
Abstract

In this talk, I will introduce the theory of balanced incomplete
block designs (BIBDs).

I’ll show some of their basic properties, demonstrate an elegant
construction through finite projective and a�ne planes, and use
them to study three seemingly unrelated problems, one about
a family card game, one about projection sizes of partitions of
the unit square, and one about secure secret sharing.

No prior knowledge about combinatorial designs is required.
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Spot It!1

Here’s the game -

• I have a deck of cards. Each card has 8 (distinct) objects.

• I reveal two cards at a time.

• First person to shout out the unique shared object wins

1I found this problem from a blog post by Joel Grus.
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Spot It!

Ready?
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Spot It!

Source: https://www.sfu.ca/~jtmulhol/teaching-musings.html
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Spot It!

Every two cards share exactly one object, so there’s no
ambiguity and no possibility of a ‘failed round.’

Questions:

• How many cards can we have relative to the total number of
objects and number of objects per card?

• How can we design Spot It! decks?
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Shadows2

Consider a partition of the unit square [0, 1]2 into n parts.

Each part casts a shadow on the horizontal axis and the vertical
axis. We want to find a partition that minimizes the length of any
of the 2n shadows.

2This is a problem I am working on
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Examples n = 2, 3, 4
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Secret Sharing3

Goal: split a secret among w people such that you need at least t
people to recover the secret (and no group of t � 1 or fewer people
can learn ANYTHING about the secret).

A scheme that does this is a (t,w)-secret sharing scheme.

3This is a classic.
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Examples
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This presentation is based on Combinatorial Designs:
Constructions and Analysis by Douglas Stinson
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Definition (Balanced Incomplete Block Design)

Let v , k ,� be positive integers such that v > k � 2. Let X be a
set of size v and A ✓

�X
k

�
. Elements of X are called points, and

elements of A are called blocks. (X ,A) is a (v , k ,�)-BIBD if

every pair of distinct points is contained in exactly � blocks.

Explanation of the name:

• Balanced because of the property in bold

• Incomplete because k < v , i.e. no block is the full set V .

Question: Do BIBDs exist, and how can we construct them?
Question: Is there a (9, 5, 1)-BIBD?

BIBDs Basic Combinatorial Designs and Applications 14 / 58

O

EX



Definition (Balanced Incomplete Block Design)

Let v , k ,� be positive integers such that v > k � 2. Let X be a
set of size v and A ✓

�X
k

�
. Elements of X are called points, and

elements of A are called blocks. (X ,A) is a (v , k ,�)-BIBD if

every pair of distinct points is contained in exactly � blocks.

Explanation of the name:

• Balanced because of the property in bold

• Incomplete because k < v , i.e. no block is the full set V .

Question: Do BIBDs exist, and how can we construct them?
Question: Is there a (9, 5, 1)-BIBD?

BIBDs Basic Combinatorial Designs and Applications 14 / 58

Yana



Definition (Balanced Incomplete Block Design)

Let v , k ,� be positive integers such that v > k � 2. Let X be a
set of size v and A ✓

�X
k

�
. Elements of X are called points, and

elements of A are called blocks. (X ,A) is a (v , k ,�)-BIBD if

every pair of distinct points is contained in exactly � blocks.

Explanation of the name:

• Balanced because of the property in bold

• Incomplete because k < v , i.e. no block is the full set V .

Question: Do BIBDs exist, and how can we construct them?
Question: Is there a (9, 5, 1)-BIBD?

BIBDs Basic Combinatorial Designs and Applications 14 / 58



Parameters of BIBDs

• v . Number of points.

• k . Block size.

• �. Number of blocks containing a pair of points.

• r . Number of blocks containing a single point. This is called
the replication number

• b. Number of blocks.

In this talk, we mostly care about � = 1.

BIBDs Basic Combinatorial Designs and Applications 15 / 58



Example

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {0123, 0145, 0246, 0378, 0579,

0689, 1278, 1369, 1479, 1568,

2359, 2489, 2567, 3458, 3467}

(X ,A) is a (10, 4, 2)-BIBD.
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Example

X = [v ], A =
�
[v ]
k

�
.

