DB2 Design Advisor: Integrated Automatic Physical Database
Design

Daniel C. Zilid, Jun Rag Sam Lightstorie Guy Lohmanh
Adam Storm, Christian Garcia-Arellarfp Scott Faddeh

'l/BM Toronto Laboratory
{zilio,light,ajstorm,cmgarcia}@ca.ibm.com

°IBM Almaden Research Center
{junrao,lohman}@almaden.ibm.com

3IBM Portland
sfadden@us.ibm.com

Abstract

The DB2 Design Advisor in IBM® DB2®
Universal Database™ (DB2 UDB) Version 8.2
for Linux®, UNIX® and Windows® is a tool
that, for a given workload, automatically
recommends physical design features that are
any subset of indexes, materialized query tables
(also called materialized views), shared-nothing
database partitionings, and multidimensional
clustering of tables. Our work is the very first
industrial-strength tool that covers the design of
as many as four different features, a significant
advance to existing tools, which support no more
than just indexes and materialized views.
Building such a tool is challenging, because of
not only the large search space introduced by the
interactions among features, but also the
extensibility needed by the tool to support
additional features in the future. We adopt a
novel “hybrid” approach in the Design Advisor
that allows us to take important
interdependencies into account as well as to
encapsulate design features as separate
components to lower the reengineering cost. The
Design Advisor also features a built-in module

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment

Proceedings of the 30" VL DB Conference,

Toronto, Canada, 2004

that automatically reduces the given workload,
and therefore provides great scalability for the
tool. Our experimental results demonstrate that
our tool can quickly provide good physical
design recommendations that satisfy users’
requirements.

1 Introduction

Technology advances and competition continue to
significantly reduce the cost and increase the aapaf
database systems, making large, complex database
applications commonplace. For example, popular
database applications such as SAP [19] typicallytaio
over 30,000 database objects, which include tabtes
indexes. Concurrently, the cost of skilled dassba
administrators (DBAs) to manage those increasingly
complex systems has relentlessly increased. These
economic trends have driven the total cost of osmer
of systems today to be dominated by the cost oplgeo
not hardware or software. This new reality haslsmh
recent interest in developing self-managingaatonomic
[18], systems that can relegate many of the DBAstam
mundane and time-consuming tasks to automated tools
[6,13].

Perhaps the best candidate to date for such attomat
is physical database design. DBAs have, for years,
systematically tuned applications by time-consunting
and error — methodically creating each index, ctilieg
statistics on it so that the query optimizer knetw i
properties, recompiling every query that might bine
and then evaluating whether the index was, in fact,
exploited to improve performance for that workload.
Each iteration of this painstaking process coullleta

1087

mailto:junrao@almaden.ibm.com

minutes or even hours on
databases, and there was no way to assure coneergen
something considered “optimal”.
produced powerful utilities that use the query mpter as
a “What if?” tool to automate this process for ires,
drastically reducing the manual effort while inieag the
number of promising solutions [5,21].

New database features to enhance performanceh- su
as materialized views, parallelism, and differeratys to

today’s terabyte-sizedlocks. A block is a basic unit of clustering aggitally

contains tens of pages. Indexes are created abldiok

Recent research halevel for fast access. Since data is clusterednifi®C

table, range queries (especially with more than one
dimension) can be answered much more efficientinth
secondary indexes. The design of an MDC table el
choosing the dimensions as well as the granuldrigy,
the number of distinct values) of each dimension.

The DB2 Enterprise Server Edition has a data

cluster data — have only compounded this task byartitioning feature (DPF) that enables a shardtiing

providing more options that the beleaguered DBA tmus
consider when designing and tuning an applicatidm
make matters worse, these features interact in leomp
ways. For example, materialized views, being store
tables, themselves require indexes. And one jmenitity
option is to replicate smaller tables among all expd
resembling materialized views.

parallel architecture [3], where independent precesare
interconnected via high-speed networks. Each psoces
stores a horizontally hash-partitioned (referredsitaply
as partitioning in the rest of the paper) portidntle
database locally on its disk. The design of a pamning
includes selecting a set of columns as the pantkiy, as
well as a set of nodes to which the data will kstritiuted.

This paper describes the DB2 Design Advisor in DB2A good partitioning design minimizes the movemeht o

Version 8.2 [9], the first integrated commerciabltdo
automatically determine all aspects of physicahbase
design, including not only indexes and materializeivs
(called materialized query tables in DB2 UDB), hilgo
partitioning and multi-dimensional clustering ofblkeas.
As in the individual advisors that this tool intatgs, the
Design Advisor exploits the DB2 Optimizer to
recommend promising candidate solutions and touetal
alternative solutions. We adopt a novel “hybrid”

data by allowing operations such as joins and
aggregations to be done at each node locally amsldle
much cheaper to execute. In DB2 UDB, an index s
have its own partitioning, but rather shares the
partitioning with the table on which it is defined.

3 Related Work in Database Design

The design of many individual physical features basn

searching approach that not only takes into accountell studied in the literature. We cannot possiliy all

important interdependencies among different featurat
also makes the tool easy to extend for supportiegy n
features in the future. To improve the scalabitfythe
tool, we add a built-in workload compression modhigt

automatically reduces the workload size while not

sacrificing the quality of the design recommendagio

The rest of the paper is organized as follows.iSe&
explains the terminology specific to DB2 UDB. We
summarize related work in Section 3. The overviéwuw

the related references here. Instead, we simplgt pmit
that many works on the selection of indexes, malized
views and partitionings are referenced in [5], §,2and
[17], respectively.

