

PIVOT and UNPIVOT: Optimization and Execution Strategies in an RDBMS

Conor Cunningham, César A. Galindo-Legaria, Goetz Graefe
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052 USA

{conorc,cesarg,goetzg}@microsoft.com

Abstract
PIVOT and UNPIVOT, two operators on

tabular data that exchange rows and columns,
enable data transformations useful in data
modeling, data analysis, and data presentation.
They can quite easily be implemented inside a
query processor, much like select, project, and
join. Such a design provides opportunities for
better performance, both during query
optimization and query execution. We discuss
query optimization and execution implications of
this integrated design and evaluate the
performance of this approach using a prototype
implementation in Microsoft SQL Server.

1. Introduction

Pivot and Unpivot are complementary data
manipulation operators that modify the role of rows and
columns in a relational table. Pivot transforms a series of
rows into a series of fewer rows with additional columns.
Data in one source column is used to determine the new
column for a row, and another source column is used as
the data for that new column. Unpivot provides the
inverse operation, removing a number of columns and
creating additional rows that capture the column names
and values from the wide form. The wide form can be
considered as a matrix of column values, while the narrow
form is a natural encoding of a sparse matrix. Figure 1
demonstrates how Pivot and Unpivot can transform data

between narrow and wide tables. For certain classes of
data, these operators provide powerful capabilities to
RDBMS users to structure, manipulate, and report data in
useful ways.

Implementations of pivoting functionality already exist
for the purpose of data presentation, but these operations
are usually performed either outside the RDBMS or as a
simple post-processing operation outside of query
processing. Microsoft Excel, for example, supports
pivoting. Users can perform a traditional SQL query
against a data source, import the result into Microsoft
Excel, and then perform pivoting operations on the results
returned from that data source. Microsoft Access (which
uses the Microsoft Jet Database Engine) also provides
pivoting functionality. This pivot implementation is a
post-processing operation through cursors. While existing
implementations are certainly useful, they fail to consider
Pivot or Unpivot as first-class RDBMS operations, which
is the topic of this paper.

Figure 1 Pivot and Unpivot

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

998

Inclusion of Pivot and Unpivot inside the RDBMS

enables interesting and useful possibilities for data
modeling. Existing modeling techniques must decide both
the relationships between tables and the attributes within
those tables to persist. The requirement that columns be
strongly defined contrasts with the nature of rows, which
can be added and removed easily. Pivot and Unpivot,
which exchange the role of rows and columns, allow the a
priori requirement for pre-defined columns to be relaxed.
These operators provide a technique to allow rows to
become columns dynamically at the time of query
compilation and execution. When the set of columns
cannot be determined in advance, one common table
design scenario employs “property tables”, where a table
containing (id, propertyname, propertyvalue) is used to
store a series of values in rows that would be desirable to
represent columns. Users typically use this design to
avoid RDBMS implementation restrictions (such as an
upper limit for the number of columns in a table or storage
overhead associated with many empty columns in a row)
or to avoid changing the schema when a new property
needs to be added. This design choice has implications on
how tables in this form can be used and how well they
perform in queries. Property table queries are more
difficult to write and maintain, and the complexity of the
operation may result in less optimal query execution
plans. In general, applications written to handle data
stored in property tables can not easily process data in the
wide (pivoted) format. Pivot and Unpivot enable property
tables to look like regular tables (and vice versa) to a data
modeling tool. These operations provide the framework
to enable useful extensions to data modeling.

Figure 2 Property Table

Including Pivot and Unpivot explicitly in the query
language provides excellent opportunities for query
optimization. Properly defined, these operations can be
used in arbitrary combinations with existing operations
such as filters, joins, and grouping. For example, since
Unpivot transposes columns into rows, it is possible to
convert a filter (an operation that restricts rows) over
unpivot into a projection (an operation that restricts
columns) beneath it. Algebraic equivalences between

Pivot/Unpivot and existing operators enable consideration
of many execution strategies through reordering, with the
standard opportunity to improve query performance.
Furthermore, new optimization techniques can also be
introduced that take advantage of unique properties of
these new operators. Consideration of these issues
provides powerful techniques for improving existing user
scenarios currently performed outside the confines of a
query optimizer.

We argue that pivoting operations can be performed
more quickly and powerfully inside a RDBMS. By
implementing these operations as relational algebra
operators within a cost-based optimization framework,
superior execution strategies can be considered. This
design choice also allows other relational operations to be
performed on the results of pivot and unpivot.
Considerations of the interactions between pivot/unpivot
and other operators yield more efficient orderings of
operations over post-processing. The inclusion of these
operations within the declarative framework of a SQL
statement also allows consideration of additional access
paths, such as indexes or materialized views, to more
efficiently compute results. Consideration of Pivot and
Unpivot within a cost-based optimizer framework
provides opportunities for superior performance over
existing approaches.

