
SVT: Schema Validation Tool for Microsoft SQL-Server*

Ernest Teniente Carles Farré Toni Urpí Carlos Beltrán David Gañán

Universitat Politècnica de Catalunya
Jordi Girona 1-3. 08034 – Barcelona. Catalonia (Spain)

teniente@lsi.upc.es

Abstract
We present SVT, a tool for validating database
schemas in SQL Server. This is done by means
of testing desirable properties that a database
schema should satisfy. To our knowledge, no
commercial relational DBMS provides yet a tool
able to perform such kind of validation.

1. Introduction
Database schema validation is related to check whether a
database schema correctly and adequately describes the
user intended needs and requirements. The correctness of
the data managed by database management systems is
vital to the more general aspect of quality of the data and
thus of their usage by different applications.

This is an increasingly important problem in database
engineering, particularly since database schemas are
becoming more complex. Indeed, detecting and removing
possible flaws at schema design time will prevent those
flaws from materializing as run time errors or other
inconveniences at operation time.

As an example, assume we have two tables containing
information about categories and employees: Category
(name, salary) and Employee(ssn, name, catName), where
underlined attributes correspond to primary keys and
where catName is a foreign key for the Employee table.
We could define those tables as follows:
CREATE TABLE Category (
 name char(10) PRIMARY KEY,
 salary real NOT NULL,
 CONSTRAINT chName CHECK (name <> 'ceo'),
 CONSTRAINT chMinSal CHECK (salary > 50000),
 CONSTRAINT chMaxSal CHECK (salary < 45000))

CREATE TABLE Employee (
 ssn int PRIMARY KEY,
 name char(30) NOT NULL,
 catName char(10) NOT NULL,
 CONSTRAINT chCatName CHECK (catName <> 'ceo'),
 CONSTRAINT fkCat FOREIGN KEY (catName)
 REFERENCES Category(name))

Syntactically, those tables are correctly defined.
However, a deeper analysis of the schema allows
determining that they may not contain any tuple. The
reason is that it is impossible for a category to have a
salary lower than 45000 and higher than 50000 as stated
by constraints chMinSal and chMaxSal. Moreover, since
employees must belong to categories it is also impossible
to insert any employee in the previous database.

We could also realize that the constraint chCatName is
redundant because it may never be violated. Clearly,
employees must belong to categories that may not be
named ‘ceo’ (constraints fkCat and chName). Then, we do
not need to enforce this condition again in the definition
of the Employee table by means of chCatName.

The designer could fix the previous problems by
removing chCatName and defining the range of the salary
correctly (for instance, by stating that it may range from
45000 to 50000). Now, the database schema could be
populated and would allow tuples like Category(a,30000)
and Employee(1,john,a).

The designer could also be interested to define some
views on the new (modified) schema. For instance, a view
to retrieve employees’ salary (EmpSalaries) and another
one to retrieve those employees that are not assigned to
any category yet (EmpWithoutCat):

CREATE VIEW EmpSalaries AS (
SELECT ssn, Employee.name, salary
FROM Employee, Category
WHERE catName = Category.name)

CREATE VIEW EmpWithoutCat AS (
SELECT ssn, Employee.name
FROM Employee
WHERE catName NOT IN(SELECT name FROM Category))

*Research partially supported by Microsoft Research, grant 2003-192.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1349

Some weaknesses may appear also during view
definition. As entailed by fkCat, there is no database state
where we may find an employee without a category.
Therefore, the second view is ill-defined since it may
never contain any tuple.

Those are just some examples to illustrate the kind of
flaws that may appear during the definition of a database
schema. Unfortunately, no relational DBMS provides any
tool to perform validations like the ones we have just seen
[TG01]. In this demonstration we present a tool, the
Schema Validation Tool (SVT), to address this problem.

SVT allows a database designer to perform several
tests to check desirable properties of database schemas
defined in SQL Server. Among them we have: schema
satisfiability, liveliness, integrity constraint redundancy,
reachability, etc. SVT is able to check whether a given
property is satisfied or not. In the first case, it provides
also an example of a database state satisfying the
property.

SVT accepts schemas defined by means of a subset of
the SQL language provided by SQL Server. It accepts the
definition of:

– Primary key, foreign key, boolean check constraints.
– SPJ views, negation, subselects (exists, in), union.
– Data types: integer, real, string.
The current implementation of SVT assumes a set

semantics of views and queries and it does not allow null
values neither aggregate nor arithmetic functions.

2. Testing Desirable Properties
The goal of this section is to define the set of desirable
properties implemented in SVT (inspired on [DTU96]) to
validate SQL Server database schemas and to explain the
method used by SVT to check them.

