
Flexible String Matching Against Large Databases in Practice

Nick Koudas Amit Marathe Divesh Srivastava
AT&T Labs–Research

fkoudas, marathe, diveshg@research.att.com

Abstract

Data Cleaning is an important process that has been at
the center of research interest in recent years. Poor data
quality is the result of a variety of reasons, including
data entry errors and multiple conventions for recording
database fields, and has a significant impact on a vari-
ety of business issues. Hence, there is a pressing need
for technologies that enable flexible (fuzzy) matching
of string information in a database. Cosine similarity
with tf-idf is a well-established metric for comparing
text, and recent proposals have adapted this similarity
measure for flexibly matching a query string with val-
ues in a single attribute of a relation.

In deploying tf-idf based flexible string matching
against real AT&T databases, we observed that this
technique needed to be enhanced in many ways. First,
along thefunctionality dimension, where there was a
need to flexibly match along multiple string-valued at-
tributes, and also take advantage of known semantic
equivalences. Second, we identified variousperfor-
mance enhancementsto speed up the matching process,
potentially trading off a small degree of accuracy for
substantial performance gains. In this paper, we report
on our techniques and experience in dealing with flexi-
ble string matching against real AT&T databases.

1 Introduction
The efficiency of every information processing infrastruc-
ture is greatly affected by the quality of the data residing
in its databases. Poor data quality is the result of a va-
riety of reasons, including data entry errors (e.g., typing
mistakes), poor integrity constraints and multiple conven-
tions for recording database fields (e.g., company names,
addresses). This has a significant impact on a variety of
business issues, such as customer relationship management
(e.g., inability to retrieve a customer record during a service
call), billing errors and distribution delays. As a result, data

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

cleaning has been at the center of research interest in recent
years (see, e.g., [3]).

A key technology in data cleaning is flexible (fuzzy)
matching of string information in a database. Such infor-
mation is prevalent in corporate databases (e.g., customer
names, company names, product names, addresses), and
effectively matching such attribute values, taking into ac-
count the many sources of poor data quality, is a challenge.
Consider, for example, the address of AT&T’s headquar-
ters in the US: “900 Route 202/206, Bedminster, NJ”. Due
to multiple conventions in representing such addresses, this
address also occurs in various databases as “900 USHwy
202/206, Bedminster, NJ”, “900 Rt 202, Bedminster, NJ”.
Similarly, when considering company names, it is common
to see “Microsoft”, “Microsoft Inc.” and “Microsoft Cor-
poration” being used in different records to represent the
same entity. A simple equality or (even) substring compar-
ison on names or addresses will not properly identify them
as being the same entity, leading to a variety of potential
business problems.

To effectively deal with flexible matching of string val-
ues in a database, while accounting for data quality issues,
recent techniques [2, 4] have proposed the use of the well-
established tf-idf (term frequency, inverse document fre-
quency) metric, commonly used in Information Retrieval
for comparing text. Intuitively, tokens (words, q-grams,
etc.) are extracted from database strings, and each token
is associated with a weight (idf) reflecting its common-
ality in the database (common tokens are assigned a low
weight, uncommon tokens are assigned a high weight).
Each database string is then associated with a (normalized)
weight vector (incorporating both tf and idf) corresponding
to the tokens extracted from it. Similarity between database
strings, or between a database string and a query string, is
then computed using the cosine similarity (inner product)
of the corresponding weight vectors, essentially taking the
weights of the common tokens into account.

In deploying such a technique against real AT&T
databases, we observed that applications do not want to
merely match string values in a single attribute.

† Often, there is a need to flexibly match along mul-
tiple string-valued attributes, for example, both com-
pany name and (partial) address. As can be expected,
this helps to focus the search considerably. While

1078

there might be many high-similarity flexible matches
for both the company name (e.g., “Microsoft”) and
the partial address (“New York, NY”), individually,
the combined query has much fewer high-similarity
matches.

† Again, there are semantic relationships that are of-
ten known, which are unlikely to be matched using
basic flexible string matching techniques. For ex-
ample, AT&T’s headquarters also has the (personal-
ized) address “1 ATT Way, Bedminster, NJ”, which
is hard to match with (the standard address of) “900
Route 202/206, Bedminster, NJ”. Similarly, “World-
com Corp.” and “MCI Inc.” refer to the same com-
pany, but would not be matched using basic string
matching techniques.