The rest of this paper is organized as follows: Section
2 defines Pivot and Unpivot syntax and semantics as well
as useful variations. Algebraic optimizations are covered
in Section 3, followed by execution considerations in
Section 4. An implementation and evaluation of these
operators using Microsoft SQL Server is performed in
Section 5. Possible extensions are discussed in Section 6,
followed by related work and conclusions.

2. Introducing Pivot and Unpivot

2.1. PIVOT and UNPIVOT in SQL

It is possible to implement pivoting in standard SQL,

though the syntax is cumbersome and its performance is
generally poor. One method to express pivoting uses
scalar subqueries in the projection list. Each pivoted
column is created through a separate (but nearly identical)
subquery as seen in Figure 3. For database
implementations that do not support PIVOT, users could
employ this technique to perform pivoting operations.
(Note that SalesTable is defined graphically in Figure 1).

999

Figure 3 Possible PIVOT Syntax

Unfortunately, this approach has limitations that

restrict the power of pivoting. Each column has repetitive
syntax, which is cumbersome as the number of pivoted
columns increases. These syntaxes are also potentially
harder to optimize. For this syntax, the query optimizer is
presented with a number of subqueries, making it more
difficult to determine that this whole operation represents
a “Pivot” on a single table. In practice, this is not an easy
operation, making pivot-specific optimizations very
difficult. The common problem is that the intent of the
query is difficult to infer from the syntax or common
relational algebra representation.

Therefore, we propose the following syntax for PIVOT
in Figure 4 as an additional option under the <table
expression> rule of the ANSI SQL grammar. This syntax
is easier to read and better captures the intent of the
desired operation. Repetition is eliminated, making
queries easier to ready, write, and maintain. Section 3
shows that this approach also enables additional query
optimization techniques.

Figure 4 PIVOT Syntax

PIVOT operates on a table, like other operations,
converting from narrow form to wide form. The column
‘Sales’ in SalesTable provides values for the pivoted
columns, while the values of the Month column define the
mapping describing in which column the value from Sales
belongs. The IN list describes the values of interest from
the Month column as well as the names of the new
columns to create in PIVOT. The remaining columns
from SalesTable, though not listed, implicitly divide the
rows of SalesTable into groups. Each group of rows
becomes a single output row as a result of PIVOT.

For Unpivot, we propose similar syntax to undo the
pivoting operation. The UNPIVOT syntax in Figure 5
contains the same major elements. The set of columns to
be removed are listed in the IN list, and the two new
columns to create are listed (Sales and Month in this
example). While PIVOT collapses similar rows into a
single, wider row, UNPIVOT does the opposite. The
operation multiplies the number of rows by the number of
elements in the IN list while reducing the number of
columns.

Figure 5 UNPIVOT Syntax

2.2. PIVOT and UNPIVOT Semantics

While the conceptual model for PIVOT and

UNPIVOT is straightforward, several important details
must be further defined to operate well with existing SQL
constructs. One problem that must be addressed is how to
handle data collisions (two values mapping to the same
location). Missing values is the opposite condition, and
behavior must also be defined for this case. Finally, the
use of PIVOT and UNPIVOT on dynamic (open) schemas
must be addressed. Any Pivot and Unpivot definitions
must handle these semantic issues.

Data collisions are possible and can be handled in a
number of ways. It is possible to error on collisions,
though this requires special run-time logic in a query plan
to enforce the behavior. It may be useful to pivot data that
has duplicate values, and adding a collapsing function
(such as an aggregate) enables PIVOT to work in this
scenario. In Figure 6, the PIVOT syntax is extended to
handle collisions through the SUM() aggregate.
Avoidance of collisions is also possible through a special
constraint that precludes duplicates from being introduced
at all. For example, if the grouping columns and the pivot
column (Sales, in this example) together form a unique
key, then PIVOT is guaranteed not to have any collisions.
Still another strategy could involve nested result sets,
where all values are preserved in nested tables in the
output of PIVOT. All of these strategies are effective
techniques in our implementation to resolve any ambiguity
of the PIVOT operation.

 Figure 6 PIVOT Syntax with Aggregation

Missing values as a result of both PIVOT and
UNPIVOT is the complimentary condition to data
collisions. For PIVOT, it is possible just to use NULL to
represent this condition. However, NULLs are also a
valid output, leading to the problem of disambiguating
which NULLs were introduced by the PIVOT operation.
This problem is also seen in operations such as CUBE [4],
and can be handled by a special disambiguating function
that outputs whether the row was introduced in the
operation. Another technique to handle the absence of
values exists if a collapsing function (such as an

1000

aggregate) is used. In this case, it is possible to treat this
as an empty set, returning whatever the empty aggregate
result would be. For COUNT(column), this would be
zero. UNPIVOT is relatively simple - it transposes the
values in columns into their own rows, so no new NULLs
are introduced. UNPIVOT can be defined to preserve or
eliminate NULL values when generating rows.

