Generating Thousand Benchmark Queries in Seconds

Meikel Poess
Oracle Corporation
400 Oracle Parkway
Redwood Shores, CA-94065
650-633-8012

meikel.poess@oracle.com

ABSTRACT

The combination of an exponential growth in the amount of data
managed by a typical business intelligence system and the
increased competitiveness of a global economy has propelled
decision support systems (DSS) from the role of exploratory tools
employed by a few visionary companies to become a core
requirement for a competitive enterprise. That same maturation
has often resulted in a selection process that requires an ever more
critical system evaluation and selection to be completed in an
increasingly short period of time. While there have been some
advances in the generation of data sets for system evaluation (see
[3]), the quantification of query performance has often relied on
models and methodologies that were developed for systems that
were more simplistic, less dynamic, and less central to a
successful business. In this paper we present QGEN, a flexible,
high-level query generator optimized for decision support system
evaluation. QGEN is able to generate arbitrary query sets, which
conform to a selected statistical profile without requiring that the
queries be statically defined or disclosed prior to testing. Its novel
design links query syntax with abstracted data distributions,
enabling users to parameterize their query workload to match an
emerging access pattern or data set modification. This results in
query sets that retain comparability for system comparisons while
reflecting the inherent dynamism of operational systems, and
which provide a broad range of syntactic and semantic coverage,
while remaining focused on appropriate commonalities within a
particular evaluation process or business segment.

1. INTRODUCTION

The number of different queries executed on
production systems far exceeds the practical number of
queries that can be covered in a benchmark specification.
Hence, a major task in designing a data warchouse
benchmark is to create a query set that both represents the
real world and executes in a reasonable amount of time.
TPC-D [7], as the first industry-standard benchmark,
defined 17 complex, industry relevant SQL queries. While
it relied on some broad simplifying assumptions, it
represented a major step forward from the simple, home-
grown query workloads that had been used for early

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment
Proceedings of the 30™ VLDB Conference,

Toronto, Canada, 2004

1045

John M. Stephens, Jr.
Gradient Systems
643 Bair Island Road #103
Redwood City, CA-94063
650-566-9380

jms@gradientsystems.com

characterization efforts. As query functionality improved,
its successors, TPC-H and TPC-R [4], added 5 queries to
keep pace. TPC’s next generation DSS benchmark, TPC-
DS [5], is anticipated to employ more than one hundred
queries. Due to increased database system functionality
(e.g., SQL99 with OLAP extensions), the number of
representative SQL query combinations on any particular
schema is still very large. With an ever-increasing number
of queries comes a need for a fast, reliable, extensible
query generator.

DBMS functionality has improved dramatically since
the TPC introduced the first industry-standard DSS
benchmark in 1995. Today’s systems rely heavily on
sophisticated cost based query optimizers to generate the
most efficient query execution plan. A DSS benchmark
that evaluates optimizers must both provide the rich data
set details on which they rely (uniform and non-uniform
distributions, data sparcity, etc.), and must also test the
optimizer’s capability to generate the most optimal plan
under all circumstances. Functionality to partition a data
set and limit IO activity to that portion of the global data
set that is of interest to a particular query is now
commonplace. Traditional SQL operators have been
buttressed by new semantics, which allow business
processes to be closely modeled in query syntax (i.e., MDD
and OLAP), and novel access patterns that allow the use of
data sampling and pre-computation to speed answers to
common business questions (i.e., summary tables and join
indexes). With increasing sophistication and complexity
available in even commodity systems, a successful
benchmark must provide a transparent and adaptive
architecture that allows meaningful comparisons across
different systems, while allowing easy adaptation to
emerging technologies.

As DSS have become an increasingly common and
important piece of successful IT infrastructure, the focus
and sophistication that vendors apply to benchmarks and
their tuning has increased significantly. To compare the
performance of different systems, it is essential that all
systems run the same workload under the exact same
execution rules. At the same time, it is important that the
person conducting the test be allowed to tune the system
appropriately. The challenge is to assure that the benefits
that arise from pre-benchmark tuning are appropriate to the
environment being evaluated and representative of

improvements that can be achieved outside of a benchmark
situation (i.e. in a production system).