Such needs require that the basic string matching tech-
nique be enhanced along thefunctionalitydimension. In
addition, when such flexible string matching is done against
large databases (with tens of millions of records), perfor-
mance becomes a bottleneck, even when the technique is
implemented, using SQL, inside the database. This re-
quires the identification of novelperformance enhance-
mentsto speed up the matching process. In talking to users
of the tools that we built, we identified that it was accept-
able to trade off a small degree of accuracy for substantial
performance gains.

In this paper, we address these functionality and perfor-
mance issues, and report on our experience in using flexible
string matching techniques against real AT&T databases.
The rest of this paper is structured as follows. In Section 2,
we present a detailed description of tf-idf and cosine sim-
ilarity, along with the SQL that serves as our baseline in
this paper. We describe our various functionality enhance-
ments in Section 3, and the performance enhancements in
Section 4. In each section, we provide both the conceptual
contributions and an experimental evaluation of the impact
of these contributions. We identify additional challenges
that we faced in practice, both along the functionality and
performance dimensions, in Section 5, before concluding
in Section 6.

2 Single Attribute TF-IDF Matching
In this section, we present a detailed description of tf-idf
(term frequency, inverse document frequency) and cosine
similarity for matching against the values in a single rela-
tional attribute, along with the SQL that serves as our base-
line in this paper. Our description is based on the approach
mentioned by Gravano et al. [4]. Our techniques can be
adapted to use alternate approaches, such as the one pro-
posed by Chaudhuri et al. [2], as well.

Let Base denote a base table with a string-valued at-
tributesva against which the flexible matching needs to be
performed, and letSearch denote the table containing the
search strings (this may consist of just a single record with
a single attribute value, or may be more complex). Flexible
string matching is performed in two stages:

† At pre-processing time, the Base table is pre-
processed, and tokens (words, q-grams, etc.) are ex-
tracted from each database string inBase.sva . A
variety of auxiliary tables get created, to compute the
idf’s of each token, and ultimately to associate each
database string with a (normalized) weight vector (in-
corporating both tf and idf) corresponding to the to-
kens extracted from it.

† At query time, a similar process is first done with re-
spect to theSearch table. Then, an SQL query that
operates on the auxiliary tables created fromBase
andSearch is executed, which identifies the match-
ing records, along with their similarity score. Es-
sentially, this query computes the cosine similarity
(inner product) of the weight vectors of the search
string with the weight vectors of the database strings
in Base.sva , taking the weights of the common to-
kens into account.

2.1 Pre-processing Time: Steps

We now describe the SQL of the pre-processing in a step-
by-step fashion. Assume that we have extracted the tokens
from the string values inBase.sva and stored the re-
sult in the term frequency tableBaseTF(tid, token,
tf) , wheretid refers to the record identifier in theBase
table (and hence uniquely identifies the string in thesva
attribute of that table), andtf is the number of occur-
rences oftoken in that string. Also, for simplicity, as-
sume that the tableBaseSize(size) contains a single
one-attribute record containing a count of the number of
records inBase . The next sequence of steps is as follows.

First, each token needs to be associated with a weight
(idf) that reflects its commonality in the database; com-
mon tokens are assigned a low weight, uncommon tokens
are assigned a high weight. This is computed into the
BaseIDF(token, idf) table below.

insert into BaseIDF(token, idf)
select T.token, LOG(S.size) -

LOG(COUNT(T.tid))
from BaseTF T, BaseSize S
group by T.token

Once theidf ’s have been computed, and thetf ’s are
known from theBaseTF table, the weight vector cor-
responding to a string can be easily computed by asso-
ciating the producttf*idf with each token extracted
from the string. However, this is an un-normalized
weight vector. Before computing this vector, the second
step computes this normalization term, for eachtid , as
the l2-norm (length in the Euclidean space) of the un-
normalized weight vector. This is computed into the
BaseLength(tid, len) table below.

insert into BaseLength(tid, len)
select T.tid,

SQRT(SUM(I.idf*I.idf*T.tf*T.tf))
from BaseTF T, BaseIDF I

1079

where T.token = I.token
group by T.tid

In the third, and final, pre-processing step, the normal-
ized weight vector, associated with each string, is computed
into theBaseWeights(tid, token, weight) ta-
ble below.

