrating Vertical and Horizontal Partitioning Into 
Automated Physical Database Design. SIGMOD 
Conference 2004. 

3 Chaitanya K. Baru, Gilles Fecteau, Ambuj Goyal, 
Hui-I Hsiao, Anant Jhingran, Sriram Padmanabhan, 
Walter G. Wilson: An Overview of DB2 Parallel 
Edition. SIGMOD Conference 1995: 460-462 

4 Surajit Chaudhuri, Ashish Gupta, Vivek R. 
Narasayya: Compressing SQL workloads. SIGMOD 
Conference 2002: 488-499 

1096

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Agrawal:Sanjay.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Narasayya:Vivek_R=.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2004.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Baru:Chaitanya_K=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fecteau:Gilles.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Goyal:Ambuj.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hsiao:Hui=I.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Padmanabhan:Sriram.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wilson:Walter_G=.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod95.html
http://www.cobase.cs.ucla.edu/pub/dblp/html/db/indices/a-tree/g/Gupta:Ashish.html
http://www.cobase.cs.ucla.edu/pub/dblp/html/db/indices/a-tree/n/Narasayya:Vivek_R=.html
http://www.cobase.cs.ucla.edu/pub/dblp/html/db/conf/sigmod/sigmod2002.html


5 Surajit Chaudhuri and Vivek R. Narasayya, 
Microsoft Index Tuning Wizard for SQL Server 7.0, 
Proceedings ACM SIGMOD International 
Conference on Management of Data, 1998: 553-554.  

6 Surajit Chaudhuri and Vivek R. Narasayya, 
AutoAdmin "What-If" Index Analysis Utility. 
Proceedings of ACM SIGMOD, Seattle, 1998. 

7 S. Finkelstein and M. Schikolnick and P. Tiberio, 
Physical Database Design for Relational Databases, 
ACM Transactions of Database Systems, 13(1): 91-
128, 1988.  

8 Goetz Graefe: The Value of Merge-Join and Hash-
Join in SQL Server. VLDB 1999: 250-253 

9 http://www.ibm.com/software/ db2/   
10 http://www.ibm.com/software/ rational/  
11 http://www.ibm.com/software/data/informix/ 

redbrick/ 
12 Sam Lightstone and Bishwaranjan Bhattacharjee, 

Automated design of Multi-dimensional Clustering 
tables for relational databases,  VLDB 2004.  

13 Guy M. Lohman, Sam Lightstone: SMART: Making 
DB2 (More) Autonomic. VLDB 2002: 877-879 

14 http://www.oracle.com/ 
15 Sriram Padmanabhan, Bishwaranjan Bhattacharjee, 

Timothy Malkemus, Leslie Cranston, Matthew 
Huras: Multi-Dimensional Clustering: A New Data 
Layout Scheme in DB2. SIGMOD Conference 2003: 
637-641 

16 Query Patroller, http://www.ibm.com/software/data/ 
db2/querypatroller/. 

17 Jun Rao, Chun Zhang, Nimrod Megiddo, Guy M. 
Lohman: Automating physical database design in a 
parallel database. SIGMOD Conference 2002: 558-
569. 

18 http://researchweb.watson.ibm.com/autonomic/ 
manifesto/ 

19 http://www.sap.com/ 
20 TPC-H benchmark, http://www.tpc.org/ 
21 Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy 

Lohman and Alan Skelley, DB2 Advisor: An 
optimizer smart enough to recommend its own 
indexes, Proceedings of the ICDE Conference, 2000: 
101-110. 

22 Markos Zaharioudakis, Roberta Cochrane, George 
Lapis, Hamid Pirahesh, Monica Urata: Answering 
Complex SQL Queries Using Automatic Summary 
Tables. SIGMOD Conference 2000: 105-116 

23 Daniel C. Zilio, et al, Recommending Materialized 
Views and Indexes with IBM’s DB2 Design 
Advisor, International Conference on Autonomic 
Computing 2004. 

 
Trademarks 
 
AIX, DB2, DB2 Universal Database, IBM, and 

Informix, Rational, Rational Rose, and XDE are 
trademarks or registered trademarks of International 

Business Machines Corporation in the United States, 
other countries, or both. 

 
Windows is a registered trademark of Microsoft 

Corporation in the United States, other countries, or both. 
 
Other company, product, and service names may be 

trademarks or service marks of others. 
 

 

1097

http://www.acm.org/sigmod/dblp/db/conf/vldb/vldb99.html
http://www.ibm.com/software/data/informix/
http://www.oracle.com/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bhattacharjee:Bishwaranjan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Malkemus:Timothy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cranston:Leslie.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Huras:Matthew.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2003.html
http://www.ibm.com/software/data/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhang:Chun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Megiddo:Nimrod.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lohman:Guy_M=.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2002.html
http://researchweb.watson.ibm.com/autonomic/
http://www.sap.com/
http://www.acm.org/sigmod/dblp/db/indices/a-tree/z/Zaharioudakis:Markos.html
http://www.acm.org/sigmod/dblp/db/indices/a-tree/c/Cochrane:Roberta.html
http://www.acm.org/sigmod/dblp/db/indices/a-tree/l/Lapis:George.html
http://www.acm.org/sigmod/dblp/db/indices/a-tree/u/Urata:Monica.html
http://www.acm.org/sigmod/dblp/db/conf/sigmod/sigmod2000.html