Figure 7 Collisions and Empty Values

PIVOT and UNPIVOT may or may not preserve data,
based on how they are defined and used in queries. To
fully preserve data, these operations must be defined to
avoid collisions and to not introduce empty values
(NULLs). Furthermore, “missing” values in the PIVOT
IN list are implicitly removed, acting like a projection.
PIVOT and UNPIVOT are not inverses if their IN lists do
not cover the complete set of data values in the pivot
operation, so care is required to preserve data when using
PIVOT and UNPIVOT. As a whole, avoiding these
restrictions would reduce the flexibility of these operators,
so extending PIVOT and UNPIVOT to work on non-
invertible data enables broader application to operations
beyond inversing data.

While there is no formal database mechanism to
enforce that PIVOT and UNPIVOT be used in a data-
preserving, invertible fashion, it is possible to get most of
this capability through CHECK constraints. By restricting
the pivot column to a list of valid values, the query
optimizer can infer whether the PIVOT operation is data-
preserving if its IN-list matches the constraint. This could
be further extended by either limiting PIVOT and
UNPIVOT to cases when such constraints exist or through
the creation of a stronger class of constraint in the
RDBMS.

In the syntax proposed in this paper, the pivot columns
are explicitly defined in the query. If PIVOT were to
generate output columns at runtime (i.e. late binding), this
would introduce problems about how references would be
resolved for query operators in a tree. Typically, SQL
queries must define the list of columns at compile time to
allow the user know the set output columns before running
the query. If PIVOT exists below other query operators
(as this client syntax allows), it also would cause problems
for existing operators that expect a fixed set of columns
(i.e. distinct). The actual limitations imposed by this
restriction are small, as most database systems support
transactions with multiple commands that could be used to
build the current list of columns and then pivot on them in
separate queries, maintaining the existing strongly bound
semantic.

Let R be the input relation.
Let D be the set of columns from R that define groups.
Let p be a column in R not in D. Its value is the name of the new column to create when pivoting.
Let v be a column in R not in D where p not equal to v.
Let F be a collapsing aggregate function.
R' is a copy of R, with columns D', p', v' corresponding to D, p, and v respectively.
Let X by the set of columns w1..k-1 representing the set of pivoted columns.
PIVOT has result columns D plus columns w1..k representing the pivoted values.

PIVOT(D, v, p in {}, F)

R

=

GroupBy(D)

R

Base Case (no pivoted rows):

Inductive Case (one or more pivoted value(s) x):

PIVOT(D, v, p in X + {x}, F)

R
PIVOT(D, v, p in X, F)

R

LeftOuterJoin(D=D’)

GroupBy(D’, wi = F(v'))

R’

s (p’ = x)

=

Figure 8 PIVOT Definition

1001

3. Algebraic Optimizations

Queries containing PIVOT and/or UNPIVOT have the
opportunity to perform better if interactions with existing
operators (filters, projections, join, etc.) are considered.
Algebraic rewrites of PIVOT/UNPIVOT and other
operators enable cost-based optimizers to consider
alternative execution strategies to find more optimal plans.
This section covers some basic rewrites related to filters
and projections, more complicated transformations
converting PIVOT or UNPIVOT into existing operators,
using pivoting efficiently in property tables, and the
introduction of PIVOT and UNPIVOT into queries that
contain neither.

As a note about the terminology used in this section,
this paper assumes that duplicates work as in SQL. As a
result, Project and Union operations preserve duplicates
and are cardinality-preserving. Group By operations are
used to distinct values and can also be used to compute
aggregate functions.

We formally define PIVOT in Figure 8 by defining
PIVOT without any pivoted columns as DISTINCT, and
then inductively add pivoted columns to the base
definition through a left outer join to calculate the pivoted
values.

UNPIVOT is defined using the same variables used in
the definition of PIVOT. It is defined as an Apply over
the Union of a series of row constructors (one for each
column to be unpivoted).

Figure 9 UNPIVOT Definition

3.1. Projections and Filters

Projections and Filters are both restricting operations

on different dimensions of relations (one restricts
columns, while the other restricts rows). Interestingly,
since PIVOT and UNPIVOT exchange rows and columns,
this provides an opportunity to transform a projection to
and from selections. This section describes different
PIVOT/UNPIVOT algebraic rewrites invoking projection
and selection.

Projections can be used to simplify PIVOT and avoid
unnecessary computation. If a query uses a Project to
restrict column(s) introduced by PIVOT, the query can be

rewritten to not PIVOT those columns at all. This
simplification is possible since each pivoted column is
independent from all others.

