
An Electronic Patient Record “on Steroids”:
Distributed, Peer-to-Peer, Secure and Privacy-conscious∗

Serge Abiteboul1 Bogdan Alexe2 Omar Benjelloun1 Bogdan Cautis1

Irini Fundulaki2 Tova Milo1,3 Arnaud Sahuguet2

1:INRIA Futurs, 2: Bell Labs, Lucent Technologies, 3: Tel-Aviv University

1 Introduction

Getting sick or injured is never a good idea. You never
know when it’s going to happen or where. In such situ-
ations, it is crucial to be able to gather all the relevant
information to make the diagnosis and treatment as
effective as possible.

By nature, an electronic patient record (EPR) [9]
consists of many pieces owned and managed by dif-
ferent entities: yourself as a patient, your referring
doctor, the various specialists you are dealing with
(e.g. gynecologist, optometrist, physical therapist),
the pharmacist(s) you shop from, the various hospi-
tals you go to for surgery or special examination, the
insurance company (private or state-owned) that han-
dles the billing and reimbursement, some wearable de-
vices that monitor your heartbeat or glucose level, etc.

Besides the distribution of the data, one of the main
challenges in the management of EPR information is
its sensitive nature. Clearly, a patient does not want
unauthorized parties to access confidential parts of her
medical record. One should note that the issue of man-
aging information that is both highly distributed and
partly confidential does not arise only in the EPR con-
text, but is also typical of many other distributed ap-
plications, such as the management of user profiles,
shared agendas, collaborative workspaces, etc. The
goals of this demo are (1) to propose a unified, peer-
to-peer, privacy conscious solution to the management
of distributed sensitive information, and (2) illustrate
it through an EPR management example scenario.

So far, most approaches to the management of
EPRs considered a setting where the information

∗ This work was partially supported by EU IST project DB-
Globe (IST 2001-32645), and by the French government grant
ACI MDP2P.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

is highly centralized (e.g. in hospitals), for which
centralized approaches – like the one advocated
by Hippocratic databases [5] – make perfect sense.
As EPR relevant information is more and more
distributed, we argue that a centralized approach
is not always satisfactory. To handle the inherent
distribution of data, we advocate for a peer-to-peer
architecture, where EPR data can be seen as a large
virtual XML document [12] – one per user – that
is being accessed and modified by the numerous
players involved. As far as access control on XML
data is concerned, existing approaches [6, 8] offer
great flexibility in terms of the definition and the
enforcement of access rules, but do not provide means
to handle highly distributed data. In a peer-to-peer
setting, each peer may want to enforce particular
access control rules for the data that it owns and for
the data that is accessible through it, and possibly
delegate to other peers the task of defining/enforcing
these rules. These functionalities are precisely the
ones provided by the system demonstrated here.

Contribution: We demonstrate a novel solution for
the privacy-conscious integration of distributed data,
that relies on the combination of two key technolo-
gies: Active XML [4], that provides a highly flexi-
ble peer-to-peer paradigm for data integration, and
GUPster [14], that unifies the enforcement of access
control and source descriptions. While each of these
two technologies has been demonstrated separately be-
fore [4, 1, 2, 11], we show here that their synergy yields
a powerful generic platform that seamlessly handles
data integration and privacy enforcement tasks in a
highly distributed setting.

Active XML (AXML for short) is a framework to
manage XML documents where some of the data is
given explicitly, whereas other parts are calls to Web
services [16] that generate the “missing” data. Such
documents can be viewed as a partially virtual. The
AXML platform makes it possible to manage and
query these documents, offering rich features such as
lazy/distributed query evaluation and typing [13, 3].

GUPster is a framework for the privacy-conscious
management of distributed XML data. Source descrip-

1273

Patient

Medical

History

Patient

Profile

HIV

related

L

Lab tests

Financial

balance

L

Cardiac Sugar level

L L

Peer1

Peer2

Peer3

Peer4

Peer5

Peer6

Local data

Web service call/invocation
for data access

Addictions

Allergies

X-Rays

Web service call/invocation
for access control (= local)L

Patient’s Health SmartCard

Patient’s Referral Physician

Patient’s monitoring device

Hospital

Medical Insurance Company

Department of Health
Query

Figure 1: Global architecture

tions (i.e. the queries supported by each source) and
user access rights are specified in a uniform way us-
ing XSquirrel, a specialized XML query language. The
nice closure properties of this language for operators
such as union and composition allow user queries to
be statically rewritten into queries that are both au-
thorized (from the access control rules) and compatible
(with the source descriptions).

