
CORDS: Automatic Generation of

Correlation Statistics in DB2

Ihab F. Ilyas1 Volker Markl2 Peter J. Haas2 Paul G. Brown2 Ashraf Aboulnaga2

1 University of Waterloo 2 IBM Almaden Research Center
200 University Avenue 650 Harry Road, K55/B1

Waterloo, Ontario N2L 3G1, Canada San Jose, CA, 95139
ilyas@uwaterloo.ca marklv,phaas,pbrown1,aashraf@us.ibm.com

Abstract

When query optimizers erroneously assume that

database columns are statistically independent,
they can underestimate the selectivities of con-

junctive predicates by orders of magnitude. Such

underestimation often leads to drastically subop-

timal query execution plans. We demonstrate
cords, an efficient and scalable tool for auto-

matic discovery of correlations and soft functional

dependencies between column pairs. We apply

cords to real, synthetic, and TPC-H benchmark
data, and show that cords discovers correlations

in an efficient and scalable manner. The out-

put of cords can be visualized graphically, mak-

ing cords a useful mining and analysis tool for

database administrators. cords ranks the dis-
covered correlated column pairs and recommends

to the optimizer a set of statistics to collect for

the “most important” of the pairs. Use of these

statistics speeds up processing times by orders of
magnitude for a wide range of queries.

1 Introduction

cords is a data-driven tool that automatically discov-
ers correlations and soft functional dependencies (fds)
between pairs of columns and, based on these rela-
tionships, recommends a set of statistics for the query
optimizer to maintain. By correlations, we mean gen-
eral statistical dependencies, not merely approximate
linear relationships. By a soft fd between columns
C1 and C2, we mean a generalization of the classical

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

Figure 1: Role of cords in query optimization.

notion of a hard fd in which the value of C1 com-
pletely determines the value of C2. In a soft fd (de-
noted by C1 ⇒ C2), the value of C1 determines the
value of C2 not with certainty, but merely with high
probability. cords focuses on column pairs because
this greatly simplifies the algorithms, and experiments
have shown that the marginal benefit of capturing n-
way dependencies for n > 2 is relatively small. The
column pairs examined by cords can be in the same
table or different tables. We briefly outline the cords

system below; details may be found in [1]. In develop-
ing cords, we have found that algorithmic simplicity
and judicious use of sampling can lead to efficient and
highly scalable self-management algorithms that are
suitable for immediate incorporation into commercial
database systems.

2 CORDS Overview

Figure 1 illustrates the role of cords in DB2 query op-
timization. cords uses system-catalog statistics that
are collected by the DB2 RUNSTATS utility together
with samples of the base data to discover dependencies
between column pairs. The “most important” column
pairs are identified and RUNSTATS is instructed to
collect column group (cg) statistics on each recom-

1341



mended column pair; these statistics are then stored
in the system catalog and available to the query opti-
mizer.

cords first searches for column pairs that are likely
to be related in an interesting and useful way by sys-
tematically enumerating candidate pairs and simulta-
neously pruning unpromising candidates using a flex-
ible set of heuristics.1 Pruning rules can include con-
straints on allowable data types, constraints on sta-
tistical properties of the columns, constraints based
on schema information, constraints based on work-
load information, and so forth. cords also uses cat-
alog statistics to identify certain “trivial” instances of
correlation and, simultaneously, to eliminate certain
columns from further consideration. For each surviv-
ing candidate, cords collects a sample of value-pairs
from the columns. cords then analyzes the number
of distinct values in the sampled columns to test for
a soft fd. If no fd is found, cords then applies a
robust chi-squared analysis to test for statistical de-
pendence. As shown in [1], the required sample size
for the chi-squared analysis is essentially independent
of the database size, which is why cords is scalable
to very large databases.

In more detail, cords discovers the following prop-
erties and relationships:

• Trivial Cases: Prior to candidate generation,
cords examines the system catalog to identify
two trivial cases: “soft” keys and “trivial” col-
umns. A soft key is “almost” a key w.r.t the
number of distinct values. A soft key is trivially
statistically correlated with every other column in
the table because a value from that column, with
high probability, determines the row, and hence
the value in any other column. A trivial column
is a single-valued or NULL column. The value in
any row of such a column is trivially “determined”
by the values in any other column, leading to spu-
rious correlations.