Work in self-managing databases started as early as
1988 [7], in which the authors proposed to use the
optimizer to evaluate the goodness of index strestu

Microsoft Research's AutoAdmin project [1,5] has
developed wizards that automatically select indexed

design is given in Section 4 and the imp'ementatiorp’]aterialized views foragiven workload. Theirl®also

details are provided in Section 5. Section 6 dbssrithe
workload support, including the workload compressio
module in the Design Advisor. We present our
experimental results in Section 7. The future w@k
discussed in Section 8 and we conclude in Section 9

2 Terminology

In this section, we define some of the terminologgd in
DB2 UDB.
A materialized query table (MQT) is a stored and

exploit the cost model used by the optimizer tonesste
the benefit of suggested indexes and materializedis/
More recently, their tools have been extended fipstt
both vertical and horizontal partitions in a resbar
prototype [2].

DB2 UDB has had an Index Advisor [21] since
Version 6. A tool [17] that recommends the pantiiigs
in a shared-nothing database system has also been
prototyped in DB2 UDB. More details on the architee
of these tools is given in Section 1.1.

Other commercial database vendors such as Informix

maintained query result, more commonly known in the(bought by IBM in 2001) [11] and Oracle 8i [14] leav

literature as a materialized view. MQTs were knaan

Automatic Summary Tables [22] before Version 8.1 of

DB2, when support for join-only views was added.

made similar efforts to build such design tools.
However, most of those existing tools only hantike t
design of one or two features. The only except®ithe

A multi-dimensional clustering (MDC) table [15] tool in [2] where as many as four features can be
organizes a table in a multi-dimensional cube. Eachecommended. [2] uses integrated search among all
unique combination of dimension attribute values iscandidates in order to take into consideration the
associated with one or more physical regions calleihteractions among features. In comparison, we eynal

1088

hybrid approach for both
recommendations and the extensibility of the tddie
Design Advisor also has a built-in workload compres
module for scalability. Finally, the DB2 Design Asder
is the first product to recommend a total of foeattires
so far. In the rest of this paper, we address tiadlenges

the quality of designthe implementation of each feature selection, siace

different searching algorithm can be used for daature.

An alternative to the iterative approach is angrated
one, in which joint searching is performed diredtiythe
combined search space, and heuristic rules aréedpiol
limit the candidate sets being considered. The @tdge

that we faced when building this tool. of the integrated approach is that it can bettedleathe
interdependencies among different features. Fompie
by jointly enumerating indexes and MQTs togetheis i
very likely to identify the optimal index and MQT
We first formally defined the problem that we wéngng combination. For this particular reason, The Miofos
that may include queries, inserts, updates andefglea yrecommend indexes and materialized views.
set of selected features F, and a disk space eantsD, The main drawback of the integrated approachsis it
find a set of recommendations for F that reducesatal extensibility. While it may be suitable for seledia
cost of W the most, while using no more space an couple of features, it will not scale with the ati of
Our Design Advisor currently supports an F thalily ey features since the search space grows combiaisto
subset of {index, MQT, partitioning, MDC}. Noticddt \yith respect to the number of new search pointso Ao
while indexes and MQTs are auxiliary data structure sypport an additional feature, a large portionhef tode
partitionings and MDCs are modifications to exigtin peeds to be changed to support joint searching thih
structures. o ~ new feature, which makes the reengineering cost aigl
It was clear from the beginning that the Designcan lead to a higher cost of ownership for custemas a
Advisor would face a huge design search space.d3@pp result, neither the iterative nor the integrategrapch
that for a given workload, the number of possiblgexes, gione solves our problem well.

MQTs, partitionings, and MDCs is NI, NM, NP, and NC
respectively. The combined search space couldsbe @&.2 Feature Dependency
large as P"NMNPHNC - hecause different features could
potentially interact with one another. Thereforeg w
needed a novel approach to solving this problem. |
Section 4.1, we discuss two potential approachetiso
problem, and compare the pros and cons of eachthéve
discuss in detail the dependencies among the &aiuffes

in Section 4.2. Finally, in Section 4.3, we introdua
“hybrid” approach that combines the advantageshef t
two previous ones.

4 Overview

We recognize that although interdependencies often
xist, the degree of interdependencies among difter
pairs of features is not always the same. We say th

feature A “strongly” depends on feature B, if amf@ in
selection of B often results in a change in thatPof
Otherwise, we say A “weakly” depends on B. We argue
that weak dependencies are likely to exist becausew
physical design feature is normally introduced étphthe
areas where existing features do not apply or db no
perform well. It's unlikely for a system to suppdvto
features that duplicate each other on functiomaliti

We categorize the degree of dependencies among the

four features that we currently support in Tablevhere

4.1 Iterativevs. Integrated Approach

A relatively straightforward approach to our prablés to
use an iterative approach, which selects eachrieatoe

at a time. However, the problem with this approsdiat an S represents strong and a W represents weak. We
it ignores the interactions among different deseatures. explain how the dependency of each feature pair is

For example, as explained in [1,23], indexes andT®¥IQ gecided by sweeping through the table diagonatbynfr
are closely dependent on each other. An MQT, like ahe upper left.