Together, the two technologies are combined in the
architecture of Fig. 1, where peers can act as data
sources, integrators, and provide/enforce access con-
trol/source descriptions. In this demo, this enables
us to (i) represent a user’s EPR as a virtual docu-
ment, distributed among different peers on the net-
work, (ii) enforce fine-grained access control policies
over this document, also in a distributed way, and (iii)
process queries while enforcing the access control, in
a distributed, privacy conscious manner. In Fig. 1, an
EPR at a physician’s peer has some part on a monitor-
ing device, and some part at the hospital and (recur-
sively) at the insurance company. Access control on
this distributed data is partly determined by the pa-
tient’s preferences (through her SmartCard), partly by
the general regulations of the Department of Health,
and partly locally at each participating peer.

The rest of this paper is organized as follows.
Section 2 overviews AXML and GUPster. Section 3
explains how their combination supports privacy-
conscious data integration. Section 4 outlines a
demonstration scenario for the management of elec-
tronic patient records.

2 Underlying technologies

In this Section, we briefly introduce Active XML doc-
uments and the GUPster query rewriting mechanism.

<patientData>
<identity>

<name>
<first>Mary</first>
<last>Smith</last>

</last>
<dateOfBirth>19710402</dateOfBirth>
<ssn>

<call svc="filterSSN@ssa.org">

<call svc="getMySSN@local" />

</call>

</ssn>
</identity>
<address>2200 Broadway, NY, 10023 NY</address>
<medicalRecord>

<call svc="filterMR@DeptOfHealth">

<visit>
<date>20030102</date>
<MD>

<name>John Jones</name>
<specialty>eyeMD</specialty>

</MD>
<prescription>Eye drops</prescription>
<diagnosis>

<call svc="diagDescription@DoctorPepper">

<call svc="getDiagnosis@DoctorPepper">
<visitID>627692876693</visitID>

</call>

</call>

</diagnosis>
</visit>
...
<call svc="getVisits@MDVisits">
<patient>Mary F. Smith</patient>

</call>

</call>

</medicalRecord>
...

</patientData>

Figure 2: An EPR as an AXML document

2.1 Active XML: P2P data integration

AXML is a declarative framework that harnesses
Web services for data integration, and is put to work
in a peer-to-peer architecture. An AXML document
is an XML document where some of the data is given
extensionally, as regular XML elements, while some
data is given intensionally, by means of calls to Web
services [16]. These service calls are represented by
special call elements, that are embedded in the docu-
ment. The data inside the call element is the param-
eter of the service call. When a service is invoked, the
call parameter is passed to it, and its result replaces
the service call in the document.

For example, consider the document in Fig. 2, that
represents an electronic patient record (ignore for now
the boxed parts). The document contains the pa-
tient’s identity information and medical record. Some
of the data is given explicitly, e.g. the patient name,
and some can be obtained by calling Web services,
e.g. her social security number (ssn)that is available
from getMySSN@local, and additional visits informa-
tion that can be obtained via the getVisits service
hosted by the MDVisits peer.

1274

Lazy query evaluation When a query is evaluated
on a document, the service calls whose answer is rele-
vant for the query are invoked 1. To optimize the com-
putation, when possible, (sub)queries are “pushed” to
the service providers, thus reducing the materializa-
tion and transfer of data (see [3] for details). When
a query is pushed to a service, it is passed to it as
an extra parameter. The service, depending on its
particular implementation, can either naively perform
its normal computation, and then evaluate the pushed
query on the result, or have a more optimized strategy.

Note that, since the called services may them-
selves be defined as queries over AXML documents,
the called peers may run a similar computation, thus
achieving a P2P ad-hoc style of data mediation.
2.2 GUPster: Declarative access control

To ensure the privacy of data, one needs a fine grained
control over the requests initiated by users. We adopt
here the GUPster approach [11], that unifies access con-
trol (AC) and source descriptions, by relying on a sin-
gle query language to specify both, and a single query
rewriting mechanism to enforce them.

The query language used by GUPster to describe AC
rules and source descriptions is XSquirrel, a simple
XML projection query language. The language uses
a syntax similar to that of XPath [7], but has dif-
ferent semantics: rather than returning sets of nodes,
like XPath, it returns a projection of the queried doc-
ument. Intuitively, the result of an XSquirrel query on
a document is the sub-document that contains (a) all
descendant leaf nodes of the requested nodes and (b)
their ancestors up to the root of the initial document.