• Soft FDs: The strength of a soft fd C1 ⇒ C2 is
computed as |C1|/|C1, C2|, where |C1| is the num-
ber of distinct values in column C1 and |C1, C2|
is the number of distinct value-pairs for columns
C1 and C2. This strength is always less than or
equal to 1, with a strength of 1 indicating a hard
functional dependency. cords estimates |C1| and
|C1, C2|, and hence the strength, from the sam-
ple and declares the existence of a soft fd if the
estimated strength is greater than a prespecified
value.

1Technically, a candidate consists of a pair of columns
(C1, C2) along with a pairing rule that specifies which particu-
lar C1 values get paired with which particular C2 values to form
the set of potentially correlated value-pairs. When the columns
lie in the same table and each C1 value is paired with the C2

value in the same row, the pairing rule is trivial; when the col-
umns lie in different tables, the pairing rule corresponds to a
join predicate between the tables. Self-joins are also permitted.

• Correlations: Column pairs in this category are
those pairs for which cords does not detect a soft
fd but does detect statistical dependence using
the sample-based chi-squared analysis.

The output of cords may optionally be displayed
as a dependency graph, facilitating database design
and data mining. In any case, cords recommends to
the optimizer sets of cg statistics to maintain. Such
recommendations are necessary because, as we show in
our demonstration, real-world databases typically con-
tain a very large number of correlations and soft fds.
The overhead of collecting and maintaining statistics
for every correlated column pair would outweigh any
benefits resulting from a better choice of query plans.
The cords recommendation algorithm ranks the dis-
covered soft fds based on their strengths and the dis-
covered correlations on their “benefit” to the query op-
timizer. A useful measure of benefit is the magnitude
of the adjustment factor used by the optimizer to cor-
rect selectivity estimates that are based on faulty inde-
pendence assumptions when cg statistics are available.
The larger the adjustment factor, the more serious the
estimation error that is corrected. Our demonstration
focuses on a simple cg statistic, namely |C1, C2| as
defined above, and on simple conjunctive predicates of
the form “C1 = x AND C2 = y.” A naive estimate
of the selectivity for such a predicate, assuming uni-
form data frequencies and independence between the
columns, is 1/|C1| · 1/|C2|, and the adjustment fac-
tor that corrects for a faulty independence assumption
is |C1| |C2|/|C1, C2|. Although this adjustment factor
does not correct for a faulty uniformity assumption,
we have found in practice that correcting for a faulty
independence assumption usually eliminates most of
the error.

3 Demonstration

Using synthetic, real-world, and benchmark databases,
we demonstrate the application of CORDS and show
how CORDS can improve query performance by orders
of magnitude. We run cords on top of DB2. The
scenario of the demonstration for a given database is
as follows:

1. We run cords using a set of parameters that
determine, e.g., the scope of correlation discov-
ery (intra-table or inter-table) and the candidate
pruning heuristics.

2. cords outputs the discovered correlations and
soft fds in the form of dependency graphs, such
as the dependency graphs shown in Figure 2 for
the tables in the TPC-H database. Nodes (ovals
in Figure 2) correspond to columns and arcs cor-
respond to correlations or soft fds.2 The thick-

2The name cords was partially inspired by the visual “cords”
that connect correlated columns.

1342



ness or color of the arcs can be used to show the
strength of the relationships. For example, the
thickness of an arc that represents a soft fd can be
an increasing function of the estimated strength.
Soft keys and trivial columns are indicated by
specified node colors.

3. We apply the cords statistics-recommendation
algorithm that ranks the discovered correlations
and soft fds based on their benefit to the op-
timizer. For example, Table 1 gives the rank-
ing of the discovered correlations in a synthetic
database of car-accident data. Although cords

discovers a correlation between the two columns
ACCIDENTS.Driver and ACCIDENTS.Damage (last
row in the table), the corresponding adjustment
factor equals 1. cords does not recommend col-
lection of statistics for this pair of columns, since
the presence of such statistics would not change
any optimizer cardinality estimates. On the other
hand, collecting statistics on the first pair of col-
umns in Table 1 adjusts optimizer estimates by a
factor of roughly 3070.