regular table, normally needs indexes defined saifiin
order to be attractive to a query. The selectioaroMQT, [A\ B Index MQT Partitioning M
on the other hand, can also make an index usedess, [ngex S W
vice versa. As another example, in a DPF-enabIe(R'AQT S W
database, an MQT can be partitioned. The seleofidine Partitioning W S
partitioning can make an MQT more or less usefuato MDC W S W
given query. It is such a dependency among feathigs

significantly complicates our problem. The iterativ
approach does have an advantage, though. It catntie

selection of each feature as a black box, and doeseed

to know the implementation details inside a featudgich MQTs mutually depend on each other a lot, and ifsis

makes future extension much easier. To supportva ne 2) .
feature f, we can just plug in a new componentdear that their interdependencies should be dledsas

implementing the selection of f. It also gives flhkty to strong. One of the complexities comes from the fiaat

slo|=8

Table 1. Classification of Dependencies of A on B

As we described earlier in Section 4.1, indexes and

1089

MQTs can have indexes which competes with indexes oFor example, a secondary index is typically usefhien
base tables. the number of matching records is relatively sn@ii.the
The interaction between indexes and patrtitionirgygs iother hand, an MDC organization is especially biersdf
different. First of all, indexes for local predieatare for OLAP types of queries, taking slices of the tiaul
relatively insensitive to how data is partitioned. dimensional cubes, for which there are typicallyngna
Partitioning keys are usually determined by joimgl a matches, since the matching records have all been p
aggregations. Next, consider those indexes seldote clustered together. There is, in fact, a strongrattion
nested loop joins. It is true that changing whintlexes (similarity) between a one-dimensional MDC and a
are available can possibly change the join metliodse conventional clustered index. We address this isaue
execution plan, and therefore may affect the seleaif Section 5.3.
partitionings. However, good partitionings are more Finally, we do find that MDCs are very similar to
influenced by intermediate result sizes, which depe indexes in their relationship to MQTs and partitias,
only on cardinalities and predicate selectivitieswhich means that MDCs and MQTs are strongly coupled
(independent of the existence of indexes or not)while MDCs and partitionings are weakly coupled.
Conversely, although the selection of a table’sSimilar to partitioning, an MQT can be further ¢kred
partitioning can potentially influence the selentiof join through an MDC organization.
methods and consequently the selection of indesssh)
influence is not as strong as that of predicatecsieities. 4.3 TheHybrid Approach

Consider the following SQL query on a TPC-H[20] \we gbserve that mutual strong dependencies areudiff

database as an example. to break and thus are better handled using an rittsd)
approach. We decouple other dependencies (unilatera
Q1. SELECT L_ORDERKEY, O_ORDERKEY, strong and weak) and apply the iterative approdch.
P_PARTKEY minimize the impact of doing so, we carefully chedise
FROM LINEITEM, ORDERS, PART ordering within an iteration and add special casiéisin a
WHERE L_ORDERKEY = O_ORDERKEY component whenever necessary. We are now ready to
AND L_PARTKEY = P_PARTKEY outline our “hybrid” approach.
AND P_NAME = ‘SOME PART In general, for a pair of features A and B, if AdaB

. . are mutually strongly dependent on each other, \lle w
Notice that a good set of indexes for Q1 probablyy eate a component that jointly searches both ABnd
should include =(p_name, p_partkey) on PART, gniy B strongly depends on A, we will iterativelgasch
I=(I_partkey, |_orderkey) on LINEITEM andsl= A gnd B, but make sure that A is searched befomnB
(o_orderkey) on ORDERS, wherghielps the evaluation 4t B js properly influenced by A. Finally, if And B are
of the_ I_ocal predicate gnd _and b can be used in nested weakly coupled, we will again separate them into
loop joins. Such a choice is mostly based on thetfat giterent components, but can iterate through themny
the local predicate on PART is very selective, match 5 qer. Furthermore, we try not to lose the weak

based on how tables are partitioned. We observe thgependencies completely; we allow each component to
whether } and kexist or not affects the join methods andoptionally implement a quick and simple search of a
thus can affect the partitioning selection. Formep®, featyre in another component to account for thekwea
LINEITEM can be chosen to be partitioned on |_oke§r re|ationship. Our hybrid approach enables us talbthe

in one case and on |_partkey in another. Howeveces jmplementation of different features into smaller
all intermediate results are small in both casé® t components while capturing the most important
performance difference on two partitioning selesiavill interdependencies among them. Such an approachsmake
also be small, if any. Based on the above anafysisthe i hossile for us to build a tool that can harttile design
finding in [8] that complex queries tend to usethf8ns of 4| four features and be able to extend in terk. In
more often, we classify that indexes and partitigsi e next section, we describe in detail how we ke

weakly depend on each other. _the hybrid approach in the Design Advisor.
A similar argument can be made on the dependencies

between MQTs and partitionings. The only differeise . .
that MQTs themselves can have partitionings, which5 Thelmplementation of the Hybrid
makes partitionings strongly dependent on MQTs,nout Approach

vice versa. This is an interesting example where th\ye developed the hybrid approach by extending the
degree of dependencies is not necessarily symmetric infrastructure of the existing Index Advisor in DBIDB.

We classify the dependencies between indexes and sSection 1.1, we revisit the architecture of thdex
MDCs as weak, which seems somewhat controversiahgyisor. We then describe the necessary extensions
Indeed, MDC enables and requires a special kind 0fgction 5.2. In Section 5.3, we describe the main

index. However, MDC was actually developed to s&ve jgorithm used in the Design Advisor. Finally, wisadiss
different class of queries than traditional indesesve.

1090

some of the issues concerning MQT selection ini@ect candidates. Since the RECOMMEND mode is integrated
5.4 and unused structures in Section 5.5. inside the database engine, it is able to find ickates

quicker and more accurately.
5.1 Index Advisor Revisited

5.2 Explain M ode Extension

We extend the methodology used for the Index Adviso

Advisor clien Database Serv the three other features as well. For each addition
feature we intend to support, we add two special
get workloa EXPLAIN modes, one for recommending the feature and
the other for evaluating the feature. We also add a
v corresponding “advise” table to store the candild#ost
get candidat » RECOMMENC importantly, we extend the EXPLAIN register from a

single value to a bit set such that multiple EXPNAI
modes can be set at the same time. Such an exieissio
very powerful, since it provides the capability of
conducting both joint searching and iterative Seiag:
For example, by setting RECOMMEND INDEXES and
RECOMMEND MDC together, the optimizer is able to
suggest RID index and MDC dimension candidates
together. In another example, by setting EVALUATE
Figure1. Architectureof an Index Advisor INDEXES and RE_CC_)MMEND PARTITIONINGS mode
together, the optimizer can try to generate thet bes
_) partitionings for a statement while assuming thisterce
The DB2 Index Advisor [21] uses an architecture asyf indexes suggested from a previous iteration.eNbat

depicted in Figure 1. The database server is augmen gjthough the infrastructure appears to be the sameach
with two special “EXPLAIN" modes—RECOMMEND feature, it does not prevent each feature (if separate

