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Abstract 

Moments before the launch of every space vehicle, 
engineering discipline specialists must make a critical 
go/no-go decision.  The cost of a false positive, 
allowing a launch in spite of a fault, or a false negative, 
stopping a potentially successful launch, can be 
measured in the tens of millions of dollars, not including 
the cost in morale and other more intangible detriments.  
The Aerospace Corporation is responsible for providing 
engineering assessments critical to the go/no-go decision 
for every Department of Defense (DoD) launch 
vehicle. These assessments are made by constantly 
monitoring streaming telemetry data in the hours before 
launch.  For this demonstration, we will introduce 
VizTree, a novel time-series visualization tool to aid the 
Aerospace analysts who must make these engineering 
assessments.  VizTree was developed at the University of 
California, Riverside and is unique in that the same tool 
is used for mining archival data and monitoring incoming 
live telemetry.  Unlike other time series visualization 
tools, VizTree can scale to very large databases, 
giving it the potential to be a generally useful data 
mining and database tool. 

1. Introduction 
One of the crucial responsibilities of The Aerospace Corporation 
is to provide engineering assessments for the government 
engineering discipline specialists who make the critical go/no-go 
decision moments before the launch of every DoD space vehicle. 
The analyst making these engineering assessments has access to 
data from previous launches and must constantly monitor 
streaming telemetry from the current mission. Currently, the 
analysts use electronic strip charts similar to those used to record 
earthquake shock on paper rolls. However, while these charts 

illustrate the recent history of each sensor, they do not provide any 
useful higher-level information that might be valuable to the 
analyst.   

To reduce the possibility of wrong go/no-go decisions, The 
Aerospace Corporation is continually investing in research. There 
are two major directions of research in this area. 
• Producing better techniques to mine the archival launch data 

from the massive databases collected during previous 
missions. Finding rules, patterns, and regularities from past 
data can help us “know what to expect” for future missions, 
and allow more accurate and targeted monitoring, 
contingency planning, etc [3]. 

• Producing better techniques to visualize the streaming 
telemetry data in the hours before launch. This is particularly 
challenging because analysts may have to monitor dozens of 
rapidly changing sensors [3]. 

Although these two tasks are quite distinct, and are usually tackled 
separately, the contribution of this work is to introduce a single 
framework that can address both. Having a single tool for both 
tasks allows knowledge gleaned in the mining stage to be 
represented in the same visual language of the monitoring stage, 
thus allowing a more natural and intuitive transfer of knowledge. 

More concretely, we will demonstrate VizTree, a time series 
pattern discovery and visualization system based on augmenting 
suffix trees.  VizTree simultaneously visually summarizes both the 
global and local structures of time series data. In addition, it 
provides novel interactive solutions to many pattern discovery 
problems, including the discovery of frequently occurring patterns 
(motif discovery), surprising patterns (anomaly detection), and 
query by content.  The user interactive paradigm allows users to 
visually explore the time series, and perform real-time hypotheses 
testing. 

2. Our approach: VizTree 
Our visualization approach works by transforming the time series 
into a symbolic representation, and encoding the data in a 
modified suffix tree in which the frequency and other properties of 
patterns are mapped onto colors and other visual properties.  

In [5], we introduced Symbolic Aggregate approximation 
(SAX), a novel symbolic representation for time series that 
transforms a time series into equiprobable symbols.  The utility of 
SAX has been demonstrated in [5], and adaptations or extensions 
of SAX by other researchers further shows its impact in diverse 
fields such as medical data mining and video indexing [1, 7].  We 
refer interested readers to [5] for more details on SAX.  Figure 1 
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shows an example of how a time series of length 1024 is 
converted to a string of length eight: “acdcbdba.”  In this example, 
the number of SAX symbols is eight, and the cardinality of 
alphabet is four (i.e. a, b, c, and d). 

 
Figure 1: A time series dataset  of length 1024 is converted into an eight-
symbol string “acdcbdba.” Note that the general shape of the time series is 
preserved, in spite of the massive amount of dimensionality reduction. 

To construct a tree representing the input time series, 
subsequences of specified lengths are extracted from the time 
series via a sliding window and normalized to have a mean of zero 
and a standard deviation of one. Applying SAX on these 
subsequences, we obtain a set of strings, and these strings are 
inserted into the tree one by one.  Each branch/node represents one 
symbol.  The resulting tree is a complete tree with depth equals to 
the number of SAX symbols.  Each node in the tree has α 
children, where α is the cardinality of alphabet (i.e. if the alphabet 
size is four, then each node has children denoting a, b, c, and d, 
respectively).   

Figure 2 shows a simple example of the tree, representing 
strings of length three with cardinality of two.  If we have a string 
aba, then we insert it into the tree, following the top thick path: the 
first symbol, a, is inserted into the first child node, A, of the root; 
the second symbol, b, is inserted into the second child node, AB, 
of node A; and the last symbol, a, is inserted into the first child 
node, ABA, of node AB.  Each time a symbol is inserted, its 
frequency of occurrence, which is reflected as the thickness of the 
branch, is updated.  The frequently occurring patterns (motifs) 
“aba” and “bab” can be easily identified from the tree, since these 
two paths are thicker compared to the other branches. 