As a simple example, suppose that we want to re-
strict the access to the visit elements in Mary’s EPR,
allowing Dr. Hull to access only the prescription,
diagnosis and MD’s specialty elements. The corre-
sponding XSquirrel access rule would be:
AC1: Hull, /visit/(MD/specialty ∪ prescription ∪ diagnosis)

Similar rules can be used to describe the access
rights of other users, or the queries accepted by data
sources (in our case, the embedded Web service calls).

To process a query, GUPster fetches the rele-
vant AC/source description rules and composes them
with the query, yielding a restricted query that ac-
cesses/returns only allowed information. For instance,
suppose that Dr. Hull attempts to retrieve all the data
regarding her visits to ophthalmologist by issuing the
query: /visit[MD/specialty="eyeMD"]

The restricted query would be:
/visit[MD/specialty="eyeMD"] /(prescription

∪ diagnosis ∪ MD/specialty)

While the result of the composition in this case is
very intuitive, the general rewriting technique for more
complex queries and rules is more intricate, and relies
on XSquirrel’s closure properties. See [10] for details.

1Service calls (and their parameters) represent virtual data
and are not queriable.

It should be noted that, in the original GUPster sys-
tem, AC rules as well as source descriptions are speci-
fied with respect to a global schema, and are managed
by a centralized mediator, in charge of applying them
for all the queries asked on the global schema. The
main contribution of the present work is in leveraging
GUPster’s access control mechanism for P2P, schema-
free integration of decentralized data.

3 Privacy-conscious P2P integration

We first present filtering services, our basic construct
for distributed access control, then explain how they
are used to enforce access control, and finally consider
some important security aspects.

3.1 Filtering services

GUPster’s access control functionality is naturally in-
corporated into AXML documents, by being provided
as Web services. We define filtering services, that en-
force GUPster-like rules on AXML data. Each of these
services can protect some AXML data by filtering the
queries that can be evaluated on them, according to
a set of access control rules. Note that the protected
data does not have to be sent extensionally as a param-
eter, but can be represented intensionally by a service
call, and thus hidden from the filtering service.

In our EPR document, calls to such services are the
boxed ones. For instance, filterMR@DeptOfHealth is
a filtering service that restricts Dr. Hull’s access to
Mary’s visit information, by using the access control
rule AC1 given in Section 2.2.

It should be noted that, like for other Web services,
filtering services can be freely used and combined
inside AXML documents. Therefore, in the same
way that service calls are used to integrate data
from various sources, they can also be used to
combine access control/source descriptions that are
enforced/provided by various parties. For instance,
queries targeted at the diagnosis information, that
is retrieved from getDiagnosis@DoctorPepper
will be both protected by the AC enforced
by the call to filterMR@DeptOfHealth and
limited by the source description provided by
diagDescription@DoctorPepper.

We next explain how access control is enforced while
queries are evaluated.

3.2 Query evaluation and access control

To enable the enforcement of access control, we ex-
tend Active XML’s lazy evaluation and query pushing
mechanisms to apply also to filtering services. When
a query is evaluated on an AXML document, and a
call to a filtering service is met, the corresponding sub-
query is pushed to the filtering service, which combines
it with the access control rules defined for the user ask-
ing the query, using GUPster’s rewriting algorithms.

Then, the filtering service can either (lazily) evalu-
ate the resulting rewritten query on the guarded data

1275

and return the result of this evaluation, or let the re-
quester evaluate this query. This choice is controlled
by the input/output types specified for the filtering
services, using techniques introduced in [13].

Consider our previous GUPster example. Suppose
the peer of Mary’s referring MD (RMD) receives a re-
quest from Dr. Hull to evaluate, on the document of
Fig. 2, the following query:
/patientData/medicalRecord/visit[MD/specialty="eyeMD"]

The RMD peer pushes a query about visits to
filterMR@DeptOfHealth, which composes it with
the access control rule AC1, as discussed in Sec-
tion 2.2. Then, the composed query is evaluated
(either at the RMD peer or at the filtering peer
DeptOfHealth). This will also entail pushing a sub-
query to getVisits@MDVisits, which, recursively,
may also invoke calls to filtering services guarding its
own data (hence further restricting the pushed query).
3.3 Security aspects

Classical transport-level security mechanisms, based
on public-key encryption and digital signatures will be
used to enforce properties such as confidentiality, au-
thentication and non-repudiation, at the message level.
When a finer level of control is required, XML Encryp-
tion and XML Signature standards [15, 17] will be used
to encrypt/sign only parts of the exchanged messages.