INDEXES and EVALUATE INDEXES. Under a special component) from using a different searching mettod
explain mode, a given statement is compiled but nofhe try candidates phase. Finally, the bit setasgntation
executed. In the RECOMMEND mode, the optimizer iscan easily support additional features in the &itur
extended such that it will generate promising tult

indexes for a given statement on the fly. Virtuadéxes 5.3 TheHybrid Algorithm

are then considered during optimization as if tlzeg
physically present. Those indexes that are pattiefinal
best execution plan are treated as the best
candidates for the given SQL statement. They ar

collected by the optimizer and are written to acsgle recommends candidates within its own disk condtiain

advise_index table. In the EVALUATE mode, the . .
optimizer obtains from the advise index table thoseéhe components are iterated in the order of IMarid C.

candites marked a5 i use” and generaes nff1S 05l [eects e degree of qepencenes as
corresponding virtual indexes before optimizatidarts. ’ P

In other words, the EVALUATE mode causes the virtua l\/]lQ'\'/II'[s) gnd Mﬂ? Csd We choze '\r/llot_lEo |fntegrate thle Sehif:t |
indexes in the advise_index table to act as a teanpo 0 S With Indexes an QTs for several practica

extension to the DB catalog information. The reasons. First, we want to limit the search spaitieirwa
optimization then continues to compute the besteien s:nglei compcl)n((jent..tﬁgc%nd, w?hfeel ‘Qﬁt &ASCTS ?:r_eerlr;or
plan assuming those virtual indexes are physicall osely coupled with Indexes than wi S A
present. DC_s do not compete fo_r as muc_h space as both axdex
The client side of the Index Advisor first collecis do since they use block indexes instead of RID xadge

workload. It then compiles each statement in thefaenadtu\ptlees ;’(‘;Zgﬁgrto integrate only the resource-intens

RECOMMEND mode and collects the best index The implementation of each of the three components
candidates for each. An enumeration algorithm therp1615 been gescribed in detail in [12,17,23] andoisFtJhe
combines those candidates in various ways, anédoh f f thi We iust t’t o t out tHa
combination compiles the workload in the EVALUATE ocus of this paper. Ve just want o pont ou .
searching algorithm wused for each component is

mode to get a corresponding cost estimation foh eac tomized. F | K K algorithm vt
statement in the workload. Finally, the combinatiith customized. For exampie, a knapsack aigorithm
by a random-swapping phase was used for the IM

the lowest total cost is returned as the bestisoldior the 123 d k-based h ¢loeh
workload. One of the advantages of this architecisr component [23], and a rank-based search was useaeio
)F component [17]. While components are relatively

that it uses the RECOMMEND mode to suggest inde

v
try candidate » EVALUATE

v
output resuli

We divide the Design Advisor into three componelivs,
indeF;(’ and C, where IM is responsible for index and MQT
ecommendation, and P and C are responsible for
partitionings and MDCs, respectively. Each comporien

1091

independent of each other, they are aware of thgepce special case, we let the C component handle adteried

of others whenever needed. For example, we suppoiridexes. If an MDC solution has only one dimensibe,
using sampling in each component to obtain moreC component will decide whether to use an MDC
accurate statistics. When this occurs, compondr@®esas organization or simply create a conventional cheste
much sampling as possible. Each component can hadex.

disabled. This is useful when a feature is notlalsé on The main algorithm is capable of iterating through
a particular platform (e.g., partitioning is onlyaslable = each component F more than once, and thereforéswu
when DPF is enabled) or the user does not seletteal for F can change after the design of other featises

features. exposed. Such iterations continue until some stappi
criteria are met, which can either be that soltidn not
1. get the workload information, database improve the workload any more, or a user-specifiet
system characteristics and the disk constraint) limit is reached. In a prototype we implementedt tha
2. getinitial cost of the workload repeats the iteration between component IM and €, w
3. while (stop criteria met) { found that the second invocation of IM (with théusions
4. for each enabled component F of IM,P,C { for partitioning) does not change the previous indad
5. invoke F with R MQT recommendations significantly. This actually
6 (solutions for F now stored in advise_F) verifies our assumption that indexes and MQTs only
7 if (current_cost < best_cost) weakly depend on partitionings. Therefore, we auiye
8 best cost =current cost only iterate through each component exactly once.
9. else B We add a special support in the IM component to
10. unmark candidates in advise F address MQTs' weak dependency on partitionings.
11. turn on EVALUATE F in explain register Observe that although the influence of partitiosiran
12. } MQTs is relatively weak, a terrible partitioningykéor an
13.} MQT can still reduce its potential benefit, esplgiachen
14, output solution maintenance cost needs to be considered. Hence, we
extend IM by adding a module that quickly selects a
Figure2. Main Algorithm reasonable initial partitioning for each MQT to yeat a

good MQT from being pruned. Every incrementally
. maintainable MQT in DB2 UDB has an implied unique
. Our main .hyb_nd algorithm used in the D.es'g.n Admso key [22]. For instance, the implied key is the grog

is presented in Figure 2. As usual, the adviset @ibtains columns for an aggregate MQT. For a join MQT, the

the workload, information on the database (e.g., DB i : X S
X - mplied key is the concatenation of the key on gaated
name, user ID, and password) and a disk constaiit table. We choose an arbitrary column from the igtpli