insert into BaseWeights(tid, token, weight)
select T.tid, T.token, T.tf*I.idf/L.len
from BaseTF T, BaseIDF I, BaseLength L
where T.token = I.token

and T.tid = L.tid

2.2 Query Time: Steps

At query time, given a query string in theSearch(sva)
table, the above sequence of steps are performed to com-
pute theSearchWeights(tid, token, weight)
table. Note that theBaseIDF table is used to obtain the
idf’s of the tokens extracted from the search string, to en-
sure that the data in the database table drives the weight
vector associated with the search string.

Finally, our baseline query, for computing all matches
(along with the scores) whose scores exceed a pre-specified
similarity thresholdT, is given below.

select S.tid, B.tid, SUM(S.weight*B.weight)
from SearchWeights S, BaseWeights B
where S.token = B.token
group by S.tid, B.tid
having SUM(S.weight*B.weight) > T

If, instead of being given a single search string to match
against a database table, we would like to compute the join
of two database tables based on a flexible string match of
their columns, the above SQL code works (more or less)
unchanged.1

2.3 Contributions of the Paper

In the rest of this paper, we describe how the above tech-
nique for effectively identifying flexible string matches was
extended by us to satisfy the needs of applications against
AT&T databases.

† In Section 3, we discuss functionality enhancements.
In particular, the ability to flexibly match multiple
string-valued attributes (eg., company name and ad-
dress), and the ability to take advantage of known
semantic relationships (e.g., multiple names for the
same company, or multiple addresses for the same lo-
cation).

† In Section 4, we discuss performance enhancements
that are necessary when dealing with large databases
(tens of millions of records) with string-valued at-
tributes. Most of these result in a small loss of recall

1The only change would be to use the strings in both tables to compute
the idf’s.

(i.e., some answers are not returned), for substantial
performance gains. However, for the answers that are
returned, their scores are computed accurately.

In each section, we provide both the conceptual con-
tributions and an experimental evaluation of the impact of
these contributions.

3 Functionality Enhancements
3.1 Multiple attributes

Consider aContacts table containing the name and ad-
dress for all companies. We can perform flexible string
matching on each field individually. But what may be de-
sired is a “combined” search which, given a name-address
pair(N; A), returns all tuples from the table that are “close”
to the search pair. The problem is to define metrics for
the distance between a search pair(N; A) and a tuple pair
(Ni; Ai).

These metrics should be efficient to implement and have
the same robustness properties as the cosine similarity met-
ric. We also want these metrics to be “data-driven” to the
extent possible. In other words, the number of parameters
that require user intervention to adjust should be kept to a
minimum. The cosine similarity metric can be categorized
as “data-driven” because it has a single parameter, the simi-
larity threshold, that has to be varied to change the behavior
of the match.

For the sake of illustration, the rest of the discussion
is in terms of theContacts table with name and ad-
dress attributes. But is should be noted that our enhance-
ments work with any table that has multiple string-valued
attributes.

3.1.1 Attribute Concatenation

A straightforward approach is to concatenate the name and
address attributes into a single string and perform flexible
string matching on this concatenation. The disadvantage
with this simple metric is that it ignores a lot of statis-
tical information. For example, if “Corporation” is com-
mon within the name attribute but rare within the address
attribute then all the tokens derived from “Corporation”
are assigned a low weight in the combined name-address
string. Hence, a search for an address containing “Corpo-
rate Drive” won’t assign a particularly high score to the
relevant tuples, even if the tokens derived from “Corpo-
rate” are uncommon among addresses. By concatenating
the name and address strings we have lost useful data about
the tokens which are common among names but not among
addresses (or vice versa).

3.1.2 Using Static Weights

Another metric that comes to mind is combining the simi-
larity scores from individual flexible matches on name and
address. That is, if, after running two separate flexible
searches, the name attribute value in a tuple has scorep and
the address attribute value in that tuple has scoreq then we

1080

Figure 1: Static weights: name = 0.75, address = 0.25

Figure 2: Static weights: name = 0.50, address = 0.50

define the combined score of that tuple to berp+ (1¡ r)q
wherer is a real number between0 and1. Such metrics
have been well studied. It has the advantage of being easy
to implement and by varying the value ofr we can adjust
the relative importance of the name and address attributes
in the search. And while it preserves the different distri-
butions of the name and address tokens it has the drawback
that we a-priori have to fix the value ofr and cannot change
the weights assigned to the name and address scores in a
dynamic manner. It is also not obvious how to infer a good
value forr from the data.