Finally, the operational environment for query systems
has also changed. There is still a significant set of queries
that is run in a batch environment, and can appropriately be
subjected to highly specialized tuning. Other queries,
however, are not known in advance except in broad terms,
giving less possibility to optimally tune the system (ad-hoc
queries To properly characterize both query approaches, a
benchmark needs to acknowledge the different operational
assumptions of each methodology. In cases where a batch
query environment is being modeled, it is acceptable to
provide well known, largely static queries, since it is
assumed that the target operational environment would
subject the queries to the same level of high-specialized
tuning that would inevitably result in a competitive
benchmark setting. To model an ad-hoc environment, the
amount of fore knowledge of a particular query’s phrasing
needs to be limited. Regardless of the predominance of
static or ad-hoc queries, a benchmark methodology must
provide consistent, verifiable, comparable results.

Each of these technologies and enhancements can be
exploited to provide an unrealistic vision of system
performance, unless benchmarks are careful structured to
realistically reflect the enhancement provided, without
allowing unreasonable or inappropriate over optimization.
QGEN addresses many of these concerns. For instance, if
all query substitutions are known prior to benchmark
execution, the optimizer can be tuned only for those
predicates while ignoring the more general cases. If data
access patterns are known prior to benchmark execution,
the system under test (SUT) can be tuned for in a non-
realistic way and system weaknesses can be easily covered
up by, for instance, only creating auxiliary structures for
part of the data set. QGEN’s linkage to the underlying data
generation assures appropriate coverage of the whole data
set. Most DSS benchmarks include a multi user test (e.g.
TPC-H/ TPC-R) in which multiple concurrent sessions
execute queries simultaneously. Executing the same
queries across multiple sessions is not desirable because
one could easily implement a feature that materializes the
result of every new query. Subsequent sessions executing
these queries can take advantage by simply displaying the
content of the previously materialized data without
computing any results themselves. QGEN’s ability to
dynamically parameterize a query set minimizes these
risks. Its ability to create query sets which are extensible
and random, but statistically comparable, , makes it
possible to construct a query set that retains query
characteristics without resorting to blind query repetition.
This removes the need for repetition that is not
representative of the query environment being modeled.

The remaining sections of this paper review the
evolution of query models culminating in a detailed
description of the SQL query generator, QGEN, which was

1046

developed by the TPC for generating queries in TPC-DS.
Before discussing the general concepts behind QGEN we
will briefly introduce the data and query models, which
motivated its development. Prior to concluding we will
show empirically that QGEN generates comparable queries
using examples from TPC-DS’s query set.

2. RELATED WORK

In [1] Slutz presented RAGS, a system to stochastically
generate valid SQL statements. This system has been
employed at Microsoft for deterministic testing of SQL
statements. For a specific database schema RAGS
generates syntactically correct SQL statements by walking
a stochastic parse tree. As RAGS can quickly generate and
execute millions of statements to increase the coverage of
system functionality testing, it is not quite suitable to
generate queries to test system’s performance. For
benchmark purposes it is not desirable to completely
randomly generate queries since their execution times
cannot be predicted or limited, especially, because of the
large query set that needs to be executed to achieve good
coverage of performance characteristic.

3. EXISTING QUERY MODELS
3.1 STATIC QUERY MODELS

The simplest approach to benchmarking is to record
pre-existing events or behaviors and simply replay them
under controlled conditions. Early vendor benchmarks
employed a similar approach. Sample queries were
captured from a production system (or crafted to match an
intended implementation) and executed against potential
solutions to provided comparative performance data.

This approach has some obvious and attractive
benefits. The testing methodology is easily understood
and, since the queries are completely static, comparability
between benchmark executions is guaranteed.
Unfortunately, the shortcomings of this approach are
equally compelling. The functionality coverage provided
by the benchmark is limited by the captured queries, the
benchmark is unlikely to adapt well for evaluating changes
to the schema or workload without significant intervention,
and the results produced by a multi-user execution are
likely to be misleading, as the limited and static nature of

SELECT sum(l extendedprice)

FROM lineitem
WHERE 1 shipdate >= ’"10-01-03"'
AND 1 shipdate < 712-31-03";

Figure 1: Static DSS Query

the query makes it easier to pre-compute its result, or to
reuse the result that was computed in one user session to
speed execution in another (i.e. multi user run).

The simple DSS type query in Figure 1 can be used to
illustrate additional drawbacks of a static query model. It

aggregates the extended price of all lineitems in the fourth
quarter of 2003. A simplified materialized view, only
covering the fourth quarter of 2003, turns this IO intensive
query into a single row lookup query reducing the elapsed
time to sub-second. If there is no other query that benefits
from aggregation of lineitem data, there is no need to cover
any more data than the fourth quarter of 2003. Similarly,
other auxiliary structures such as indexes could only be
created on a subset of data, for instance, using local
indexes build on a subset of data, for instance by using
table partitions. Assuming that the remaining data of 2003
is not accessed in any other query, another possible
optimization is to horizontally partition the table into
accessed and non-accessed sections. The non-accessed
sections can then be moved to cheaper permanent storage,
such as tape drives increasing performance and reducing
the total cost of the system'.