It might be assumed this class of projection also
implies that a filter could be introduced below pivot to
restrict the pivot column (Month, in this example) to be
limited to ‘Jan’ or ‘Feb’. Unfortunately, this is not true.
Semantically, PIVOT produces a row for each group even
when input rows exist that do not match the pivot column
list. Pushing such a filter would eliminate groups with no
pivoted values, and it therefore does not work in the
general case. There are situations when filters can be
used, and these are described later in this section.

)(Aπ)(Aπ

Figure 10 PIVOT Projection Pushdown Identity

Filters over columns created in PIVOT can be pushed
in some cases. If there are guaranteed to be no duplicates
(if the grouping columns and the pivot column together
comprise a key) and the collapsing function is the identity,
it is possible to use the technique described in Figure 11.
One scan of the input finds any value matching the filter
criteria, and then a join is performed with another instance
of the input to gather the remaining columns to complete
the PIVOT operation. This technique is most beneficial if
indexes are defined that allow efficient searching of these
tables.

Figure 11 PIVOT Filter Pushdown

Projections over UNPIVOT are straightforward.

Projections limiting grouping columns can be safely
applied below the UNPIVOT. A projection removing the
value column implies that none of the pivoted columns are
actually needed to perform the UNPIVOT. It is still
necessary to perform some transformation in this case to
generate the correct number of duplicates of each input

1002

row to UNPIVOT. However, this transformation could
actually performed by UNION ALL instead of
UNPIVOT.

Filters interact with UNPIVOT in a similar fashion to
how Projects interact with PIVOT. A filter on the
columns introduced by UNPIVOT enables a whole
column to be removed from the input to UNPIVOT.
UNPIVOT does not have the same problem PIVOT faces
in preserving groups since it operates on columns.
Columns listed for transformation are all transformed, and
columns not listed become grouping columns. Thus, data
is preserved in all cases and a projection can be safely
introduced below the UNPIVOT.

UNPIVOT (v, p in {w1,…wk})

Row(p=Name(wj),
v=R.wj)

R

Apply

R

=

σ (p=z)

If z=wj and j in 1..k

Figure 12 Filters Interact with UNPIVOT

The PIVOT syntax described in Figure 4 contains an
IN list describing the set of values used to create new
pivoted columns. This limits the set of interesting rows to
rows that have a column value in this IN list, as other
values would be ignored by PIVOT. While it seems
possible to use this IN list to introduce an implied filter
under PIVOT, it does not preserve all groups correctly.
The following section describes a scenario when an
implied filter can be used.

3.2 PIVOT and Property Tables

PIVOT is useful in data modeling because they can
hide the physical storage design and provide a consistent
“wide” format to the rest of a database. In a typical
scenario, two tables are used, storing a list of items in one
table and all its properties with their values in the other.
In terms of PIVOT, the grouping columns are delivered
from one table, while the pivot and value columns are
delivered from the other. Property tables contain property
name and value columns that represent the sparse matrix
of (column, value) pairs of the virtualized table. PIVOT
can transform this physical representation into a virtual
table containing all the columns (with NULLs in any
missing locations). As these tables are typically joined
together using a left outer join on a set of key columns
(matching the grouping columns in PIVOT), it is possible

to perform transformations on this structure to improve
plan selection.

While the additional complexity of this design does
have some overhead, the overall impact can be minimized
through proper plan and index selection. In most cases,
creating indexes over the grouping columns on the item
table as well as the property and value columns of the
property table enable index lookup plans. One observation
about query transformations in this design is that pushing
projections and filters will not always produce superior
plans. Some transformations require additional scans of
the input, so they will only be beneficial if the proper
indexes exist and predicates are sufficiently selective.

When used against property tables, a projection that
removes all pivoted columns can be simplified as in
Figure 13. PIVOT becomes a Distinct over the left outer
join between the item and property table. However, since
no columns are used from the property table, that join can
be removed. Furthermore, since the property table design
typically has a key over the grouping columns in the item
table, the complete pattern can be satisfied with a scan of
the item table.

)(Dπ

Figure 13 Property Table Projection Reduction

A filter can be implied from the IN-list in PIVOT

when used against the property and item tables. Since
groups are preserved by the outer join, a filter can be
introduced below the join to restrict the property table to
only have property names in the set of columns being
pivoted. In Figure 13, the grouping columns are delivered
by R, while the property table is S. A left outer join
between these tables allows all the properties from the
groups listed in R to be surfaced above the join.
However, it is known that PIVOT will only consume
property values (from S) if they are in the IN-list of the

1003

PIVOT. Therefore, properties can be pre-filtered on S
before the join.

 Figure 14 Implying a Filter from PIVOT

Projections restricting the set of pivoted output
columns from PIVOT also can introduce a filter on the
property table. Since such a projection is equivalent to
not pivoting the extra columns at all, the set of pivoted
columns can be reduced, and the introduction of a filter
follows from Figure 14.