4. We collect cg statistics based on the cords rec-
ommendations and we contrast the optimizer es-
timates for several queries both with and without
these statistics. We show the actual query execu-
tion plan in each case, augmented by the actual
and estimated cardinality for each operator. Fig-
ure 3 displays such a pair of execution plans for
the following query:

SELECT o.Name, a.Driver

FROM OWNER o, CAR c, DEMOGRAPHICS d, ACCIDENTS a

WHERE

c.OwnerID = o.ID AND o.ID = d.OwnerID AND

c.ID = a.ID AND c.Make = ’Mazda’ AND

c.Model = ’323’ AND o.Country3 = ’EG’ AND

o.City = ’Cairo’ AND d.Age < 30;

In the figure, actual cardinalities (i.e., number of
rows processed) are displayed above each query
operator and estimated cardinalities are displayed
below. E.g., in the original query plan without
cg statistics (left side), the upper circled index
scan processes 14,222 rows, the number of rows
that satisfy the predicate c.make = ’Mazda’ AND

c.model = ’323’. The optimizer underestimates
this number by almost a factor of 20 as 753.723.
Using the cg statistics recommended by cords,
the optimizer improves this estimate to roughly
within a factor of 2, as can be seen in the
modified plan on the right. Similarly, the op-
timizer originally underestimates the number of
rows satisfying the predicate o.country3 = ’EG’

AND o.city = ’Cairo’ by a factor of almost 500
(see the lower circled index scan on the left). Us-
ing cg statistics, the optimizer reduces the error
to a factor of about 2 in the modified query plan.

The modified plan that is based on the new statis-
tics is orders of magnitude faster than the original.

Figure 3: Query execution plans before and after col-
lecting statistics on correlated columns.

The databases that we use are as follows.

• Synthetic Data: The Accidents database is syn-
thetically generated and represents car-accident
records. When generating the database, we cre-
ated a predetermined set of correlations by ma-
nipulating the data distributions. The database
also contains a number of natural hard and soft
fds, e.g., Model ⇒ Make in the CAR table.

• Benchmarking Data: The TPC-H benchmark
dataset was not explicitly designed to have
specified correlations between different columns.
cords can discover hidden correlations that may
not be known to the database designer or admin-
istrator.

• Real-world Data: We apply cords to several real-
world databases. These include a subset of the
Census database and the Auto database, which
contains motor vehicle information and comprises
over 20 tables and hundreds of columns.

References

[1] I. F. Ilyas, V. Markl, P. J. Haas, P. G. Brown, and
A. Aboulnaga. CORDS: Automatic discovery of
correlations and soft functional dependencies. In
Proc. 2004 ACM SIGMOD, 2004.

1343



First Column Second Column Adj. Factor

DEMOGRAPHICS.Salary DEMOGRAPHICS.Assets 3069.69
CAR.Color CAR.OwnerID 311.25

DEMOGRAPHICS.Assets DEMOGRAPHICS.Age 77.71

ACCIDENTS.CarID ACCIDENTS.Year 30.06

CAR.Model CAR.OwnerID 27.14
CAR.Year CAR.Color 21.80

CAR.Make CAR.OwnerID 16.00

CAR.Model CAR.Color 14.91

CAR.Make CAR.Color 9.15
CAR.Model CAR.Year 2.31

CAR.Year CAR.Make 1.88

ACCIDENTS.Driver ACCIDENTS.With 1.13

ACCIDENTS.Driver ACCIDENTS.SeatBeltOn 1.00
ACCIDENTS.Damage ACCIDENTS.With 1.00

ACCIDENTS.Driver ACCIDENTS.Damage 1.00

Table 1: Discovered correlations ranked by adjustment factor

Figure 2: Snapshot of the automatically generated dependency graphs for TPC-H (sample size 10,000 records).

1344