3.2 SIMPLE SUBSTITUTIONS

A completely dynamic query model model, in which the
query text was created only at the time of query execution
and little or none of the text was known to the benchmarker
in advance would remove much of the potential for over-
optimization, but would be likely to violate the most
fundamental requirement for any benchmark: to impose a
reproducible stimulus on the system under test. For a
decision support benchmark with its focus on query
execution, this means that if a query is executed multiple
times under the same circumstances, the execution times
from run to run do not vary significantly. TPC’s original
data warehouse benchmarks (TPC-D, TPC-H and TPC-R)
fulfilled this requirement by assuming a very simple data
model, (e.g., uniform distributions for all columns), and by
constraining the scope of possible query-to-query variation.
Figure 2 (see below) shows the template of TPC-H’s Query
6. It uses three substitution variables, DATE (the first of
January of a randomly selected year within [1993 .. 1997]),
DISCOUNT (randomly selected within [0.02 .. 0.09]) and
QUANTITY (randomly selected within [24 .. 25]).

SELECT SUM (1 _extendedprice*1l discount)

FROM lineitem

WHERE 1 shipdate>=date' [DATE]'

AND 1 shipdate<date'[DATE] '+interval'l'year

AND 1 discount between [DISCOUNT] - 0.01
and [DISCOUNT] + 0.01

AND 1 quantity < [QUANTITY];

Figure 2: TPC-H's Query Template 6

This approach is clearly an improvement over the
purely static query model that it replaced. The risk of pre-
computation is greatly reduced (controlled largely by the
range of possible substitution values), the query set scales

! Performance Analysis is often paired with a cost analysis. In
every TPC benchmark publication includes a price analysis and
in most benchmarks price performance gets reported as a
metric.

1047

to multi-user execution without the risk of result reuse, and
the lack of complete predictability provides a meaningful
test of query optimizers. Further, by providing a
standardized method for the execution and reporting of test
results, the TPC benchmarks provided a more robust and
trusted basis for system comparison. That the benchmarks
were widely published is a testament to their success. They
too had problems, however. The inflexible linkage between
the query set and the data generator made it difficult to
expand or alter the query set as DBMS technology
improved, and the limited query breadth imposed by this
increased maintenance burden left the benchmark
vulnerable to over-optimization through specialized
indexes and other data structures. While appropriate
constraint of the configuration and execution rules of TPC-
H have allowed it to remain viable, it became clear that the
benchmark, with it simplified, third-normal data model and
proscriptive implementation rules was not sufficient to
capture the breadth of modern decision support systems
performance.

4. NEW APPROACH TO QUERY
MODELING

In an attempt to address some of the shortcomings of the
simple substitution models used in the past, and to update
its benchmark suite to align with common DSS
methodologies, the TPC is developing a new benchmark,
TPC-DS. The new benchmark is built around an updated
data model, a more sophisticated concept of a decision
support user, and a next generation query model,
implemented in QGEN, the query generator for the new
benchmark.

The examples in this paper use TPC-DS’ data model.
In line with modern data warehouse systems, QGEN and
MUDD employ a variant of a star schema. The schema
utilizes the business model of a large retail company
having multiple stores located nation-wide. Beyond the
brick and mortar stores, the fictitious company sells goods
through catalogs and the Internet. Consequently, its
operational processes include a store order and return
system, a catalog order and return system, and a web order
and return system. In addition, it provides an inventory
system for all warehouses and a promotion system. Each
system is represented in the schema as a snowflake with
dimensions shared among all snowflakes. = Dimensions
such as Date, Store, Item and Promotion are arranged in the
classical star constellation around Store Sales. Customer,
Customer Address, Customer Demographics, Household
Demographics and Income Band are arranged in a
snowflake fashion. Apart from their relationships to Store
Sales, Customer Address, Customer Demographics and
Household Demographics have additional relationships to
Customer. This allows the data model to capture both the
classification of the customer at the time of the sale
(through the links to the Sales fact tables) and at the time of

the query (through the links to other dimensions). The
Store Returns system shares all dimensions of Store Sales.
Additionally, it introduces a new dimension describing the
reason for the return (Reason).