Filters over PIVOT can be pushed, but only with the
introduction of an additional scan of the property table. In
Figure 15, a filter on a pivoted column can be rewritten to
restrict the item table (R) to only consider items that have
qualifying properties. Since this rewrite introduces an
additional scan of the property table, this may be
appropriate only when certain indexes are defined on the
item and property tables.

Figure 15 Filter Pushdown on Property Tables

3.3 PIVOT as GROUP BY

It is possible to rewrite queries using PIVOT to instead
use GROUP BY. Each value in the IN-list uses a copy of
the aggregate function listed in the PIVOT definition.
Beneath each aggregate, conditional logic is used to pick
only the input rows that map to the correct output column.
Non-matching rows are changed to NULL instead.
Columns not listed in PIVOT become the set of grouping
columns for the GROUP BY. The syntax from Figure 6
maps as follows:

MIN(CASE Month WHEN 'Jan' THEN Sales ELSE
NULL END) AS 'Jan',
MIN(CASE Month WHEN 'Feb' THEN Sales ELSE
NULL END) AS 'Feb',
MIN(CASE Month WHEN 'Mar' THEN Sales ELSE
NULL END) AS 'Mar'

PIVOT(D, v, p in X, F)

R
=

GroupBy(D’, wi = F(v') i=1..k)

R

Figure 16 PIVOT Identity

While the transformation to GROUP BY is
straightforward, there are very good reasons to perform
this step during the optimization of the query instead of as
part of the declarative SQL definition. Queries defined
using a series of aggregates in a GROUP BY are typically
much harder for optimizers to examine and understand.
Using PIVOT, logic is not distributed over a number of
aggregate functions and operators with additional non-
trivial scalar logic in each. Therefore, it is easier for rule-
based optimizers to target with special-purpose
transformation logic. Additionally, the syntax suggested
in this paper is far simpler than current workarounds using
standard SQL.

Mapping PIVOT to GROUP BY requires an
assumption that the collapsing (aggregate) function be
invariant to additional NULLs. The scalar logic beneath
each aggregate substitutes NULL for each row that does
not match that pivoted column. Formally speaking, a
collapsing function F needs to support the condition that
for any set of input values S, F(S) = F(S U {NULL}).
Aggregates such as SUM() and MAX() have this property.
However, COUNT(*) does not have this property, as it
counts each row in its output.

Since PIVOT is a specialization of GROUP BY,
RDBMS implementations can leverage this information to

1004

easily add PIVOT support without writing new logic
throughout every portion of a query processor.
Transforming PIVOT into GROUP BY early in query
compilation (for example, at or near the start of query
optimization or heuristic rewrite) requires relatively few
changes on the part of the database implementer. With
such an approach, no new execution operators are
required, and little new optimization or costing logic is
needed. This provides an effective technique to extend
existing RDBMS products with little effort.

In addition to implementation simplicity, viewing
PIVOT as GROUP BY also yields many interesting
optimizations that already apply to GROUP BY. Reusing
existing GROUP BY optimization logic can yield an
efficient PIVOT implementation without significant
changes to existing code. These benefits include:
• Removal of duplicate or grouping columns by other

grouping columns, which reduces overall row width
• Filters and semi-joins restricting complete groups can

be performed below the GROUP BY.
• Local/Global techniques [7] for pushing grouping

optimizations below joins and other operations
• Query logic to perform groupings using parallel

threads of execution.

3.4 UNPIVOT as Apply

UNPIVOT can leverage existing implementation code

as well. As an operation that takes each row and returns a
number of additional rows as output, this is very similar to
a correlated join (which we call an Apply [1]). If a join is
made with a special constant table containing one row for
each column to unpivot, then one row for each pivot
column will be created in the output. This technique
allows database implementations to get good performance
characteristics without implementing a full operator in the
query processor. While this approach introduces some
additional overhead by using multiple iterators, this has
not been significant in our implementation. It is not
difficult to write a special purpose iterator if needed.

This transformation yields similar performance
benefits to implementing PIVOT as GROUP BY. Apply
can be reordered easily with other join operators, and it
has well-defined interactions with filters, projections, and
other query operations. It is also possible to perform
these operations in parallel by segmenting the input rows
into different groups. None of these problems need to be
explicitly considered for UNPIVOT, as they are already
solved for the regular join case. This greatly reduces the
required implementation effort while still providing
excellent performance for the operation.

Figure 9 describes a possible implementation of
UNPIVOT using Apply, UNION, and a number of special
“Constant Tables”. Each UNION branch generates one
unpivoted row with two columns. One column contains
the name of the original column, and another contains the
value associated with that column. The grouping columns
are added to this row in the Apply. The Apply needs to be
a Left Outer Apply, preserving rows from the input table
when the UNPIVOT specifies no matching column names
from the relation.