DIIDS QOt porlowded,;hefAdwst(_)r autotmhatlcally reicofegﬂds_ key to serve the initial partitioning key of the NIQ
a ased on sduc informa I(;)nt at;s N Emor:mt (;B I alt During incremental maintenance, such a partitiorkey
space and used space In a database. tach sta (a subset of the implied key) allows the join bedwehe

yvg{_rklload II<SI thg:n cotm%ICted tt% gtettﬁn olptlm:ﬁer-isamtnl MQT and the “delta” to be performed locally at each
initial- workioad cost. er that, the aigorithma 0 node, and thus reduces the maintenance cost.

gce)rnagteraitgtroi:g dr;vﬁjaec dh a?‘ggr%e(;lIcgcr)nnl?sgre]g{ts-l.-hlaotrg?lepd Subsequently, the partitioning of the MQTs willfoether
is given to indexes and MQTs than partitionings an(}uned by the P component.

MDCs because the latter two tend to use less sf@be. 54 MQT Selection

only type of partitioning that takes extra spacgdnel the) o

base data is replication.) After invoking a compuneith ~ The goal of the Design Advisor is to allow usersétect

an allocated constraint:Dthe suggested candidates for Fany subset of the supported features. If a feaineot
are recorded in the corresponding advise tableh(tie ~ requested by the user, normally, we can simply yjlae
“in_use” field marked). Note that if a componemteg ~ corresponding component during the iteration. Hawev
not use all the allocated space, unused spacessegido When the user only asks for MQTs, the semanticlisle

the next Component and can be consumed by Oth@t tr|Cky. If we fa|thfu"y follow the l‘equest anduggest
features. The current workload cost (with the sohsgt for ~ only MQTs and nothing else, such MQTs may not be
F) is used to compare against the best workloatl tos Usable because they typically need some indexdiseon.

the current cost is smaller, the new solution foisF ©On the other hand, since the users probably hawe so
accepted and the best cost is updated. Otherwissew ~ confidence in existing indexes, we probably showtd
solution is discarded by unmarking the “in_useldien Vvoluntarily perform a full index search. As a sajat we

the advise table. We then turn on the EVALUATE Fdecide that if MQT is the only feature requestedttny
mode in the special explain register so that tHetisms ~ USer, the Design Advisor will automatically recommde
for F become visible by subsequent components. As #dexes and partitionings (if DPF is enabled) oggmsted

1092

MQTs. We choose not to cluster suggested MQTs usingie can fetch all statements passed through Query
MDC since it is a more advanced feature. Patroller.

In order to support this, we introduce another
EXPLAIN mode VIRTUAL_MQT. When this mode is 6.2 Built-in Workload Compression

enap!ed_ in the EXPLAIN register bit set, indexesl an p key factor that affects the scalability of the siyn
partitionings are only recommended and evaluated fopqyisor is the size of the workload. Since eachestent
newly recommended (virtual) MQTs. in the workload needs to be compiled by the op&miz
(most likely more than once) in order to obtain the
5.5 Unused Structures estimated cost, the larger the workload, the loiitgteikes
While the Design Advisor recommends new desigrthe advisor to run. As a matter of fact, the tiroerdn
structures, would it make sense for it to removecstires design tools such as Microsoft Tuning Wizard and2DB
that are not used at all? House-cleaning oftenldv@er Index Advisor typically grows exponentially withliaear
priority than adding new designs, so it's commoiéave increase of the workload size (verified through
indexes and MQTs that are out-of-date. However, thexperiments). Thus, workload compression is imperat
danger is that the Design Advisor may not see théor the scalability of these design tools.
complete workload. Although more built-in workload A simple workload compression technique is to merge
supports have been added to the Design Advisoti(Bec statements that are exactly the same, but witlrereifit
6.1 describes the details), infrequent queriesstillehard parameter bindings. In fact, for workloads that are
to collect. Therefore, we may delete an index Heams obtained from the dynamic package cache, such
useless but is very important for a CEO query thas compression has already been done. One study [4]
only every quarter. Because of this, the Designigalv proposes a more sophisticated workload compression
does not recommend any deletion of existing strestu technique that employs mining-like methods to
Instead, it reports a list of existing indexes 8@Ts that summarize the workload. The authors demonstrate tha
are useful to the given workload. The set of unusedising the reduced workload, both the Microsoft Tgni

indexes and MQTs can be inferred from this list. Wizard and DB2 Index Advisor can provide design
recommendations very close to those based on the fu
6 Workload Support workload. However, to get the reduced workload, the

)))) _ technique requires relatively intensive computatsoch
Since the Design Advisor is a workload-driven ta®& s calculating the distance between pairs of setéstin
pay a lot of attention to workload-related issués. the original workload.

Section 6.1, we describe additional ways in theidres We see a benefit in adding workload compressica as
Adw;or for users to .convenlently obtam_ a worklo& pyilt-in module for the Design Advisor. The Design
Section 6.2, we introduce the built-in workload pdyisor will invoke the workload compression modifle
compression method for scalability. it feels that the workload is too large and thelysis
- cannot finish in a reasonable amount of time. One

6.1 ObtainingaWorkload important requirement for the compression module is
The DB2 Index Advisor accepts a workload from theefficiency. We want to spend a relatively smaltfian of
command line (a single statement), a file, or arthe total amount of time on compression the workloa
advise_workload table. In the Design Advisor, weal ad Therefore, we take an approach that only keepsoinéd<
two additional workload sources, one from the dyitam most expensive queries, whose total cost is no Itizne
statement cache and the other from the Query Ratrol X% of the original workload cost. The Design Adviso

The dynamic statement cache stores the plans lfor ailready compiles each statement in the workloambtain
dynamic SQL queries submitted to a database ertgine an estimated cost (line 2 in Figure 2). We thert #ue
avoid recompilation. As a side effect, each dynaB@L statements in descending cost order and keep isglect
statement itself is cached, together with the feegy of statements from the top into a reduced workload tie
execution. Therefore, the statement cache servea ascost of the reduced workload is less than or etu%
good source for a typical workload. With this neption, of the original workload. Our approach, althougimysie,
users can run their favourite applications for dlevand is quite effective in reducing the workload sizepecially
then invoke the Design Advisor, which will thenlest when the distribution of statement cost is skewElde
the SQL statements and associated frequencies tiem reduced workload includes the most time-consuming
cache automatically. statements, which typically need tuning.