3.1.3 Using Dynamic Weights

The metric we propose avoids these shortcomings by gen-
eralizing the normalization step performed during flexible
matching. Recall that, in the 1-column flexible matching
algorithm the raw tf-idf weights of all tokens in a tuple are
divided by thel2-norm of the weight vector to obtain nor-
malized weights in the range [0, 1]. This normalization
step also ensures that the similarity score of any tuple will
be between 0 and 1.

In our metric, we run two flexible matches on the name
and address attributes. But rather than normalize each
weight vector separately, we normalize the disjoint union
of the two vectors. Thus, the raw weight vectors from the
name and address strings might beX = (x1; x2; :::; xk)

Figure 3: Static weights: name = 0.25, address = 0.75

Figure 4: Attribute concatenation

andY = (y1; y2; :::; yl). Let L(X); L(Y) be thel2-norms
of these two vectors. Then, rather than dividing each
weight in X by L(X) and each weight inY by L(Y),
we defineL(X; Y) =

p
L(X)2 + L(Y)2 and divide all

weights inX andY by L(X; Y).
Such normalization across attributes results in a dy-

namic adjustment in the relative importance of the at-
tributes. For example, a search containing a common ad-
dress like “100 Main St” will tend to give more importance
to the name component. Conversely, a search on a com-
mon name will tend to place more emphasis on the address
component.

3.1.4 Experiments

We now present an experiment comparing our dynamic
weighting technique with static weighting. A table con-
taining 100,000 rows of company names and addresses was
used for this purpose. Both the name and address columns
were indexed for flexible matching. We then ran a series
of searches for the name-address pair (“Worldcom”, “Wall
St Manhattan NY”) using static weights. The weights on
the name and address columns took on the values (0.25,
0.75), (0.5, 0.5) and (0.75, 0.25). Finally, the same search
was performed using attribute concatenation and with our
technique.

Figures 1, 2 and 3 show the top results from static weight

1081

Figure 5: Dynamic weights

searches. It is interesting to observe that the results from
all the static weight searches are lopsided: figures 1 and 2
have exact matches on the name string but poor matches on
the address string, while figure 3 has poor matches on the
name component, but better matches on the address com-
ponent. This is exactly the problem with static weights that
we alluded to previously: it is difficult to choose a good
distribution of weights among the attributes.

In contrast, the top result in the dynamic weights search
(“Worldco”, “110 Wall St New York NY”), shown in figure
5, is a very good overall match. This tuple is completely
absent from the static weights searches because neither its
match on name nor its match on address is high enough to
place it at the top of any of those searches.

The attribute concatenation technique, shown in fig-
ure 4, does have the same top-2 matches as our dynamic
weights technique. However, the latter matches are not as
good: there are many tuples for which “Manhattan” ap-
pears in the name attribute. This illustrates the drawback
inherent in the loss of information resulting from concate-
nating the two attributes.

The next experiment looks at top-k recall. Typically, we
are interested in only the few top matches from a flexible
match. Rather than considering the entire result set, we
can restrict attention to the top-k matches from dynamic
weighting and ask what fraction of those are found in the
top-‘ matches from competing techniques for various val-
ues of‘. Figure 6 presents the results of this experiment for
k=10 and‘=5,10,15,20.

The results demonstrate that dynamic weighting is qual-
itatively different from static weighting or attribute con-
catenation and cannot be approximated by those tech-
niques. As‘ increases, some of the top-k matches from dy-
namic weighting are obtained using competing techniques.
But even with‘ = 20, the recall numbers of competing
techniques are quite low: only 40% for the attribute con-
catenation approach, and between 30% and 70% for the
static weights approach. It is evident that the recall of static
weighting is quite sensitive to the actual weights.