2.1 Property Definition

State-satisfiability:
A database schema is state-satisfiable if there is at

least one, non-empty, database state where all integrity
constraints are satisfied. For instance, the schema
containing the initial tables Category and Employee is not
state-satisfiable.

Liveliness:
A table or a view R is lively if there is one consistent

database state where at least one fact about R is true. A
state is consistent if no integrity constraint is violated on
it.

Hence, tables or views that are not lively correspond
to relations that are empty in each consistent state of the
database. This may be due to the presence of some
integrity constraints, to the view definition itself or to a
combination of both.

Such predicates are clearly not useful and possibly ill-
specified. For instance, the view EmpSalaries of the

previous section was lively while EmpWithoutCat was
not.

Integrity constraint redundancy:
An integrity constraint (or a subset of constraints) is

redundant if database consistency does not depend on it.
In other words, it is redundant when it is already
guaranteed that the database instances that it wants to
avoid will never occur.

SVT distinguishes two different types of redundancy.
A constraint is absolutely redundant if it may never be
violated. A constraint is relatively redundant (wrt a set of
constraints) if it may never be violated when none of the
constraints in the set is violated.

In our example, chCatName is relatively redundant
wrt to fkCat and chName.

Reachability:
A database designer may be interested also in more

general properties like checking whether certain desirable
states may be satisfied according to the current schema.
This is usually known as checking reachability of partially
specified states.

SVT provides two different ways to check
reachability: wizard and query reachability. In the first
case, the designer may specify by means of a wizard a set
of tuples that tables and views should contain. Using this
facility, he could define questions like: may the database
contain Employee(1,maria,sales) and EmpSalaries
(2,joan,47000)? Then, SVT would provide a positive
answer and an example database, like for instance
Employee(1,maria,sales), Employee(2,joan,sales) and
Category(sales,47000), that satisfies the previous
question.

In the second case, the desired state is specified by
means of an SQL query. For instance, SVT would
determine that the state defined by the following query is
not reachable:

SELECT Employee.name, salary
FROM Employee, Category
WHERE Employee.catName = Category.name and salary >
80000 and salary < 90000

Query containment:
A query Q1 is contained into another query Q2 if the

answers that Q1 obtains are always a subset of the
answers of Q2, independently of the database state.

2.2 Checking Desirable Properties

SVT uses the CQC Method [FTU03, Far03] to effectively
and efficiently check desirable properties of SQL Server
database schemas. The main goal of this method is to
perform query containment tests, i.e. to check whether the
answers that a query obtains are a subset of the answers
obtained by another query for every database.

Intuitively, the aim of the CQC Method is to construct
a counterexample that proves that the query containment

1350

relationship being checked does not hold. The method
uses different Variable Instantiation Patterns, according
to the syntactic properties of the queries and the databases
considered in each test. The aim is to prune the search of
possible counterexamples by generating only the relevant
ones but at the same time without diminishing the
requirement of completeness.

The CQC Method requires two main inputs. The first
one is the definition of the goal to attain, which must be
achieved on the database that the method will try to obtain
by constructing a database state. The second one is the set
of constraints to enforce, which must not be violated by
the constructed database.

The initial goal to attain may be any conjunction of
literals expressing a certain property. Consequently, the
CQC Method can check any property that may be
formulated in terms of a goal to attain under a set of
constraints to enforce. In particular, it is suited to check
the database schema validation properties we have
previously defined since all of them are aimed to prove
that a certain goal is satisfied provided that it does not
violate a set of integrity constraints.

The CQC Method is sound and complete in the
following terms:

Failure soundness: if the method terminates without
building any counterexample, the specified property holds

Finite success soundness: if the method builds a finite
counterexample then the property does not hold when
queries contain no recursively-defined derived predicates.

Failure completeness: if the property holds between
two queries then the method terminates reporting its
failure to build a counterexample when queries contain no
recursively-defined derived predicates.

Finite success completeness: if there exists a finite
counterexample, the method finds it and terminates when
either recursively-defined derived predicates are not
considered or recursion and negation occurs together in a
strict-stratified manner.

Query containment is undecidable for the general case.
Therefore in some cases, e.g. in the presence of solutions
with infinite elements, it may happen that the CQC
Method does not terminate. However, the previous
completeness results guarantee that if either there exist
one or more finite states for which the property does not
hold or there is no state (finite or infinite) satisfying the
property, the CQC Method terminates.

3. SVT System Description
In the SVT System we implemented the ideas presented in
the previous sections. Its internal architecture consists of
several components as it is shown in figure 1.