Query Patroller [16] is a powerful query management We can control the compression ratio by scaling the
tool included in DB2 Data Warehouse EnterpriseiBdit percentage X. Instead of burdening the users toecam
It provides the capability of classifying queriestd with an appropriate value for X, we expose onlyeghr
classes, prioritizing queries, and tracking runawaycompression levels: low, medium and high, with Xtse
queries. We add an option in the Design Advisothed 60, 25, and 5, respectively. By default, medium

1093

compression level will be used. Once compression ibecause the subquery result in Q18 was subsequently
done, the hybrid algorithm simply works on the el filtered though a range predicate on L_QUANTITY.

workload and gives recommer.]d.ations accordingly. It CREATE SUMMARY TABLE MQT2 AS (
makes one final pass over the original workloathatend SELECT SUM(L_QUANTITY) AS CO,
to obtain the cost for the whole workload with the L ORDERKEY AS C1
recommendations based on the reduced workload. FROM TPCD.LINEITEM

Finally, we allow the user to turn off workload GROUP BY L_ORDERKEY)
compression completely for more accurate desigimgLin DATA INITIALLY DEFERRED

REFRESH DEFERRED

, PARTITIONING KEY (C1)
7 Experimental Results IN TPCDLDAT

In this section, we select two sets of experimetots

present. All experiments were conducted on a regula (CO DESC

build for DB2 UDB Version 8.2. In Section 7.1, west c1 DESC)'

the pesign Advisor by selecting aII_ four fgaturels. ALLOW REVERSE SCANS
Section 7.2, we focus on the selection of indexed a

MQTs only, and demonstrate the benefit of our Hailt))))
workload compression module. We summarize our An MDC recommendation from this experiment is
experimental results in Section 7.3. also given below. The recommendation was for the

PARTSUPP table to be MDC clustered (as shown by the
7.1 TPCH Results ORGANIZE BY clause) based on a newly generated
column. This column groups the values of PS_PARTKEY
such that each group falls into a clustered blotkhe
MDC. In this particular case, a single-dimensiokC
i€ better than a conventional clustered index beeabe
generated column condenses the value domain.

CREATE INDEX IDX3 ON MQT2

The first experiment was to demonstrate how wedl th
Design Advisor recommends all design features. Wais
done using a 1 GB TPCH [20] database stored on an
CPU AIX® 5.2 system with 4 logical partitions. The
workload contains all the 22 TPCH queries.

We started with a baseline design that storedatbies CREATE TABLE TPCD.PARTSUPP (
across all 4 partitions and used the primary keyhas PS_PARTKEY INTEGER NOT NULL ,

e . PS_SUPPKEY INTEGER NOT NULL ,
partition key for all tables except for LINEITEM,hich PS_AVAILQTY INTEGER NOT NULL ,

was partitioned on IEPARTKEY, part of the primamyk PS_SUPPLYCOST DOUBLE NOT NULL ,
The LINEITEM partitioning was chosen based on thet f PS_COMMENT VARCHAR(199) NOT NULL,
that L PARTKEY is used in quite a few of the 22 qes. MDC040303204738000 GENERATED
The rest of the baseline physical DB design isveeri ALWAYS AS (
from a TPCH benchmark. INT((PS_PARTKEY-11)/(792))))
PARTITIONING KEY (PS_PARTKEY)
Design Feature Number IN TPCDTDAT
Recommended ORGANIZE BY (MDC040303204738000)
Indexes 20
MDC dimensions 6 Finally, we note that besides the partitionings
Partitioning Changes 4 recommended for MQTs, the partitioning key of
Materialized Views 2 LINEITEM is also changed from L _PARTKEY to
L_ORDERKEY. The latter is useful for fewer, but nhuc
Table 2. Design Advisor Recommendationsfor a more expensive, queries.
TPCH 1GB Database The DB2 Design Advisor makes its recommendations

based on estimated response times for workloadsy usi
fIhe cost model in the optimizer. In this experimeme

The Design Advisor was able to finish the design o)) . >
. . obtained an estimated response time improvement ove
all features in about 10 minutes. Table 2 shows tramy : : . :
the baseline (without recommendations from the @esi

recommendations the advisor made for each desigp ; . 0 .
feature. For example, we show below one of the MQngwsor) of 83.01%. We implemented all the

. . recommendations made by the Design Advisor and
recommended (MQT2) that contains the subquery i@ Q1 ;
using LINEITEM. In this MQT, the partitioning keyas measured the actual cost of the workload. Figusb@vs

i 0,
also properly selected on C1, because the MQ e real performance improvement as 84.54% (the

S ; 0 L
sometimes needs to be further joined with the ORSERthaesﬁl'Ti;;:e?grga{ilzggotr? 100%), which is very elts
table. An index IDX3 was also recommended on MQT2. P '