We have presented above a comparison of our multi-
attribute dynamic weights matching with the attribute con-
catenation and the static weights techniques, on a specific

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

R
ec

al
l o

f t
op

-1
0

tu
pl

es
 in

 m
ul

ti-
at

tri
bu

te
 re

su
lt

l

n25a75
n50a50
n75a25

concatenation

Figure 6: Ordered recall

query. Other queries exhibit a similar behavior in that
static weighting tends to miss tuples that don’t have a high
match on at least one of the attributes. Thus the results
of this section are illustrative of the ability of our multi-
attribute matching technique to dynamically adjust the at-
tribute weights and thereby return the most relevant tuples.

There may very well be domains in which dynamic
weighting performs poorly as compared to other tech-
niques. But the “data-driven” aspects of our multi-attribute
matching lead to very desirable results, in all the domains
we have encountered. An investigation into the quality of
the metrics considered here is left for the future.

3.2 Semantic knowledge

The next enhancement involves incorporating domain spe-
cific semantic knowledge into the flexible string matching
algorithm. It often happens that the same entity is repre-
sented in multiple ways inside the database. For exam-
ple, the addresses “1 ATT Way Bedminster NJ” and “900
Route 202/206 Bedminster NJ” refer to the same location,
AT&T’s headquarters. Similarly, the same corporation may
appear as “MCI” and as “Worldcom”. Observe that the
presence of more than one representation is not in itself an
error: as these examples show, all the representations may
be valid.

If the representations of an entity are sufficiently close
in a textual sense then they can be captured using the cosine
similarity metric. Thus, a flexible search for “IBM Corp”
on a company names database will pick up not only exact
matches but also alternate names like “IBM Corporation”
and “IBM Inc”. But some representations, like the address
pair above, can be so far apart as to have few tokens in com-
mon. We would like our flexible matching to retrieve not
only strings that are close to the search string but also their
synonyms. Thus, a search for “900 Route 202 Bedminister
NJ” should return “900 Route 202/206Bedminster NJ” and
also “1 ATT Way Bedminster NJ”.

Our proposed solution to this problem assumes that se-
mantic equivalences are explicitly specified in a new rela-
tion. Conceptually, this is a symmetric two attribute rela-
tion S(A; B). That is, for each equivalencex = x0, the
tuples(x; x0) and(x0; x) would be in relation S. LetT (P)

1082

Figure 7: Semantics: search on “4001 Rte 25 Forrest Hills
NY”

be the one attribute relation on which we would like to en-
able this semantic-aware search.

3.2.1 Pre-processing RelationT

The first step involves pre-processing attribute values in re-
lationT . This is done by computing the flexible string join
of T and S, using attributesP and A respectively. For
every result(pi; ai; bi) in the join with a “high” similar-
ity score, we augment the tokens associated with attribute
valuepi in relationT with tokens derived frombi. This
has the effect of associating with each attribute value all
the tokens corresponding to its synonyms as per relation
S. In our company names example, the strings “MCI” and
“Worldcom” will both be associated with the same set of
tokens: those derived from the strings “MCI” and “World-
com”.

3.2.2 Processing at Query Time

In the next step, we carry out an analogous procedure on
the search stringq. The search stringq is used in a flexible
match operation on relationS. For all high scoring tuples
(q; aj ; bj) in the result, the set of tokens associated with
the search stringq is extended by the tokens derived from
attribute valuebj .

The final step involves running the flexible match al-
gorithm on the pre-processed relationT and the modified
search string. Because we augment the set of tokens asso-
ciated with both the search string and the attribute values in
relationT with synonym information, this method is very
robust in dealing with errors and multiple conventions in
the string attributes of relationT and of synonym relation
S.

3.2.3 Experiments

We now present the results from an experiment on using
the above algorithm. We used a table of addresses con-
taining 100,000 rows. A synonym table was populated by
hand with a few sample equivalences. One of these tuples
identified “Route 25 Forest Hills NY” as a synonym for
“Queens Blvd Queen NY”. The modified index was built

on the addresses as described above with a threshold of 0.5.
A relatively low threshold is required because the equiva-
lences in the synonym table specified street aliases rather
than complete address synonyms. In other words, none of
the equivalences included a street number and hence a low
threshold on the similarity score was needed when joining
to the address table. The search string was “4001 Rte 25
Forrest Hills NY”. This string was joined to the synonym
table and a modified index was built using all tuples with
a score of 0.6 or higher. The top results from the semantic
match are shown in Figure 7.