The structure of the Catalog and Internet sales
channels are identical to the Store Channel, except that
some dimensions are renamed (e.g., store becomes
catalog). Rows in the fact table store the numerical
measurements of the business modeled. In our case, these
are sales, returns (store, catalog and internet), inventory
movements and promotions. Each of these subject areas is
modeled with one fact table. It contains foreign keys to
dimension tables and numerical measures (additive and
non-additive).

Dimensions contain numerical surrogate primary keys
and descriptive attributes to further describe the dimension.
There are static and non-static dimensions. Non-static
dimensions are maintained as part of an ETL process.
Describing the details of this process exceeds the scope of
this paper. Details can be found in [5].

The aforementioned star schema defines three
hierarchies to allow for easy browsing of dimension data.
Despite the normalization that led to the snowflake schema,
each hierarchy is confined to one dimension. Each
hierarchy is strict meaning that an entity in the lower level
maps to exactly one entity of the higher level. For
instance, one city maps to exactly one county, which maps
to exactly one state.

The development of QGEN has been driven by the
requirements of the TPC-DS query model. The benchmark
characterizes the queries submitted to the SUT into one of
four query classes, representing different kinds of database
activity: reporting, ad-hoc queries, iterative enquiries and
data extraction (e.g., data mining activities). In this query
model, different degrees of complexity, variability and
predictability of the queries submitted to the SUT are
captured in the different query classes. Accordingly, the
query generator needs to produce an arbitrarily large,
random set of queries within the constraints of each class
while meeting the reproducibility requirements for the
benchmark as a whole.

4.1 QGEN
QGEN is a command-line utility that translates an arbitrary
set of query templates into streams of fully-qualified, valid
SQL. Based on a LALR(1) grammar that defines the
template syntax, QGEN can quickly produce an arbitrarily
large query set for any of a number of query classes.
Template-based queries are defined to be sets of one or
more pseudo-random, valid SQL statements generated
shortly before benchmark execution. Template-based
queries are intended to model common, well-understood
queries, which are generated in conjunction with periodic
reports or common business tasks. It is assumed that the
precise values or targets of a given instance of a template-
based query is random, but that the general format and

1048

syntax for the query is tightly tied to a business process and
the syntax is therefore largely predictable and well-known.

To make queries less “known” is to vary SQL
predicates. QGEN defines a query template language,
which allows for the different types of SQL predicates,
found in today’s decision support systems:

single value.
range,
in-list, and
like.

Queries resulting from the same template execute in an
equivalent execution time, even though the underlying data
set is highly skewed and non-uniform.

4.1.1 MUDD AND QGEN

QGEN depends heavily on the underlying data set. A query
generator can only uncover data relationships that exist in
its target data population, and a query tool intended for
cross-vendor comparisons must rely on the existence of a
data set from which it is possible to produce comparable
queries. It is the creation and manipulation of the data
domains and distributions within the data set that makes the
generation of meaningful and comparable query sets.

The data generator that is coupled with QGEN is
called MUDD [6]. MUDD and QGEN represent an
evolution in query benchmarking, because they have
externalized the dependency between a query tool and its
data generator into a set of external text files that define the
data domains and distributions for both the data generation
and query creation. This allows the modification of the data
distributions and their use in the queries without requiring
the recompilation of the underlying tool set.

The core of the domain and distribution functionality
within MUDD and QGEN is the ability to define an
arbitrary distribution of values. In addition to defining the
values themselves, the tools rely upon the relative
frequencies of the values (which may vary when the same
value set is used in different ways) along with any related
or correlated values. All of this information is contained in
an ASCII file, so values and weightings can be altered
during experimentation, and fine tuning of the benchmark
can occur without requiring changes to the toolset itself.

4.1.2 GENERAL DEFINITION SYNTAX

A query template is divided into two parts. The
Substitution Declaration declares the substitution rules.
They consist of a list of substitution tags. Each tag is
declared as a substitution type (distribution) with specific
substitution parameters. The so defined tags can be used in
the SQL Text part of the query template, which consists of
a SQL query, to specify the substitution values of query
predicates. Each occurrence of the substitution tag in the
SQL text is substituted according to the substitution type.
Multiple occurrences of the same tag are substituted with
the same value. However, if a substitution tag is post-fixed

with a number, then each occurrences is substituted with a
new value. The general syntax for a substitution rule is:

DEFINE <tag>=
<substitution type>
(<substitution parameters>);

<tag> = string[30];
<substitution type>=<RANDOM |DIST | TEXT>

Consider the following example T1 in Figure 3.