Notice that the index key is ordered in (C0,C1)isTis

1094

queries. All queries include range predicates, fmie or

5 120 two dimensional tables with the fact table, andraggte
3 100 at various levels in the hierarchy. Figure 4 shdiws
I% results. Note that we only show the 80 to 150 queses
3 S 80 for no compression because that is where the sttage
S o 60 differences occur. The results indicate that asntimaber
B E of queries increases, the advisor execution tingo al
SF 40 increases with and without compression. Howevedeun
% 20 the medium compression, the Design Advisor rungdwi
< 0 = - as fast when there are 80 and 100 queries in thiloeal,
& Baseline New Design and an order of magnitu_de faster when there are _150
queries (note the logarithmic scale on the y-axis).
Although not shown here, a higher level of compoess
Figure3. 1 GB TPCH Real Workload Performance provides a more significant reduction of the exmrut
I mprovement time of the Advisor. There is a slight increasetrat 80
query workload mainly because its random-swapping
72 MOLAP Results phase was longer than that in the 100 query casthel

100 query case, the advisor found a very good isolut

In the next set of experiments, a DB was set up as early and thus finished the algorithm earlier. Wsoa
classic MOLAP schema. Both the data and the wotkloacompared these results to our competitors’ andddbat
are synthetic, but represent similar charactesst®en in the Design Advisor achieved a more significant ctidu
various customer MOLAP schemas. The DB has a fadh the execution times.
table with 8 measures, and there are 16 hieratchica
dimensions. Table 3 shows the number of levelsaich
hierarchy and the cardinality of each dimension. 100000

Experiments were run on a Windows® 2000 Server _
SP4 with four 400 MHz CPUs. We set up the datalbase §
have four logical partitions. Note that these ekpents &
only selected indexes and materialized views. E % 10000 BMED
F 3 B OFF
Dimension Number of Cardinality § E
Levels in 3 <
. O o
Hierarchy 58 1000 -
1 2 4 52
2 2 3 2
3 2 2 <
4 4 52 100 4
5 3 3000 1 40 60 80 100 150
6 2 7 Number of Queries
7 2 4 .)
8 3 300 Figure 4. Medium (MED) and no (OFF) workload
9 2 331 compression advisor execution time comparison using
the MOL AP schema wor kload
10 2 2
11 4 189
12 2 11 There is a trade-off between workload compression
13 3 3000 and the quality of the design recommendations. The
14 4 372 higher the compression level, the faster the adwvisos,
15 2 2 but potentially the lower the quality of the
16 2 2 recommendations. In Figure 5, we present the pssgre
- made by the Design Advisor with and without workloa
Table3. MOLAP Schema Characteristics compression. Each point in the figure represenss th

workload improvement achieved by the Advisor after
We demonstrate the usefulness of our workloadunning for a certain amount of time. In the etitg
compression with respect to reducing the Designigaty ~ 2dVisor ended up with a 77% estimated improvemeiit w
execution time. Medium compression was comparemto (€ medium compression, and an improvement of 93%
compression with workloads of varying numbers ofWith no compression. However, with medium

1095

compression, the advisor finished about 4,300 s#on
sooner than with no compression. As a result, nmdiu

of the queries, say Q1, and use the MQT to serve Q2
When used this way, MQTs become strongly coupled

compression provides a good compromise betweewith partitionings. We'd like to investigate an iefént
execution time and design quality. Figure 5 alsoway to support this special case in the futurdncalgh we
demonstrates that a large portion of the performanchave addressed this issue partially through thécegpd

improvement is achieved in a relatively short antooin
time by the Design Advisor (both with compressiaom a
without). Subsequent searching only further impsothe
performance marginally. This is very useful foridagg
the stopping criteria in our main algorithm. It betes
reasonable to stop the Advisor when no improverhast
been made after the advisor has executed for aicert
number of iterations.

O
0 % 100
S € 801
n O
& g ~ 60 4 e MED
fﬂf) g—e\/ 40 - ——OFF
= =
() -
£ 2
g oA ;
0 5000 10000
Advisor Execution Time (secs)
Figure 5. Workload improvement vs. advisor

execution time for medium (MED) and no (OFF)
workload compression for the 80 query MOLAP
schema wor kload

7.3 Summary

partitioning recommendations made by the P compionen

The Design Advisor is currently focused on physical
database design. In the future, we'd like to ingesé the
possibility of extending it to support logical dgss as
well. Logical design is currently done by tools lsugs
Rational® Rose® and XDE™ [10], when database
schemas are derived from modelling specificatioamshs
as UML. How to integrate the Design Advisor withcBu
tools is an interesting study for the future.

9 Conclusion

The DB2 Design Advisor is the first comprehensive
physical database design tool to recommend indexes,
materialized views, partitioning, and clusteringr fo
multiple dimensions in an integrated and scaladhibn.
We have described a framework that permits any
combination of recommending some features while
holding others fixed to a given solution, as wedl a
hybrid algorithm that efficiently searches throute
enormous space of possible solutions while takimg i
consideration the interactions of related featureshe
Design Advisor also has built-in workload compressi
for reducing the execution time of the Advisor witi
sacrificing quality in the solution. Initial experental
results verify that solutions selected by the Desig
Advisor improve by almost 100% the performance of
workloads of hundreds of queries after runninguoder
three hours, less time than it would take a humBA Eb

To summarize, our experiments demonstrate that thevaluate a handful of possible solutions, and sgnts a

Design Advisor is capable of recommending a deligh
includes all the four features, significantly impes the
performance of the workload over a benchmark basgli
and completes in a reasonable amount of time. We al
validate the effectiveness of our workload compoess
technique that allows the Design Advisor to scald e
increase of workload size. Our analysis shows that
medium compression level reduces the Advisor exatut
time considerably without compromising the qualdfy
the recommendations.

8 FutureWork

While we categorize the interaction between MQTd an
partitionings as weak in Table 1, a novel usagM@fTs
can change that. For example, suppose that twdeguer
Q1 and Q2 prefer a table T to be partitioned usifhgand
P2 respectively. Normally, we can only choose dhnthe
partitionings for table T. However, it's possibte define
an MQT that duplicates T and also carries a differe
partitioning than T. That way, we can use T to sarme

major advance in automating perhaps the most comple
and time-consuming task that DBAs now perform.