The GUI component allows using the SVT in an easy
and intuitive way. To perform the different tests available
in SVT, users go along the following interaction pattern:

1. Select the database schema to be tested.

2. Select one among the available tests: Schema
satisfiability, Relation liveliness, Query
reachability, Wizard reachability, Integrity
Constraint Redundancy, Query Containment.
Moreover, users must specify one of the two usual
semantics regarding to integrity constraint
enforcement: Immediate or Deferred.

3. Fill the required data that the selected test
requires.

4. Execute and obtain the test results. To perform the
same test with other input data, users may go back
to step 3. To perform a different test on the same
schema, users should go back to step 2.

SVT

SQL Server 2000

DB

DB Schema Extractor

Graphic User Interface

Test Controller

In-Memory DB
Logic Schema

CQC Method
 Engine

Plain
Text

SQL File

Figure 1. Architecture of SVT System.

The Test Controller component processes the

commands and data provided by users through the GUI
component and transfers back the obtained results.
Among the tasks performed by this component, we
highlight the following five ones:

1. To establish the connection with the required
local or remote SQL Server running system.

2. To ask the DB Schema Extractor component to
load the schema to be tested from either a given
SQL Server system or a plain text SQL file.

3. To ask the CQC Method Engine component to
perform the required test on the loaded schema.

4. If the CQC Method execution provides a counter-
example for a given test by specifying a possible
content of the database, the Test Controller
generates a SQL script that contains the table
insertions that allow recreating such database
content. The SQL script can be displayed in the
GUI component.

1351

Figure 2. Screenshots of the SVT Demo

5. In any case, then the Test Controller generates

also an HTML document describing the execution
of the CQC method that lead to such a conclusion.

The main goal of the DB Schema Extractor
component is to load an SQL DB schema from a specified
source and then transform it to a format that is tractable
by the CQC Method Engine. In this way, the DB Schema
Extractor generates an in-memory representation of the
schema where integrity constraints, views and queries are
expressed in terms of deductive rules.

Finally, the CQC Method Engine implements the
CQC Method in order to perform the concrete tests asked
by the Test Controller component. Such tests must be
expressed in terms of the goal to attain the set of
constraints to enforce, as explained in previous section.

The whole SVT System has been implemented in the
C# language by using Microsoft Visual .NET Studio as a
development tool. Our implementation can be executed in
any system that features the .NET framework and has
access to a local or remote SQL Server system.

4. SVT Demo Description
The demo that we will present is intended to illustrate the
main features of the SVT System. The script of the demo
is as follows. First, we will define a syntactically correct
SQL database schema on a local SQL Server system with
the SQL Server Query Analyzer Tool, SQAT for short.

Second, we will start up the SVT system in order to
validate the schema previously defined. The first test to
perform will be to check whether the schema is
satisfiable. In this first test, the obtained result will show
that initial schema is unsatisfiable.

Third, we will modify the initial schema with the
SQAT in order to make the schema satisfiable. The
modification will consist on removing or changing some
table constraints.

Four, returning to the SVT, we will test the
satisfiability of the modified schema. In this case, the
SVT will corroborate such satisfiability.

Five, we will check the liveliness property of the
tables and views of the modified schema. We will see
examples with or without this property.

Figure 2 shows a sequence of screenshots
corresponding to the steps that we would follow if we
tested liveliness for the tables and views of the example
with which we illustrated Sections 1 and 2. Recall that the
two database tables and the view EmpSalaries were lively
whereas the view EmpWithouCat was not.

Five, we test the redundancy of the integrity
constraints defined in the example. The SVT system will
find several cases of redundancy.

Six, we will perform several state reachability test by
means of queries or by providing the concrete rows that
we want the tables to contain or the views to obtain, with
examples of both successful and unsuccessful cases.

Finally, we will perform a variety of query
containment tests.

References
[DTU96] H. Decker, E. Teniente, T. Urpí. How to Tackle

Schema Validation by View Updating. In Proceedings
of EDBT’96: 535-549, LNCS 1057, Springer, 1996.

[Far03] C. Farré. A New Method for Query Containment
Checking in Databases. PhD. Thesis, Universitat
Politècnica de Catalunya, 2003

[FTU03] C. Farré, E. Teniente, T. Urpí. Query Containment
With Negated IDB Predicates. Proceedings of ADBIS
2003, LNCS, Springer, 2003.

[TG01] C. Türker, M. Gertz. Semantic Integrity Support in
SQL-99 and Commercial (Object-)Relational Database
Management Systems. VLDB Journal 10(4): 241-269,
2001.

1352