#SUBSTITUTION DECLARATION
DEFINE
month
DEFINE
high color=dist ("colors",1,high);

RANDOM (1, 5, UNIFORM);

#SQL TEXT

SELECT sum(S.salesprice)

FROM store S, item I, time T

WHERE T.sold date between month
AND month+2

AND I.color = high color
Figure 3: Example Query Template T1
In its substitution declaration it defines two
substitution tags, month and high color. They will be
explained more in detail in the following sections. The

SQL joins the fact table stores with the two dimension
tables item and time. Its sums the sales of all items in a
specific time window (first predicate) which are of a
specific color (second predicate).

4.1.3 RANDOM SUBSTITUTION
The Random substitution type allows templates to use
randomly-generated integers in a inclusive range [min,max]
using normal or uniform distributions. The specific syntax
for the RANDOM substitution rule is:

RANDOM (<min>, <max>,<distribution>)
<distribution> [NORMAL | UNIFORM]

The RANDOM substitution is very commonly used in
data warehouse queries since it can be used to implement
the very common time predicates. Usually decision
support queries are time based using month, quarter or year
as their window of operation. The designer of a query
template must assure that the values picked for min and
max fall within the targeted comparability zone (range in
the data domain with a uniform distribution). Figure 4
shows a very simple example of a random substitution. It
defines the tag month, which uses a uniform distribution
between 1 and 5. This tag is then on the predicate on
sold date.

1049

4.1.4 DIST SUBSTITUTION

The DIST substitution type allows a template to use one of
the arbitrary distributions defined in conjunction with its
data generator (MUDD) through their shared distribution
files (.dst, .idx), which provide step functions of arbitrary
complexity and resolution. The specific syntax for a DIST
substitution rule is:

DIST (<name>, <value set>, <weight set>)

<name> = name of the distributions as defined in .idx

<value set>= 1-based index for the value to be returned
from the distribution tuple

<weight set>= 1-based index for the selected weighting
from the distribution tuple

DEFINE color = TEXT (
(“red”, 10),
(“blue”, 80),
(“green”, 10);

DEFINE add predicate = TEXT (
(“and palette like “[color]%”, 30),
(7, 70)
);
Select count(*) from products where color != [color]
[add_predicate];

Figure 5: TEXT Substitution Syntax

The DIST substitution does not require the template
designer to know the specifics of the data distribution, only
the names of the distribution and its weight and value sets
(e.g., “colors” or “leap_year sales”).

4.1.5 TEXT SUBSTITUTION

The TEXT substitution replaces a particular tag with
one of a weighted set of ASCII strings. In its basic form,
this is can be employed in a like clause to produce a wild
card predicate such as: column name like
“<string>%”, providing a crude form of text searching
as demonstrated in the first part of Figure 5.

The real power of the TEXT substitution lies in its
ability to include both static text and additional substitution
tags. Whenever QGEN employs a TEXT substitution, it
traverses the selected text looking for additional
substitution tags. These are evaluated in turn, and final
static text replaces the TEXT substitution tag in the query
template. An example of this behavior can be seen in the
second example from Figure 5, where the initial
substitution for [add predicate] can result in an additional
occurrence of the palette predicate.

4.1.6 DATA POPULATION WITH
COMPARABILITY ZONES

Synthetic data generators face an inherent challenge. If the
data is too synthetic (e.g., completely uniform
distributions), it runs the risk of being rejected for not
capturing the “interesting” attributes of a real data set.
Conversely, if it employs data that is gathered from
transactions or installations (“the real world”) it risks being
of little or no value to researchers and benchmarks, since it
can neither produce comparable workload results nor be
scaled to answer interesting hypothetical questions. MUDD
attempts to find an appropriate mix of these two endpoints.
For a majority of its data, it employs traditional synthetic
distributions, yielding uniformly distributed integers, or
word selections with a Gaussian distribution. For a number
of crucial distributions, however, the data generator relies
on data from the real world to produce more realistic data
sets.

Given the importance of skew in a data set, and the
dominance of this particular skew in this particular data set,
omission would clearly be a poor choice. Instead, the data
set needs to be “adjusted”, introducing zones of
comparability — essentially flat spots in the distribution —
that can be used to provide both the variability and the
comparability that the eventual user of the generated data
requires. With MUDD’s flexible approach to
comparability zones each column domain can define its
own comparability zones. They can differ in size within
the column domain and in number between column
domains. However, in order to allow for a large number of
possible substitutions, one needs to adjust the number of
comparability zones so that the requirements for parameter
substitutions of the application to be tested are met. There
should be at least one comparability zone large enough to
fit the largest range substitution. Depending on how many
different range substitutions the applications calls for this
size must be adjusted. @ The upper bound of any
comparability zone is limited by the number of
comparability zones that can fit into the column domain.

