A Faster Algorithm for 0-1 Integ $\frac{\text { Pr Programming }}{\text { (via Commumation }} \frac{\text { Condexity) }}{\text { (on }}$ (via Commumiation Conplexity)

$$
T S S-07 / 12 / 22
$$

Key Takeaways / Outline
$>$ What is 0-1 IP?
\rightarrow What is Orthogonal Vectors?
\rightarrow (Main Focus) A 1 sided error MA protocol for an LTF
\rightarrow Reduction from 0-1 IP to OU
? Background Story

$$
0-1 \text { IP. }
$$

$$
0-1 I P
$$

>simple gen of CNF-SAT

$$
0-1 I P
$$

>simple gen of CNF-SAT
$\rightarrow m$ "lanes" over n vars - is there an assignment satisfying all of them?

$$
0-1 I P
$$

> simple gen of CNF-SAT
$>m$ "laws" over n vars - is there an assignment satisfying all of them?
\rightarrow Linear Threshold Function: $F=\{0,1\}^{n} \rightarrow\{0,1\}$

$$
f\left(x_{1}, \ldots, x_{n}\right)=1 \text { iff } \sum_{i=1}^{n} \omega_{i} x_{i} \geq \theta
$$

$$
0-1 I P
$$

> simple gen of CNF - SAT
$>m$ "laws" over n vars - is there an assignment satisfying all of them?
\rightarrow Linear Threshold Function: $F=\{0,1\}^{n} \rightarrow\{0,1\}^{2}$

$$
F \overline{F\left(x_{1}, \ldots, x_{n}\right)}=1 \text { ff } \sum_{i=1}^{n} \omega_{i} \omega_{i} x_{i} \geqslant \underbrace{\theta}_{\uparrow}
$$

More on LTFs

More m LTFs
\rightarrow Note: same LTF can have multiple 'representation, g: $x_{1}+x_{2}+x_{3} \leqslant 4 \Leftrightarrow x_{1}+x_{2}+x_{3} \leqslant 100$

More m LTFs
\rightarrow Note: same LTF can have multiple 'representation, $g: x_{1}+x_{2}+x_{3} \leq 4 \Leftrightarrow r_{1}+x_{2}+x_{3} \leqslant 100$
\rightarrow In fact, any LTF on n vars can be 'represented' using $\left|\omega_{i}\right|,|\theta| \leq n^{O(n)}=2^{\text {olga }\rangle}$

$$
\text { 0-1 IP }(\text { contd). }
$$

0-1 IP $($ contd).
, Formally, given m linear in equalities:

$$
\left(\sum_{j=1}^{n} w_{1, j} x_{j} \geqslant \theta_{1}\right) \wedge \ldots \wedge\left(\sum_{j=1}^{n} \omega_{m, j} x_{j} \geqslant \theta_{m}\right)
$$

$0-1$ IP $(\operatorname{con}+d)$.
Formally, given m linear inequalities:

$$
\left(\sum_{j=1}^{n} \omega_{1, j} x_{j} \geqslant \theta_{1}\right) \wedge \ldots \wedge\left(\sum_{j=1}^{n} \omega_{m, j} x_{j} \geqslant \theta_{m}\right)
$$

Is there a sat assignment?

0-1 IP (contd).
, Formally, given m linear inequalities:

$$
\begin{aligned}
& \text {, Formally, given } m \text { linear in equalizes: } \\
& \left(\sum_{j=1}^{n} \omega_{1, j} x_{j} \geqslant \theta_{1}\right) \wedge \ldots\left(\sum_{j=1}^{n} \omega_{m, j} x_{j} \geqslant \theta_{m}\right) \\
& \phi_{s} \text { there a sat assignment? }
\end{aligned}
$$

is there a sat assignment?
$>$ Any clause for g. $x_{1} \vee \neg x_{2} \vee x_{3} \Leftrightarrow x_{1}+\left(1-x_{2}\right)+x_{3} \geqslant 1$

$$
\Leftrightarrow x_{1}-x_{2}+x_{3} \geqslant 0
$$

$0-1 I P(c o n+d)$
, Formally, given m linear in equalities: $\left(\sum_{j=1}^{n} \omega_{1, j} x_{j} \geqslant \theta_{1}\right)^{\wedge} \ldots \wedge\left(\sum_{j=1}^{n} \omega_{m, j} x_{j} \geqslant \theta_{m}\right)$