We call such trees subsequence trees.  Differing from a 
classic suffix tree, a subsequence tree maps all subsequences onto 
the branches of the tree.  Thus, given the same parameters, the 
trees have the same overall shape for any dataset.  This approach 
makes comparing two arbitrarily long time series easy and, as we 
shall see, it makes anomaly detection possible. 

 
Figure 2: Subsequence tree for strings of length three and cardinality of 
two. The motifs “aba” and “bab” can be easily identified. 

2.1 A first look at VizTree 
Figure 3 shows a screen shot of VizTree1.  When the program is 
executed, four blank panels and a parameter-setting area are 
                                                                 
1 We note that all the figures in this text suffer from their small scale and 

monochromatic printing. We encourage the interested reader to visit [4] to 
view high-resolution full-color examples. 

displayed. To load a time series dataset, the user selects the input 
file using a familiar dropdown menu.  The input time series is 
plotted in the top left-hand panel.  Next to the time series plotting 
window is the parameter setting area; the analyst can enter the 
sliding window length, the number of SAX segments per window, 
and select alphabet size from a dropdown menu.  Once the 
parameters are entered, the user can click on the “Show Tree” 
button to display the subsequence tree on the bottom left panel. 

The time series used for this example is an industrial dataset 
of smog emissions from a motor vehicle.  The length of the time 
series is 2478. The length of the sliding window is arbitrarily set to 
53; the number of segments (i.e., the depth of the tree) is four, and 
the alphabet size (i.e., the number of children for each node) is 
four.   

The mappings of the symbols are consistent with the natural 
shape of the tree.  For example, for any given node, a branch at a 
higher position denotes segments with higher values. Traversing 
breadth-first from the top-most branch of any given node, the 
symbols that represent the branches are a, b, c, and d, respectively.  
Each level of the tree represents one segment.  To retrieve any 
string, we simply traverse down the appropriate branches. 

The frequency of a pattern is encoded in the thickness of the 
branch.  For clarity, the full tree is drawn.  Branches with zero 
frequency are drawn in light gray, while others are drawn in red 
with varying thicknesses.   

Figure 3: A screenshot of Viztree.  The top panel is the input time series.  
The bottom left panel shows the subsequence tree for the time series.  On 
the right, the very top is the parameter setting area.  Next to the 
subsequence tree panel, the top window shows the zoom-in of the tree, 
and the bottom window plots the actual subsequences when the analyst 
clicks on a branch. 

On the right hand side of VizTree, there are two panels.  The 
upper one shows the zoom-in of the tree shown in the left panel.  
This is very useful especially for deep and bushy trees.  The user 
can click on any node (on the subsequence tree window, or 
recursively, on the zoom-in window) and the sub-tree rooted at 
this node will be displayed in this upper panel.  The sub-tree 
shown in Figure 3 is rooted at the node representing the string 
“abxx,” where the “xx” denotes don’t-care since we are not at the 
leaf level.  If the user clicks on any branch, then the actual 
subsequences having the string represented by this particular 
branch will be displayed in the bottom panel and highlighted in 
the time series plot window.  In the figure, subsequences encoded 
to “abdb” are shown. 
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2.2 Subsequence matching 
Similarity search can be done very efficiently with VizTree.  
Instead of feeding another time series as query, the user provides 
the query in an intuitive way.  The top branch corresponds to the 
region with the highest values, and the bottom branch corresponds 
to the region with the lowest values.  Therefore, any path can be 
easily translated into a general shape and can be used as a query.  
For example, the top-most branch at depth one (i.e., string “axxx”) 
represents all subsequences that start with high values, or more 
precisely, whose values in the first segment have the mean value 
that resides in the highest region.  In the previous example, the 
user is interested in finding a concave-down pattern (i.e., a U-
shape).  This particular pattern, according to the domain experts, 
corresponds to a change of gears in the motor vehicle during the 
smog emission test. From the U shape, the user can approximate 
the query to be something that goes down and comes up, or a 
string that starts and ends with high branches, with low branches 
in the middle. As a result, clicking on the branch representing 
“abdb” as shown in the figure uncovers the pattern of interest. 

2.3 Motif discovery 
A substantial body of literature has been devoted to techniques to 
discover frequently recurring, overrepresented patterns in time 
series; however, each work considered a different definition of 
pattern.  In previous work, we unified and formalized the problem 
by defining the concept of “time series motif” [6].   

VizTree provides a straightforward way to identify motifs.  
Since the thickness of a branch denotes the frequency of the 
subsequences having the same, corresponding strings, we can 
identify approximate motifs by examining the subsequences 
represented by thick tree paths.  A feature unique to VizTree is 
that it allows users to visually evaluate and inspect the patterns 
returned. This interactive feature is important since different 
strings can also represent similar subsequences, such as those that 
differ by only one symbol.  Figure 4 shows an example. 

 
Figure 4: Example of motif discovery on the winding dataset.  Two nearly 
identical subsequences are identified, among the other motifs. 