(X ,A) is a (v , k ,
�v�2

k�2

�
)-BIBD.
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r = �(v�1)
(k�1)

Strategy: Fix x , and let rx be the number of blocks in which x
appears. Count the number of times (x , y) appears in a block.
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r = �(v�1)
(k�1)
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b = vr
k

Strategy: Let b be the number of blocks, and write out each
block. How many points did we write down?
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b = vr
k
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Divisibility Conditions

These basic properties of BIBDs place restrictions on which BIBDs
can exist. I.e. r and b have to be integral =)

• �(v � 1) must be divisible by k � 1, and

• �v(v � 1) must be divisible by k(k � 1).

For example, to answer the question from earlier, there is no
(v = 9, k = 5,� = 1)-BIBD
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Incidence Matrices and Duals

Definition (Incidence Matrix)

The incidence matrix for a (v , k ,�)-BIBD is a matrix M 2 Rv⇥b

where

Mij =

(
1 ith point is in the jth block

0 else

Definition (Dual)

The dual of a (v , k ,�)-BIBD is a design with incidence matrix MT .
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Diagram
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Properties of the dual

Let (X ,A) be a (v , b, r , k ,�)-BIBD, and let (Y ,B) be the dual.
Then

• there are b points and v blocks.

• every block B 2 B has size r .

• every point v 2 Y occurs in k blocks.

• every pair of blocks intersect in exactly �-points.

If � = 1, letting Y be the set of objects and B be the set of cards,
we get a valid Spot It! deck of v cards and b objects.
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Fisher’s Inequality

Theorem (Fisher’s Inequality)

If (X ,A) is a (v , k ,�, r , b)-BIBD, then v  b.

I.e., the number of cards is at most the number of objects.
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Proof

Strategy: Show the incidence matrix, a v ⇥ b matrix has rank v .
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Proof
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Proof
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Definition (Symmetric BIBD (SBIBD))

A (v , k ,�)-BIBD is a (v , k ,�)-SBIBD if the number of points is
equal to the number of blocks (v = b). Equivalently,

• r = k

• �(v � 1) = k(k � 1)

These are tight for Fisher’s Inequality and represent the Spot It!
decks that have a maximal number of cards for a given number of
objects.
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SBIBD

• Note that v = k(k�1)

� + 1, so we technically just need to
provide the parameter k and � to specify a SBIBD.

• For example, if the block size k = n + 1, and � = 1, we know
that there are n2 + n + 1 points.
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”Symmetric” because

• number of points = number of blocks

• block size = replication number

• There’s another reason...
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A theorem about SBIBDs

Theorem
Suppose (X ,A) is a (v , k ,�)-BIBD. If (X ,A) is symmetric, then
for any distinct A1,A2 2 A, |A1 \ A2| = �

For SBIBDs, not only is every pair of points contained in � blocks,
but every pair of blocks share � points.

Remark: The converse is also true!
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Proof

Strategy: Consider MMTai in two ways.
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Proof
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Euclidean Geometry
Any two lines either intersect at a unique point or are parallel.

However, there is a fascinating phenomenon.
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Projective Planes

Definition
A projective plane is a set of points P , a set of lines L, and an
incidence relation such that

• For any two distinct points, there is exactly one line incident
with both of them.

• For any two distinct lines, there is exactly one point incident
with both of them.

• Non-Degenerate Condition: There are four points such that
no line is incident with more than two of them.

If the set of points P is finite, then the order of the projective
plane is one less than the number of points in a line.
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Finite Projective Planes (Alt)

Definition
For n � 2, a finite projective plane of order n is a

(n2 + n + 1, n + 1, 1)-SBIBD.

Remarks:

• Points are points, lines are blocks, and a point p and line l are
incident if p 2 l .

• Every two distinct points are incident with exactly one line is
the balanced condition.

• Every pair of lines has exactly one point incident with both is
true from the theorem about SBIBDs.
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Example
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Construction of Projective Planes

Let q be a prime power, and Fq be the finite field of order q.
Consider the vector space F3

q. Define

• X to be the set of 1-dimensional subspaces of F3
q, and

• A to be the set of 2-dimensional subspaces of F3
q.

We’ll show that (X ,A) is an SBIBD. By abuse of notation, we say
that a 1-dimensional subspace C is in a 2-dimensional subspace D
if C ✓ D.
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Proof
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Existence of Finite Projective Planes

The construction works for any finite field, giving us a finite
projective plane of order q for every prime power q!
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Existence of Finite Projective Planes

Open Question: Do finite projective planes of non-prime power
order exist?