We note that even in the presence of deliberate errors
in both the synonym table (i.e., “Queen NY” instead of
“Queens NY”) and the search string (i.e., “Forrest Hills”
instead of “Forest Hills”, and “Rte 25” instead of “Route
25”), our algorithm was able to pick out the exact match
and place it at the top of the results. This is a good illustra-
tion of the robustness of our technique.

4 Performance Enhancements

Recall that the basic query we run to find approximate
matches above a certain similarity thresholdT is

select S.tid, B.tid,
sum(S.weight*B.weight)

from SearchWeights S, BaseWeights B
where S.token = B.token
and S.tid = N
group by S.tid, B.tid
having sum(S.weight * B.weight) > T

whereN is the tuple id of the string we want to search on.

4.1 Indexing the Weights Table

The primary key on the BaseWeights table is (tid, token).
In the absence of any other indices the above query has to
scan through the BaseWeights table for each token in the
search string. The obvious optimization that can be applied
at this point is to build an index I1(token) on BaseWeights.
Adding this index results in a “nested loops with indexing”
execution plan for the above query. The performance im-
provement is shown below for base tables of different sizes.

Table size Running time (sec)
NonIndexed Indexed

100000 2 1
7000000 48 22

13000000 105 42

Searches run much faster with the index but, as the fig-
ure shows, they can still take a significant amount of time.
The reason is that the SQL fragment above computes the
dot product of the search vector with every tuple vector
with which it shares a common token. For a base table
with millions of rows that can be an expensive operation.

1083

4.2 Pre-selecting High Weight Tuples

The next class of optimizations we consider all involve pre-
selecting tuples from BaseWeights which are likely to be in
the final result. This is done by adding another conjunctive
condition to the where clause. This condition takes the fol-
lowing form

B.tid in (SubQuery)

where SubQuery selects a subset of tids from BaseWeights.
Note that any optimization in this class has perfect preci-
sion: it may miss some tuples but it won’t overestimate or
underestimate the similarity score for any tuple. This is in
contrast with [4] where the scores themselves are approxi-
mated by the performance enhancements. We now consider
4 optimizations in this class.

4.2.1 O1: High Weight Token

Each score in the final result is a sum of terms with each
term being the product of the weight of a token in the search
string and the weight of that token in the base table. We can
conjecture that if this sum of terms exceeds the thresholdT
then at least one of the base weights exceeds a fixed fraction
F of T . This is the basis for our first optimization which is
defined by the following SubQuery.

select B.tid
from SearchWeights S, BaseWeights B
where S.tid = N
and B.token = S.token
and B.weight > T * F

Perusing the query above we observe that another index
I2(token, weight) on the BaseWeights table is called for.

4.2.2 O2: High Weight Term

It may be the case that a token has low weight in the base
table but high weight in the search string. The above op-
timization will miss such tuples. To compensate for this
deficiency, we can change the last condition in O1’s where
clause to get the SubQuery below.

select B.tid
from SearchWeights S, BaseWeights B
where S.tid = N
and B.token = S.token
and B.weight > T * G / S.Weight

where G is a suitable fraction. Here, we cast a wider net in
the SubQuery by also considering tokens which may have
a low base weight, provided that the product of the search
weight and the tuple weight is at least a fixed fraction of
thresholdT . Note that the index I2 we defined previously
on BaseWeights also improves the execution plan for this
SubQuery.

4.2.3 O3: Many High Weight Tokens

Both O1 and O2 pre-select tuples that have at least one
“promising” token in common with the search string. To
further narrow down this set of tuples we can pre-select
only those tuples which have at least K (> 1) high weight
tokens in common with the search string.