As an example for a distribution with comparability
zones, consider the likelihood of retail sales throughout the
calendar year. Census data shows that a dramatic
proportion of sales occur during the year-end holiday
season, often as much as 30% of annual sales within the
last two months of the year (and much of that in the last
half of December) [3]. Figure 6 shows the Census data for
retail sales by month in th USA.

For date predicates TPC-DS requires range
substitutions of at most 90 days (one quarter). Hence to
mimic the sales distribution above, in each year we define
three comparability zones; 1) January to July; 2) August to
October; 3) November to December. The database we are
using for the remaining of this paper contains 5 years of
data each year following the same distribution. Domain
values in the first zone occur with a low likelihood in the

1050

data set (low zone), domain values in the second zone
occur with a medium likelihood and domain values in the
third zone occur with a high likelihood in the dataset. The
actual likelihood of occurrences in each zone may vary
from domain to domain. However, MUDD guarantees that
all domain values in one domain have the same likelihood.

40,000 -

—e— Census —a— MUDD

35,000
30,000 +
25,000 -

20,000 -

Sales [Million]

15,000 -

10,000 T T T T T T T T T T T)

7 8 9 10 11 12
Month

Figure 6: Retail Sales by Month

The fact that there is a correlation between month and
sales amount is very imperative to this kind of column
domain. If after ordering the domain values of a
distribution the graph shows a step functions, that is,
neighboring domain values (except for the edges) have the
same occurrence likelihood, we define this as a Type A
distribution. This characteristic enables the use of range
predicates.

Clearly a skew this dramatic constitutes an important
feature in the data set, and needs to be captured by the data
generator. The use of the data needs to be considered too,
however, if the year-end bulge were to be captured
precisely, then it is likely that no two days would generate
precisely the same sales volume. In our query example, it
would then be impossible to assure that queries based on a
date in this crucial range (or elsewhere throughout the year,
for that matter) generated comparable amounts of load or
activity on the system under test. The option left to the
dataset/benchmark designer is to either remove queries
based on dates in this region from the benchmark, or find
some way to assure that they are comparable to one
another.

The query designer needs to be aware of the
comparability zones and write his queries accordingly.
Consider the previous example. The first comparability
zone contains 7x30=210 days. Assuming one would like to
define predicates covering 90 days in this zone, the valid
range for the left end point of all range predicates is 10-
90=120 range substitutions of 90 days, the second zone
allows for 1 substitutions, while the third zone is too small
for any 30 day substitution.

MUDD defines other distributions that are not derived
from the real world, and, most importantly, that do not
constrain the relationship between domain values and their
frequency. We define these as Type B distributions.
Because of neighboring domain values not occurring with
the same likelihood, range predicates are not allowed on
Type B distributions. An example defines the domain of
common colors (see Figure 9 and 10). The colors are
sorted on their number of occurrences in the dataset.
Similarly to the sales distribution, we define three
comparability zones: low, medium and high. Colors are
arbitrarily chosen to belong to any of the three
comparability zones. Colors belonging to the low
comparability zone occur less likely in the data set than
colors of the medium zone. Colors belonging to the high
comparability zone have the highest likelihood to occur in
the dataset.

4.1.7 COMPATIBILITY OF SUBSTITUTION TYPES
AND QUERY PREDICATES

Due to their characteristics not all types of query
predicates are supported by each substitution type with
each type of distribution. Table 6 shows which substitution
type is compatible with the different types of query
predicates. Type A and Type B distributions can be used
with the DIST and RANDOM substitution types for single
value predicates. Range predicates can be used with Type
A distributions and RANDOM. Using DIST range
predicates can be used with both Type A and Type B
distributions.

Substitution Type

RANDOM |DIST [TEXT
% single A&B |A&B| -
O range A A&B| -
T —
QO in-list - A&B| -
L ke - ~ | A&B

Figure 7: Substitution Types Compatibility Matrix

4.1.8 IMPLEMENTATION OF COMPARABILITY
ZONES IN QGEN

The core of the domain and distribution functionality
within MUDD and QGEN is the ability to define an
arbitrary distribution of values. In addition to defining the
values themselves, the tools rely upon the relative
frequencies of the values (which may vary when the same
value set is used in different ways) along with any related
or correlated values. All of this information is contained in
Distribution Configuration (ASCII file), so values and
weightings can be altered during experimentation, and fine
tuning of the benchmark can occur without requiring
changes to the toolset itself.