The subsequences retrieved in the lower right panel have the string 
representation “dacb.” Examining the motifs in this dataset 
allowed us to discover an interesting fact: while the dataset was 
advertised as real, we noted that repeated patterns occur at every 
1000 points.  For example, in Figure 4, the two nearly identical 
subsequences retrieved are located at offsets 599 and 1599, 
exactly 1000 points apart.  We checked with the original author 

and discovered that this is actually a synthetic dataset, composed 
from parts of a real dataset, a fact that is not obvious from 
inspection of the original data. 

2.4 Simple anomaly detection 
The complementary problem of motif discovery is anomaly 
detection.  While frequently occurring patterns can be detected by 
thick branches in the VizTree, unusually thin branches can signal 
simple anomalous patterns. Figure 5 demonstrates both motif 
discovery and simple anomaly detection on an MIT-BIH Noise 
Stress Test Dataset (ECG recordings) obtained from PhyioBank 
[2].  Here, motifs can be identified very easily from the thick 
branches. More remarkably, there is one very thin line straying off 
on its own (the path that starts with “a”).  This line turns out to be 
an anomalous heartbeat, independently annotated by a cardiologist 
as a premature ventricular contraction. 

 
Figure 5: Heartbeat data with anomaly. The thick lines represent the 
reoccurring normal heartbeat; the thin line pointed to by the short arrow 
suggests an infrequently occurring pattern, an anomaly. Simply by clicking 
on this line the source of the data is highlighted in the top panel, and a 
zoom-in is shown in the bottom right panel. 

As another motivating example, we used a power demand dataset 
provided by a Dutch research facility. Electricity consumption is 
recorded every 15 minutes; therefore, for the year of 1997, there 
are 35,040 data points.  Figure 6 shows the resulting tree with the 
sliding window length set to 672 (exactly one week of data), and 
both alphabet size and number of segments to 3.  The majority of 
the weeks follow the regular Monday-Friday, 5-working-day 
pattern, as shown by the thick branches.  The thin branches denote 
the anomalies.  The one circled is from the branch “bab.” The 
zoom-in shows the beginning of the three-day week during 
Christmas (Thursday and Friday off).  The other thin branches 
denote other “anomalies”2 such as New Year’s Day, Good Friday, 
Queen’s Birthday, etc. 

While anomalies can be detected this way for trivial cases, in 
more complex cases, the anomalies are usually detected by 
comparing the time series against a normal, reference time series.  
Anything that differs substantially from this reference time series 
can signal anomalies.  This is exactly the objective of the Diff-
tree, as described in the next section. 

                                                                 
2 “Anomalies” in the sense that the electricity consumption is abnormal 

given the day of the week. 
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Figure 6: Anomaly detection on power consumption data.  The anomaly 
shown here is a short week during Christmas. 

3. Diff-tree 
We have described how global structures, motifs, and simple 
anomalies can be identified by a subsequence tree.  In this section, 
we extend these ideas to further allow the comparison of two time 
series by means of a “diff-tree.”  A diff-tree shows the distinction 
between two time series.  It is constructed by computing the 
difference in thickness (i.e., frequency of occurrence) for each 
branch between two subsequence trees. Intuitively, time series 
data with similar structures can be expected to have similar 
subsequence trees, and in turn, a sparse diff-tree.  In contrast, those 
with dissimilar structures will result in distinctively different 
subsequence trees and therefore a relatively dense diff-tree.   

3.1 Anomaly detection 
The datasets used for anomaly detection, constructed 
independently of the current authors and provided by The 
Aerospace Corporation for a sanity check, are shown in Figure 7.  
The one on the top is the normal time series, and the one below is 
similar to a normal time series, except it has a gap in the middle as 
anomaly.  Figure 8 shows a screenshot of the anomaly detection 
by diff-tree.  The tree panel shows the diff-tree between the two 
datasets.  The two thick paths denote the beginning and the end of 
the anomaly, respectively.  This is a very trivial example for 
demonstration purpose.  However, the effect is similar for more 
complex cases. 

 
Figure 7: The input files used for anomaly detection by diff-tree. (Top) 
Normal time series. (Bottom) Anomaly is introduced as a gap in the middle 
of the dataset. 

 
Figure 8: Diff-tree on the datasets shown in the previous figure.  The gap is 
successfully identified. 

3.2 Scalability 
The pixel space of the subsequence tree is determined solely by 
the number of segments and alphabet size.  In particular, we note 
that the pixel size of the tree is constant and independent to the 
length of time series. With a slider on the time series-viewing 
panel (not shown on the simple examples in this paper), VizTree 
can accommodate massive time series with a constant-size tree.  
This desirable property makes it easy to view and summarize large 
time series database on one screen. We have already shown that 
large amounts of dimensionality reduction do not greatly affect the 
accuracy of our results (in Section 2.4, the dimensionality is 
reduced from 672 to 3, a compression ratio of 224-to-1).  The size 
of the database plays a role in memory requirements only for 
subsequence retrieval purpose, and here we use modified B-trees 
to allow real time retrieval. 
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