3.5 Join Cardinality Reduction

If PIVOT and UNPIVOT are inverses, a query
optimizer can introduce PIVOT and UNPIVOT into a
query tree as a technique to reduce cardinality in portions
of a query tree around expensive operations, such as joins.
If PIVOT can be used to reduce the cardinality of the
input in a lossless fashion, joins (or other expensive
operations) would be executed far fewer times, followed
by an UNPIVOT to expand rows back to their original
state. Cost-based optimizers can then pick the cheaper
technique for query evaluation. Figure 17 shows an
example of this.

The PIVOT and UNPIVOT operations must preserve
the rows from the pivoted table as if they were processed
by the join to be used in this transformation. Furthermore,
if PIVOT uses a collapsing (aggregate) function, then
UNPIVOT must be able to invert it in all cases. This
could be achieved through nested scalars or other complex
data types, invertible aggregate functions, or just avoiding
data collisions through constraints on the input relation.

Figure 17 PIVOT-based Join Cardinality Reduction

PIVOT also provides the opportunity to represent a
series of scalar subqueries (as seen in Figure 3) in a more
semantically useful internal representation. A naive
implementation would create a series of subqueries over
the same table to compute each column. By converting
this series of operations into PIVOT, the poor user
representation can be handled with a far fewer number of

1005

tables. This allows the database implementer to handle
existing work-around queries generated by users before
PIVOT existed.

4. Execution Strategies

Defining PIVOT in terms of GROUP BY and Apply
provide an excellent opportunity to re-use existing
execution operators in new ways. In Section 3.3, we
demonstrated that PIVOT can be implemented as GROUP
BY. Hash and stream aggregation are available for
PIVOT, and have similar execution properties. Parallel
query execution can also be supported using these
execution strategies as long as the members of each group
are processed in the same thread. PIVOT does use a
relatively large number of identical aggregates with
almost identical scalar logic. One novel execution
strategy could group the computation of these aggregates
together, either by treating the set of aggregates as a
vector computation or by rewriting each individual
aggregate computation into a dispatch table (as each
column will be looking for a single and likely unique
scalar for each input row).

PIVOT can also be implemented through a special-
purpose iterator transposing rows into columns.
Consuming a sorted (grouping columns and the pivot
column) stream, the next row in the current group
becomes the source of the value for the next column. If a
pivoted column does not have a corresponding row in the
input, it returns the empty value for all output columns
until the correct location for the current input row is
located. Similar to the grouping operators, this technique
can be performed simultaneously over values from
different groups.

As described in this paper, UNPIVOT can be
implemented as a correlated nested loops join (Apply).
Each invocation of the Apply can be performed in
parallel, leveraging existing parallel techniques available
to joins. UNPIVOT can also be implemented using a
special purpose execution iterator that consumes one row
and returns a number of rows in unpivoted form.
Parallelism is slightly easier for UNPIVOT since each
input row can be processed independently (instead of
groups of rows).

5. Experimentation

We implemented PIVOT and UNPIVOT in Microsoft
SQL Server, adding support in the parser and in the query
processor for these new operators. The architecture of our
query optimizer is based on the Cascades framework [3],
which enables defining new relational operators and

optimization rules for them. These optimization rules
follow from the properties described earlier for PIVOT
and UNPIVOT.

In this section we go over a number of scenarios and
show the performance obtained in our system. We use the
well-known TPCH database, at 1 GB scale, as a basis for
our experiments. The experiments were conducted on a
dual-processor machine running at 2 Gigahertz, with 1 GB
of main memory. We flush data caches before executing
queries, so the numbers shown are on a cold cache.
Parallel execution is disabled in the results we present,
since it does not qualitatively affect our results.

5.1. PIVOT vs. SQL sub-query form

We first compare the performance of our PIVOT
operator with that of the equivalent formulation with sub-
queries described in Section 2.1. The following query
summarizes sales data in the ORDERS table, returning
one row per year, and columns for each of the twelve
months.

SELECT * FROM

(SELECT
 YEAR(O_ORDERDATE),
 MONTH(O_ORDERDATE),
 O_TOTALPRICE
 FROM ORDERS) ORD(YEAR, MONTH, PRICE)
 PIVOT (SUM(PRICE)
 FOR MONTH IN (1,2,3,4,5,6,7,8,9,10,11,12)) T

Figure 18 shows the execution time of the PIVOT

query and the equivalent sub-query formulation. For each
of the two forms, we change the number of months to
PIVOT; only three months of the year, then six months,
and finally all twelve months. The performance
difference is due to the duplication of work in the sub-
query formulation, as each pivoted column is computed
separately, because our common sub-expression code
does not currently handle this case.

More indices can be used to speed up the computation
of the sub-query form, even if the common sub-expression
is not detected. Fast lookup of the value from the
dimensions columns (e.g. and index on year, month, price
in the case above) would make performance comparable
to the PIVOT form. However, it remains verbose and
repetitive to the application writer.