Basic Web services for handling encryption and
signature will be present locally on every peer, and
calls to these local services will be used in AXML
documents, e.g. to provide means to decrypt some
encrypted data, or to verify a signature. The
typing mechanisms mentioned above will also be
used to enforce constraints such as: queries pushed
to getDiagnosis@DoctorPepper must be signed by
filterMR@DeptOfHealth.

4 Demonstration scenario

We will demonstrate how an EPR document can be
managed by a number of AXML peers representing
hospitals, MD’s, insurance companies, Department of
Health. These peers will be living on remote servers,
laptops and mobile devices. Each of them will pro-
vide/integrate information/filtering services, or a com-
bination of these. E.g., a hospital provides information
about visits, while an insurance company gives reim-
bursement reports, and access control on both of them
is enforced by both the regulations of the Dept. of
Health, and their own respective privacy policies.

We will illustrate how this distributed data can be
queried by different users (referring doctor, nurse, in-
surance company), and how the specified access con-
trol rules are enforced along the way. We will in par-
ticular show how:
• a patient manages her EPR, by adding or remov-

ing sources, and protecting this integrated data,
by using external filtering services, or defining her
own, using access control rules.

• a doctor can access/query this EPR with some
restrictions,

• a nurse can access the EPR in an even more re-
stricted way,

• the insurance company can check the latest pre-
scriptions for future reimbursement.

For all these scenarios, we will demonstrate how the
queries are executed efficiently:
• only the relevant/permissible parts of the AXML

document are exchanged between peers,
• an AXML peer can fully or partially evaluate a

query (similar to LDAP referral mode), by dele-
gating some of the computation to filtering peers
or information sources.

References
[1] S. Abiteboul, B. Amann, J. Baumgarten, O. Benjelloun,

F. Dang Ngoc, and T. Milo. Schema-driven Customization
of Web Services (demo). In Proc. of VLDB, Berlin, 2003.

[2] S. Abiteboul, J. Baumgarten, A. Bonifati, G. Cobena,
C. Cremarenco, F. .Dragan, I. Manolescu, T. Milo, and
N. Preda. Managing Distributed Workspaces with Active
XML (demo). In Proc. of VLDB, Berlin, 2003.

[3] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,
T. Milo, and N. Preda. Lazy Evaluation for Active XML.
In Proc. of ACM-SIGMOD, Paris, June 2004.

[4] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and
R. Weber. Active XML: Peer-to-Peer Data and Web Ser-
vices Integration (demo). In Proc. of VLDB, Hong Kong,
2002.

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic
databases. In Proc. of VLDB, Hong Kong, 2002.

[6] E. Bertino and E. Ferrari. Secure and Selective Dissemi-
nation of XML Documents. ACM Trans. on Information
and System Security, 5(3):290–331, 2002.

[7] J. Clark and S. DeRose (eds.). XML Path Language
(XPath) Version 1.0. W3C Recommendation, November
1999. http://www.w3c.org/TR/xpath.

[8] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi,
and P. Samarati. A Fine-Grained Access Control System
for XML Documents. ACM Trans. on Information and
System Security, 5(2):169–202, May 2002.

[9] Health Level Seven. http://www.hl7.org/.

[10] I. Fundulaki and A. Sahuguet. A language-based approach
for distributed user profile data management. Technical
Report, November 2003.

[11] I. Fundulaki, A. Sahuguet, D. Lieuwen, N. Onose, G. Gi-
raud, and N. Pombourcq. Share your data, keep your se-
crets (demo). In Proc. SIGMOD, Paris, 2004.

[12] E. Kuikka, A. Eerola, and J. Komulainen. Structuring the
electronic patient record. Technical report, University of
Kuopio, 2001.

[13] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and
F. Dang Ngoc. Exchanging Intensional XML Data. In
Proc. of ACM SIGMOD, San Diego, 2003.

[14] A. Sahuguet, R. Hull, D. Lieuwen, and M. Xiong. En-
ter Once, Share Everywhere: User Profile Management in
Converged Networks. In Proc. of CIDR, 2003.

[15] W3C. XML Encryption WG, 2001.
http://www.w3.org/Encryption.

[16] W3C. Web Services Activity, 2002.
http://www.w3.org/2002/ws.

[17] W3C. XML Signature WG, 2002.
http://www.w3.org/Signature.

1276