1051

The format of a distribution definition is summarized
in Figure 8 and 9. The result is a step function of arbitrary
complexity and resolution. Two examples of common
usage are provided. In Figure 7, two weights are provided —
one to cover both leap and non-leap year. In Figure 9,
common color names are grouped into classes. By selecting
the appropriate weight set, it is possible to produce a
weighted distribution across the entire color spectrum, or to
randomly select a color from within a given class. The
distribution example also demonstrates the use of multiple
entries within the value set to provide correlated attributes
to be selected from the distribution. In this case, the
constituent primary colors are available for each listed
entry.

SALES
“Jan 17;
“Jan 27;

10,
10,

1, 10)
2 10)

“Feb 28";
“Feb 297;
“Mar 17;

10,
0,
10,

10)
10)

(
(
(
(
(
(10)

]
59,
60,
61,
[...]

(348, “Dec 13”; 30, 30)
(349, “Jan 14”; 50, 50)
(350, “Jan 15”; 50, 50)
Figure 8: Sales Distribution

COLORS =
(“Red”, “Red”, “None”; 100, 1, 0, 0)
(“Blue”, “Blue”, “None”; 100, 1, 0, 0)
(“Yellow”, “Yellow”, “None”; 100, 1, O,
0)
(“Green”, “Blue”, “Yellow”; 50, 0, 1, 0)
(“Purple”, “Red”, “Blue”; 50, 0, 1, 0)
(“Orange”, “Red”, “Yellow”; 50, 0, 1, 0)
(“Taupe”, “Orange”, “Green”; 10, 0,0, 1)
(“Mauve”, “Purple”, “Blue”; 10, 0, 0, 1)
(“Pink”,“Yellow”,“Green”; 10, 0, 0, 1);
Figure 9: Color Distribution

4.1.9 PRESERVATION OF COMPARABILITY
ZONES

So far we have seen how step functions can be defined
on single table column distributions to assure comparable
queries in the presence of substitutions. But what happens
to comparability zones if predicates are defined on multiple
columns or if tables are joined? @~ MUDD prohibits
correlation between intra table column distributions and
between join columns. That is all comparability zone
distributions must be statistically independent. For
instance, it is disallowed to define item color and size
distributions such that green items are larger than blue
items or sales distributions such that red items are more
likely to be sold in December than in March. This is very
important since comparability zones need to be preserved
in the presence of multiple predicates and joins. If indeed

there is no correlation between columns, choosing
predicates in comparability zones of multiple columns still
yields comparable queries. This is true for joins as well if
there is no correlation of the join columns.

3'I 400
400
51000
=

800 -
600 -
400 -
200 -

Number of Occ

Color

Figure 10: Color Distribution

4.2 EXAMPLE AND EXPERIMENTAL
RESULTS

In this section we will present some experimental results of
queries executed against a database demonstrating that
QGEN indeed generates comparable query sets. We will
discuss the example shown in Figure 3 in more detail.
First, lets create a variant Tla of T1, which contains only
one substitution parameter, high color (see T1a)

#SUBSTITUTION DECLARATION
DEFINE
high color=dist ("colors",1,high);

#SQL TEXT

SELECT sum(S.salesprice)

FROM store S, item I, time T
WHERE TI.color = high color

Figure 11: QGEN Query Template T1a

The existing benchmarks TPC-H and TPC-R have
already shown that substitution parameters on uniform data
distributions yield comparable queries. Since the
parameter substitution model of QGEN operates on
comparability zones, which have uniformly distributed
data, it yields to comparable queries. To demonstrate this,
we generate 10000 queries from templates Tla and T1
using QGEN. All queries of template T1a use substitution
parameters for colors that are of the high likelihood
comparability zone. Then we run these queries
sequentially against a TPC-DS database and collect the
elapsed times. In addition to the color substitution
parameters of Tla, T1 uses a date predicate on sold date

1052

(sold_date between month AND month+2) of the low
season in the sales distribution (January to July). We also
generate 10,000 queries using QGEN, execute them
sequentially and collect the elapsed times. The y-axisin 11
shows the deviation from the mean of the elapsed time of
these queries. The deviations are graphed in sorted order.
The label on the x-axis shows the query run number.
Elapsed times for queries generated from the Tla
template deviate between —0.5% and 0.5% from the mean.
The Coefficient of Deviation for this dataset is 0.00177,
well within the requirements. The second graph shows the
elapsed time deviation to the mean of queries generated
from the T1 template. They differ from about -0.5% to
about 1%. This translate into a Coefficient of Deviation is
0.00317, which is also well within the requirements.