5.2. Property table access

Earlier, we mentioned the use of PIVOT to support

property tables. This allows presenting a view of wide
rows to application writers, even if a sparse representation

1006

is used to store data internally. For this experiment, we
added a property table to store information about the
TPCH CUSTOMER table. The property table has the
following schema:

CUSTPROPERTY(CP_CUSTKEY, CP_NAME, CP_VALUE)

Columns (CP_CUSTKEY, CP_NAME) make up a key

of the property table. A customer property is registered in
the database by inserting a new row to
CUSTPROPERTY. We also create an index on
CP_NAME, CP_VALUE, CP_CUSTKEY, to lookup
property values efficiently.

We now create a view that exposes a “wide” customer
row, having a column for property in a set of interest. The
view uses an outer join to find the registered properties for
the set of customers, because we want to retain customers
even if no property is defined for them. Say we are only
interested in five properties, ‘A’ through ‘E’:

CREATE VIEW EXTCUSTOMER AS
SELECT *
FROM (
 SELECT *
 FROM CUSTOMER LEFT JOIN CUSTPROPERTY
 ON C_CUSTKEY = CP_CUSTKEY
) CUSTNARROW
 PIVOT (MIN(CP_VALUE)
 FOR CP_NAME IN (‘A’, ‘B’, ‘C’,’D’,’E’)
) CUSTPIVOTED

An application wishing to find customers with a
certain property can query the view directly, e.g.

SELECT * FROM EXTCUSTOMER
WHERE A IS NOT NULL

Figure 19 shows the performance obtained on the
abstraction provided by the view. It compares three
techniques:

• Store all the information in a single “wide” table
that has five columns for the properties above.
Have a single-column index of each of the
properties.

• Have a separate property table, but do not exploit
reordering properties, i.e. execute the view
EXTCUSTOMER first and then apply additional
operations such as filtering.

• Have a separate property table and enable PIVOT
reordering.

To change the selectivity of predicates, we use

different distributions for the property values. There are

only 10 customers for which property ‘A’ is defined (i.e.
not null in the “wide” row); then there are 100, 1000,
10000, and 100000 customers for which properties ‘B’
through ‘E’ are defined, respectively. For this
experiment, we scaled up the number of customers from
150,000 to 600,000. Figure 20 shows the execution plan
picked for properties ‘A’ and ‘B’ in this example, which
are both very selective. An index seek is done against the
non-clustered index on the CUSTPROPERTY table to
determine what customers have this property. Then,
another index seek is performed on clustered index of the
CUSTOMER table to retrieve all the columns from the
base table. Next, an index seek is performed to retrieve
the remaining property values for this particular customer.
After all the data has been assembled, it is sorted and
stream aggregation is used to complete the pivot.

The property table is relatively small compared to the
CUSTOMER table, so the performance difference
between a separate property table and the “wide” table,
when all the data is retrieved, is mostly due to the
execution cost of our current PIVOT implementation.
When there are predicates, our transformation rules can
generate very efficient execution plans that exploit indices
to locate qualifying rows quickly, making performance
comparable to that obtained if we had a single table.

There is one restriction to point out regarding the
benefits that can be obtained through indexing. When
modeling directly as a “wide” table, it is possible to create
and exploit multi-column indices. A separate property
table does not naturally allow setting up such access paths,
so the expected behavior is similar to that obtained with
single-column indices.

Figure 18 PIVOT vs. scalar sub-queries

0

20

40

60

80

100

120

140

3 months 6 months 12 months
months pivoted

Query time (sec)
sub-queries
PIVOT

1007

0

1000

2000

3000

4000

5000

6000

7000

A(1
0)

B(1
00)

C(1
,0

00
)

D(1
0,

00
0)

E(1
00,0

00
)

ALL
(6

00
,0

00
)

Filtered property

Q
u

er
y

ti
m

e
(m

se
c) property table

wide table

prop table with filter
pushdown

Figure 19 PIVOT Property Table Results

Figure 20 Property Table With Filter Pushdown Plan

6. Extensions

While this paper’s PIVOT and UNPIVOT examples

show a single value column, it is not difficult to extend
this to an arbitrary number of columns. Each value
column could be transposed into independent sets of
columns in PIVOT, and UNPIVOT can similarly collapse
different groups at the same time. Each group could use a
different collapsing function (aggregate), and different
aggregates could be used over the same column.
Alternatively, complex data types could be created to hold
multiple values in the same result column for as many
values as are desired. None of these extensions

significantly change the possible optimization or
implementation techniques presented in this paper.