Optimization O3 is obtained by applying this heuristic
to O1. The SubQuery in this case is as follows.

select B.tid
from SearchWeights S, BaseWeights B
where S.tid = N
and B.token = S.token
and B.weight > T * F
group by B.tid
having count(*) >= K

4.2.4 O4: Many High Weight Terms

The SubQuery obtained by applying the above heuristic to
optimization O2 is given below.

select B.tid
from SearchWeights S, BaseWeights B
where S.tid = N
and B.token = S.token
and B.weight > T * G / S.Weight
group by B.tid
having count(*) >= K

4.3 Experiments

We now present some experiments comparing these opti-
mizations. We used a company names table containing
13 million rows for the flexible matching. The similarity
threshold was set to 0.4. Parameter F was varied from 0.2
to 0.8 (for optimizations O1 and O3), parameter G was var-
ied from 0.05 to 0.20 (for optimizations O2 and O4) while
parameter K was varied from 2 to 4 (for optimizations O3
and O4). These ranges were chosen to illustrate interesting
tradeoffs in the various enhancements. In each experiment,
we measured the running time and recall of each optimiza-
tion relative to the naive query presented at the beginning
of this section (with the I1 index on BaseWeights).

Figures 8, 9, 10 and 11 show the effect of parameters
F, G and K on the recall and running time of these opti-
mizations. We note that recall is inversely proportional to
parameters F and G. Low values of these parameters lead to
perfect (or near-perfect) recall. As we increase F and G, the
number of tuples pre-selected by the SubQuery decreases
because fewer tuples are likely to share a high weight to-
ken (optimizations O1 and O3) or a high weight term (op-
timizations O2 and O4) in common with the search string.
Also, increasing K means that we insist on more and more
high weight tokens or terms in common. Therefore, recall
declines as K increases.

Execution time is positively correlated with recall for
the same reasons. As we increase F, G and K the subset
of tuples pre-selected by the SubQuery decreases in size.

1084

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

R
ec

al
l

F

O1
O3 K=2
O3 K=3
O3 K=4

Figure 8: Recall for optimizations O1, O3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25

R
ec

al
l

G

O2
O4 K=2
O4 K=3
O4 K=4

Figure 9: Recall for optimizations O2, O4

Consequently, there are fewer tuples for which we have
to compute the exact cosine similarity score and hence the
overall query runs faster.

Since optimizations O3 and O4 have very good running
times but low recall, the next two experiments try to under-
stand which tuples from the base result set are absent from
the results of these optimizations. We fixed the parameter
values at F=0.6 and G=0.15, and measured the ordered re-
call for the top-50 results in the base result set. Figures 12
and 13 plot the number of these top-50 tuples found in the
top-i result sets for optimizations O3 and O4 for i=50, 100,
150, 200.

From the figures we see that K = 4 leads to very bad
recall. That is, optimizations O3 and O4 fail to return even
50% of the top-50 tuples with this value of K, even when
the range is extended to the first 200 tuples. K = 3 is also
not particularly good on recall. Therefore, for applications
in which recall in the top tuples is important it is best to
stick to lower values of parameters F and G at the cost of
increased execution time.

It can be said that the parameters which control the Sub-
Query are somewhat arbitrary. An improvement that can be
made in that regard is to replace F and G in all SubQueries
with (F/L) and (G/L) respectively, where L is the length of
the search string. The idea is that when the search string is
long there are many tokens/terms which can contribute to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Ti
m

e
as

 fr
ac

tio
n

of
 b

as
e

ru
nn

in
g

tim
e

F

O1
O3 K=2
O3 K=3
O3 K=4

Figure 10: Execution times for optimizations O1, O3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

Ti
m

e
as

 fr
ac

tio
n

of
 b

as
e

ru
nn

in
g

tim
e

G

O2
O4 K=2
O4 K=3
O4 K=4

Figure 11: Execution times for optimizations O2, O4

the final score and we lower the bar a tuple must meet for
pre-selection. This adjustment makes the choice of param-
eters more robust to a different data set.

5 Open Issues

5.1 Functionality

Multi-column flexible matching is important in many prac-
tical applications. Our proposed technique for this prob-
lem works on columns within a single table. In general,
the columns on which we want to enable flexible match-
ing will belong to different tables, with various join paths
between them. Efficiently implementing flexible matching
across tables (without having to materialize the join of the
base tables beforehand) is a topic for future work.

Another open question is the handling of semantic dis-
similarities, a.k.a. antonyms. We have come across this
problem very frequently in the context of flexible address
matching where the same city name may be present in
multiple states, e.g., Manhattan KS6= Manhattan NY. In
this setting, the algorithm has to somehow filter out the
antonyms corresponding to the search string while still as-
signing a high score to all the synonyms.