1.1%

Color Distribution
=== Color and Date Distribution

< 0.7%
0.3% J

Deviation [%

-0.1% -
®

-0.5%

Query Run

Figure 12: Deviation from Men for Queries generated with
T1 ad T1a Query Templates

These two examples show that when multiple
substitution parameters, which in isolation yield
comparable queries, are combined in one query template
the resulting query template yields comparable queries if
the distributions of which the predicates are defined, are
independent. For our example this means that there must
not be a correlation between sales date and item color.

5. FUTURE DIRECTIONS FOR QUERY

MODELS

One of the goals of TPC-DS is to generate comparable
queries. This is guaranteed by comparability zones and by
careful selection of parameter substitutions for selected
predicates.

As query modeling embraces an increasingly
interactive approach (i.e., OLAP), the requirement for
individual query comparability will give way to
comparability on final metric level. As business
intelligence moves beyond basic SQL (i.e., into cubes or
other complex data structures), even complex queries can
provide sub-second response time. As a result it becomes
possible to execute thousands of queries while keeping the
benchmark execution time manageable. Today’s QGEN
can already quickly generate thousands of queries, and can
satisfy the response time demands of a true OLAP
workload. To mimic true ad-hoc queries, however, it will

be necessary to model iterative, scenario-based query
sequences, including changes to the select-list columns,
group-by or order-by clauses, as well as function
substitutions (min, max, average, etc). These substitutions
reduce query-to-query comparability. Preliminary research
has confirmed that the increase in queries executed leads to
continued stability in the overall metric even with this
increased variability.

The next stage of QGEN development will coordinate
group-by, order-by and select-list substitutions (using
dependency graphs and more complex statistical models
such as Hidden Markov Models) to provide the truly
random query generation that OLAP benchmarking will
require.

6. CONCLUSION

In this paper we introduced QGEN, a flexible, high-level
query generator optimized for DSS performance
evaluation. QGEN is able to generate arbitrary,
comparable query sets, which conform to a selected
statistical profile without requiring that the queries be
statically defined or disclosed prior to testing. It is
currently being tested by the TPC for use in its new DSS
benchmark TPC-DS. Its close integration with MUDD, a
multi dimensional data generator, combined with its
elegant query template language ease query workload
development and maintenance.

7. ACKNOWLEDGMENTS

The development of the data generation prototype that this
paper discusses has been funded by the TPC, as part of
their on-going efforts to define comparable, relevant and
timely decision support benchmarks. They, in turn, rely on
the dedication and contribution of the representatives that
TPC member companies provide to the TPC’s benchmark

1053

development subcommittees. The authors would like to
thank the TPC, and the members of the TPC-DS
subcommittee for their contribution to this effort.

8. REFERENCES

[1] Slutz, D. Massive Stochastic Testing of SQL, Proc. 24th Int. Conf.
Very Large Data Bases, VLDB, 1998

[2] ISO/IEC 9075. Database Language SQL, International Standard
ISO/IEC 9075:1992, American National Standard X3.135-1992,
ANSI, New York, NY 10036, November 1992.

[3] Kimball, R. The Data Warehouse Toolkit: Practical Techniques for
Building Dimensional Data Warehouses. John Wiley & Sons, 1996

[4] Poess, M. and Floyd, C., “New TPC Benchmarks for Decision
Support and Web Commerce”. ACM SIGMOD RECORD, Vol 29,
No 4 (Dec 2000)

[5] Poess, M., Smith B., Kollar L., Larson P.: TPC-DS: Taking Decision
Support Benchmarking to the Next Level. SIGMOD Conference
2002

[6] Stephens, J., Poess, M.. Mudd: A Multi-Dimensional Data
Generator, WOSP 2004

[7] Transaction Processing Performance Council (TPC), “TPC
Benchmark D (Decision Support)”, May 1995
http://www.tpc.org/tpcd/spec/tpcd_current.pdf

[8] Transaction Processing Performance Council (TPC), “TPC-H
Specification Version 2.1.07, August 2003
http://www.tpc.org/tpch/spec/tpch2.1.0.pdf

[9] Transaction Processing Performance Council (TPC), “TPC-R
Specification Version 2.1.07, August 2003

http://www.tpc.org/tper/spec/tper_2.1.0.pdf

[10]US Census Bureau, Unadjusted and Adjusted Estimates of Monthly
Retail and Food Services Sales by Kinds of Business:2001,
Department stores (excl.L.D) 4521.
http://www.census.gov/mrts/www/data/html/nsal01.html