References

1 Sanjay Agrawal, Surajit Chaudhuri and Vivek R.
Narasayya, Automated Selection of Materialized
Views and Indexes in SQL Databases, Proceedings
of 26th International Conference on Very Large Data
Bases, 2000: 496-505.

Sanjay Agrawal, Vivek R. Narasayya, Beverly Yang,
Integrating Vertical and Horizontal Partitioningtdn
Automated Physical Database Design. SIGMOD
Conference 2004.

Chaitanya K. Baru, Gilles Fecteau, Ambuj Goyal,
Hui-l Hsiao, Anant Jhingran, Sriram Padmanabhan,
Walter G. Wilson: An Overview of DB2 Parallel
Edition. SIGMOD Conference 1995: 460-462

Surajit Chaudhuri, Ashish Gupta, Vivek R.
Narasayya: Compressing SQL workloads. SIGMOD
Conference 2002: 488-499

3

4

1096

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Agrawal:Sanjay.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Narasayya:Vivek_R=.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2004.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Baru:Chaitanya_K=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fecteau:Gilles.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Goyal:Ambuj.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hsiao:Hui=I.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Padmanabhan:Sriram.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wilson:Walter_G=.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod95.html
http://www.cobase.cs.ucla.edu/pub/dblp/html/db/indices/a-tree/g/Gupta:Ashish.html
http://www.cobase.cs.ucla.edu/pub/dblp/html/db/indices/a-tree/n/Narasayya:Vivek_R=.html
http://www.cobase.cs.ucla.edu/pub/dblp/html/db/conf/sigmod/sigmod2002.html

5 Surajit Chaudhuri and Vivek R. Narasayya, Business Machines Corporation in the United States,
Microsoft Index Tuning Wizard for SQL Server 7.0, other countries, or both.
Proceedings ACM SIGMOD International
Conference on Management of Data, 1998: 553-554. Windows is a registered trademark of Microsoft

6 Surajit Chaudhuri and Vivek R. Narasayya, Corporation in the United States, other countedyoth.
AutoAdmin "What-If" Index Analysis Utility.

Proceedings of ACM SIGMOD, Seattle, 1998. Other company, product, and service names may be

7 S. Finkelstein and M. Schikolnick and P. Tiberio, trademarks or service marks of others.
Physical Database Design for Relational Databases,

ACM Transactions of Database Systems, 13(1): 91-
128, 1988.

8 Goetz Graefe: The Value of Merge-Join and Hash-
Join in SQL Server. VLDB 1999: 250-253

9 http://www.ibm.com/software/ db2/

10 http://lwww.ibm.com/software/ rational/

11 http://www.ibm.com/software/data/informix/
redbrick/

12 Sam Lightstone and Bishwaranjan Bhattacharjee,

Automated design of Multi-dimensional Clustering
tables for relational databases, VLDB 2004.

13 Guy M. Lohman, Sam Lightstone: SMART: Making
DB2 (More) Autonomic. VLDB 2002: 877-879

14 http://lwww.oracle.com/

15 Sriram Padmanabhan, Bishwaranjan Bhattacharjee,

Timothy Malkemus, Leslie Cranston, Matthew
Huras: Multi-Dimensional Clustering: A New Data
Layout Scheme in DB2. SIGMOD Conference 2003:
637-641

16 Query Patroller, http://www.ibm.com/software/data/
db2/querypatroller/.

17 Jun Rao, Chun Zhang, Nimrod Megiddo, Guy M.

Lohman: Automating physical database design in a
parallel database. SIGMOD Conference 2002: 558-
569.

18 http://researchweb.watson.ibm.com/autonomic/
manifesto/

19 http://lwww.sap.com/

20 TPC-H benchmark, http://www.tpc.org/

21 Gary Valentin, Michael Zuliani, Daniel C. Zilio, Gu
Lohman and Alan Skelley, DB2 Advisor: An
optimizer smart enough to recommend its own
indexes, Proceedings of the ICDE Conference, 2000:

101-110.

22 Markos Zaharioudakis, Roberta Cochrane, George
Lapis, Hamid Pirahesh, Monica Urata: Answering
Complex SQL Queries Using Automatic Summary
Tables. SIGMOD Conference 2000: 105-116

23 Daniel C. Zilio, et al, Recommending Materialized
Views and Indexes with IBM's DB2 Design
Advisor, International Conference on Autonomic
Computing 2004.

Trademarks
AlX, DB2, DB2 Universal Database, IBM, and

Informix, Rational, Rational Rose, and XDE are
trademarks or registered trademarks of Internationa

1097

http://www.acm.org/sigmod/dblp/db/conf/vldb/vldb99.html
http://www.ibm.com/software/data/informix/
http://www.oracle.com/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bhattacharjee:Bishwaranjan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Malkemus:Timothy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cranston:Leslie.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Huras:Matthew.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2003.html
http://www.ibm.com/software/data/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhang:Chun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Megiddo:Nimrod.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lohman:Guy_M=.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2002.html
http://researchweb.watson.ibm.com/autonomic/
http://www.sap.com/
http://www.acm.org/sigmod/dblp/db/indices/a-tree/z/Zaharioudakis:Markos.html
http://www.acm.org/sigmod/dblp/db/indices/a-tree/c/Cochrane:Roberta.html
http://www.acm.org/sigmod/dblp/db/indices/a-tree/l/Lapis:George.html
http://www.acm.org/sigmod/dblp/db/indices/a-tree/u/Urata:Monica.html
http://www.acm.org/sigmod/dblp/db/conf/sigmod/sigmod2000.html