An ad-hoc approach would be to create a separate
antonym table and query this table before returning the re-
sults. Thus a search string of “Manhattan KS” would match

1085

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200

R
ec

al
l o

f t
op

-5
0

tu
pl

es
 in

 b
as

e
re

su
lt

i

O3 K=2
O3 K=3
O3 K=4

Figure 12: Ordered recall for optimization O3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200

O
4:

 R
ec

al
l o

f t
op

-5
0

tu
pl

es
 in

 b
as

e
re

su
lt

i

O4 K=2
O4 K=3
O4 K=4

Figure 13: Ordered recall for optimization O4

“Manhattan NY” with a high score but the final step would
consult the antonym table and drop that tuple. However,
this method is very rigid when it comes to mistakes in the
search string and/or the antonym table. Ideally, we would
like antonyms to be processed in a robust manner, in much
the same way that the cosine similarity metric captures er-
rors in both the search string and the field values. An inter-
esting research problem is the development of principled
techniques (as opposed to ad-hoc ones) that can correctly
and flexibly process such semantic negations.

So far, we have dealt only with string attributes. How-
ever, there are many data types that are commonly encoun-
tered in practice. Numeric data is of particular interest. For
example, a table might contain an age field of type inte-
ger or latitude/longitude fields of type double. The con-
ventional approach of finding fuzzy matches with respect
to a given numeric value is to issue a range query against
the corresponding field. But this does not take advantage
of the data distribution to return a better result. Consider,
for example, a database containing the latitude/longitude
of all towns in the US. We might want a search on lati-
tude/longitude to have small range in dense population ar-
eas like New Jersey and a large range in sparse population
areas like Idaho.

Many search engines work with just the string represen-
tation of numeric values. This turns out to be inadequate for

flexible matching purposes: a google search on “186000”
turns up a few pages mentioning the speed of light but a
search on “185900” does not find any such pages. Part
of the reason is that the string representation of numbers
which are very close may not have enough tokens in com-
mon. Alternatively, we could define a notion of tf/idf for
numbers. The extension of the cosine similarity metric to
non-string data types is an intriguing research direction [1].

5.2 Performance

Also of importance is the adaptation of our techniques to
a dynamically updated database. So far, we have assumed
that the data does not change (or if it does, we can quickly
rebuild the flexible string match index). In practice, there
are tables that are big enough that rebuilding the index on
every change is not feasible. The key difficulty arises with
“global” metrics such as tf-idf and cosine similarity. There
the weight of a token depends on its inverse document fre-
quency which in turn is a function of the fraction of tuples
in which that token appears. Therefore, inserting a new tu-
ple into the table, in principle, changes the weights of all
tokens and thereby necessitates an index rebuild. In prac-
tice, the token weights will have changed by a non-zero but
small amount. Since we are doing flexible matching it is ac-
ceptable to not insist on absolute accuracy. The challenge
then is to identify criteria for the index rebuilds which work
in practice by striking the right balance between accuracy
and efficiency.

Index rebuilds can take a long time (a few hours for a
table with a few million rows) during which time flexible
matching cannot be performed against the table. So once
we define a suitable criterion for rebuilding the index we
also need to investigate ways to restructure the computation
to avoid causing any downtime of the query functionality.

6 Conclusion
In this paper, we related our experiences in deploying flexi-
ble string matching on large databases within AT&T. We
started with the cosine similarity metric and extended it
to handle multi-attribute flexible matching. We enhanced
the algorithm to use semantic equivalences that cannot be
captured by textual means. We also suggested a number
of optimizations that allow the results to be retrieved more
quickly. These performance improvements preserve preci-
sion and enable a dramatic reduction in the running time
while decreasing recall by only a small amount.

References
[1] R. Agrawal and R. Srikant. Searching with numbers.Pro-

ceedings of WWW, 2002.
[2] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust

and efficient fuzzy match for online data cleaning.Proceed-
ings of SIGMOD, 2003.

[3] T. Dasu and T. Johnson.Exploratory data mining and data
cleaning. John Wiley, 2003.

[4] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text
joins in an RDBMS for web data integration.Proceedings of
WWW, 2003.

1086