Extending the collapsing function also increases the
utility of these two operators. The collapsing function is
described as a single column aggregate function (SUM(),
MIN(), etc.). Any RDBMS aggregate function, including
user-defined or order-sensitive aggregate functions, could
be allowed without affecting the transformations presented
in this paper. Even more exotic aggregate functions, such
as those that allow multiple input columns and/or produce
multiple output columns, also fit nicely with simple
extensions to the syntax proposed. Finally, it is possible
to consider non-aggregate functions in this context. These
could be used to throw an error when a data collision is
detected in a cell or to handle data collisions by storing
data from multiple rows as a nested relation or some other
format that UNPIVOT can reassemble into multiple rows
without losing data. These extensions allow a great deal
of flexibility beyond traditional aggregation for PIVOT
and UNPIVOT.

PIVOT and UNPIVOT are related to OLAP structures
such as data cubes. However, OLAP operations do not
always fit nicely into the SQL language. If a multi-
dimensional structure is accessible through SQL, PIVOT
and UNPIVOT could work on a portion of a cube visible
as a relation (i.e. a two-dimensional set of rows and
columns). Unpivoting a portion of a cube would be
analogous to the operations presented for UNPIVOT in
this paper.

7. Related Work

The idea behind PIVOT is not new. [4] described a

number of extensions to grouping including a “cross-tab”
query, though discussion was limited to PIVOT and did
not discuss how to efficiently implement it or to expose
pivoting below other operators.

SchemaSQL [5] implements transposing operations.
The implementation appeared to be outside the RDBMS,
however, and there was not significant discussion of query
optimization in this context. [6] implements pivoting and
unpivoting through unfold and fold operations,
respectively. This work also does not attempt to push this
capability deeply into the RDBMS.

[8] describes a system to expose spreadsheet-like
functionality into a RDBMS, including how queries can
be optimized using this approach. This model exposes
behavior closer to OLAP than traditional flat relations,
though some predicate pushing would be related in these
two models.

[8] also describes a model of data n-dimensional array
where cells are described through a coordinate system

1008

using names. While similar in capabilities, the paradigm
presented to the user differs from traditional SQL
operators and may be harder to understand. We feel that
our representation is a more natural representation of data
rotation in the SQL language.

Both [8] and [4] describe that a relational table is a
two-dimensional view of a cube, and this can represent a
cross-tabulation of data. However, only [4] discusses how
to move between the cross-tabulated and flat (narrow)
form of data, and [4] only mentions that this capability
exists in Microsoft Access.

Finally, our own prior work [2] exploited the basic
design of unpivot operations for a special purpose that
would be better served by deep integration into a database
query processor.

8. Conclusion

We introduce two new data manipulation operators,
Pivot and Unpivot, for use inside the RDBMS. These
improve many existing user scenarios and enable several
new ones. Furthermore, this paper outlines the basic
syntactic, semantic, and implementation issues necessary
to add this functionality to an existing RDBMS based on
algebraic, cost-based optimization and algebraic data flow
execution. Pivot is an extension of Group By with unique
restrictions and optimization opportunities, and this makes
it very easy to introduce incrementally on top of existing
grouping implementations. Finally, we present a number
of axioms of algebraic transformations useful in an
implementation of Pivot and Unpivot.

8. References

[1] C. A. Galindo-Legaria, M. M. Joshi. Orthogonal
Optimization of Subqueries and Aggregation, ACM SIGMOD
2001, May 21-24, 2001, Santa Barbara, California, USA, pages
571-581.

[2] G. Graefe, U. Fayyad, and S. Chaudhuri. On the Efficient
Gathering of Sufficient Statistics for Classification from Large
SQL Databases, Proceedings of The Fourth International
Conference on Knowledge Discovery and Data Mining, 1998,
pages 204-208.

[3] G. Graefe. The Cascades Framework for Query
Optimization. Data Engineering Bulletin 18 (3) 1995, pages 19-
29.

[4] J. Gray, A. Bosworth, A. Layman, H. Pirahesh. Data Cube:
A Relational Aggregation Operator Generalizing Group-By,
Cross-Tab, and Sub-Totals, Data Mining and Knowledge
Discovery, vol. 1, no. 1, 1997.

[5] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On
Efficiently Implementing SchemaSQL on a SQL Database
System. In Proceedings of 25th International Conference on
Very Large Data Bases, September 7-10, 1999, Edinburgh,
Scotland, pages 471-482.

[6] R. Agrawal, A. Somani, Y. Xu. Storage and Querying of E-
Commerce Data, In Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001,
Roma, Italy, pages 149-158.

[7] M. Jaedicke, B. Mitshcang. On Parallel Processing of
Aggregate and Scalar Functions in Object-Relational DBMS.
1998 Proceedings of the ACM SIGMOD International
Conference on Management of Data, Seattle, WA, pages 379-
389.

[8] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N.
Folkert, A. Gupta, L. Shen, S. Subramanian. Spreadsheets in
RDBMS for OLAP. 2003 Proceedings of the ACM SIGMOD
International Conference on Management of Data, San Diego,
CA, pages 52-63.

1009