• Conjecture: No.

• We know there is no finite projective plane of order 6 (by a
theorem of Bruck-Ryser-Chowla from 1949) and no finite
projective plane of order 10 by heavy computer calculation.
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Spot it - A solution

Incidence matrix of the finite projective plane of order 2.
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Spot it - A solution

Incidence matrix of the finite projective plane of order 3
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Shadows

Projective plane of order 2. Gi ,j = c i↵ points i and j are in line c .
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Shadows

Projective plane of order 3.Gi ,j = c i↵ points i and j are in line c .
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Projective Planes

Definition
A projective plane is a set of points P , and a set of lines L, and an
incidence relation such that

• For any two distinct points, there is exactly one line incident
with both of them.

• For any two distinct lines is exactly one point incident with
both of them.

• Non-Degenerate Condition: There are four points such that
no line is incident with more than two of them.
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Projective A�ne Planes

Definition
An projective a�ne plane is a set of points P , and a set of lines L,
and an incidence relation such that

• For any two distinct points, there is exactly one line incident
with both of them.

• For any two distinct lines is exactly one point incident with
both of them. For any line l and any point P not incident
with l , there is exactly one line incident with P that does not
meet l .

• Non-Degenerate Condition: There are four points such that
no line is incident with more than two of them.
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A�ne Planes Alt.

Definition
An a�ne plane of order q is a (q2, q, 1)-BIBD

Notes

• r = q + 1 (Each point is in q + 1 lines)

• b = q2 + q (There are q2 + q lines).
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A�ne Plane of Order 3

Source: https://en.wikipedia.org/wiki/Affine_plane_(incidence_geometry)
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Constructing A�ne Planes

Let (X ,A) be the projective plane of order q, and let L 2 A be
any line (block).

Remove L and all the points on L

(X \ L, {A \ L : A 2 A,A 6= L})

It turns out this is an a�ne plane.
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Fact about A�ne Planes

Theorem
Suppose (X ,A) is an a�ne plane. Then there is an equivalence
relation ⇠ over A such that if S is any equivalence class of ⇠, S is
a partition of X . That is

• S
A2S A = X .

• Blocks in S are pairwise disjoint

“There is a partition of A into partitions of X .”

The equivalence relation is essentially L ⇠ L0 i↵ L and L0 are
parallel.
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Secret Sharing Construction

Let (X ,A) be an a�ne plane of order q. We will use (X ,A) to
construct a (2, q)-secret sharing scheme (q shares, any group of 2
or more people can reveal the secret, but no individual can learn
anything).

Let ⇧1, ...,⇧r be the partition of A of defined by ⇠. The secret is
an integer K 2 [r ].

• Let A be some line in ⇧K

• Give each of the w  q people one element from A.
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Groups of 2 can recover the secret
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Individuals cannot recover the secret
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E�ciency

• w people

• r = q + 1 possible secrets

• log(v) = ⇥(log(q)) share size.
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Thank you!
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Shamir Secret Sharing for t � 2
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Theorem (Bruck-Ryser-Chowla Theorem)

If there is a projective plane of order n such that n ⌘ 1, 2 (mod 4),
then n must be the sum of two squares.
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More General Fisher’s

Theorem
Suppose we have a collection of sets S1, ..., Sv in the universe [b].
Such that the intersection of any two sets has the same size, I.e.,
for any i , j , |Si \ Sj | = � for � � 1. Then

v  b

This is the same as the original statement but for the dual of the
BIBD and removing the block size and replication number
restrictions.
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Theorem (Ray-Chaudhuri-Wilson Theorem)

Let F ✓ }([n]). Such that 8A,B 2 F , |A \ B | 2 {�1, ...,�s}. I.e.,
the size of the intersection of any two sets must be one of s
numbers. Then,

|F | 
✓

n

 s

◆
.

Where
� n
s

�
is the sum of the binomial coe�cients up to and

including s.
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Projective Geometries

Generalizing the construction for projective planes to be over Fd+1
q

instead of F3
q, we get that there exists symmetric

✓
qd+1 � 1

q � 1
,
qd � 1

q � 1
,
qd�1 � 1

q � 1

◆
-BIBDs

The points are 1-dimensional subspaces, and the blocks are
d-dimensional subspaces.
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