Is there a sat assignment?
\rightarrow Any lance for g. $x_{1} \vee \neg x_{2} \vee x_{3} \Leftrightarrow x_{1}+\left(1-x_{2}\right)+x_{3} \geqslant 1$

$$
\Longleftrightarrow x_{1}-x_{2}+x_{3} \geqslant 0
$$

\rightarrow Shows NP-Completress of 0-1 IP
$0-1 I P(c o n+d)$
\rightarrow Formally, given m linear in equalities:

$$
\begin{aligned}
& >\text { Formally, given } m \text { linear inequalities: } \\
& \left(\sum_{j=1}^{n} \omega_{1, j} x_{j} \geqslant \theta_{1}\right) \wedge \ldots\left(\sum_{j=1}^{n} \omega_{m, j} x_{j} \geqslant \theta_{m}\right) \\
& \phi_{s} \text { there a sat. assignment? }
\end{aligned}
$$

Is there a sat assignment?
$>$ Assume all $\left|\omega_{i, j}\right|,|\theta|$ have bit-complexity $\leq M$ ic. in the range $\left[-2^{M}, 2^{M}\right]$
$0-1 I P(c o n+d)$
, Formally, given m linear in equalities: $\left(\sum_{j=1}^{n} \omega_{1, j} x_{j} \geqslant \theta_{1}\right) \wedge \ldots \wedge\left(\sum_{j=1}^{n} \omega_{m, j} x_{j} \geqslant \theta_{m}\right)$

Is there a sat, assignment?
$>$ Assume all $\left|\omega_{i, j}\right|,|\theta|$ have bit-complexity $\leq M$ ic. in the range $\left[-2^{M}, 2^{M}\right]$
7 Brute-Force takes $z^{n}-p l y(n m M)$ time
$0-1 I P(c o n+d)$
, Formally, given m linear in equalities: $\left(\sum_{j=1}^{n} \omega_{1, j} x_{j} \geqslant \theta_{1}\right) \wedge \ldots \wedge\left(\sum_{j=1}^{n} \omega_{m, j} x_{j} \geqslant \theta_{m}\right)$

Is there a sat, assignment?
$>$ Assume all $\left|\omega_{i, j}\right|,|\theta|$ have bit-complexity $\leq M$ ic. in the range $\left[-2^{M}, 2^{M}\right]$
>Brute-Force takes $2^{n}-p l y(n m M)$ time $>$ Note: only interested in $M=$ poly (n).

Main Result

Main Result
\rightarrow An afoo to solve 0-1 IP (nvars, in lausse) in time

$$
2^{n-\frac{n}{\partial(\lg m)}}
$$

Main Result
$>$ An afoo to solve 0-1 IP (nvars, m dauses) in time $2^{n-\frac{n}{O(\operatorname{logm)}} \text { harger than } 2^{0.99 n} \text {. }}$

Main Result
\rightarrow An afoo to solve 0-1 IP (nvars, in dausse) in time

\rightarrow Matches the best known algo running tione for CNF-SAT! (Schuler 2005)

Main Result
\rightarrow An ago to solve 0-1 IP (invar, m douse) in time $2^{n-\frac{n}{O(\operatorname{logm)}} \text { <Larger than } 2^{0.99 n} \text {. }}$
\rightarrow Matches the best known algo running tone for CNF-SAT! (Schuler 2005) \rightarrow Expect much better? No! (SETH)

Digression: Orthogonal Vetors (ov) Proberem

Degression: Orthogonal Vectors (Iv) Protein
\rightarrow of gave a TSS on it 2 years ago!

The Orthogonal Vectors Problem: Definition and Hardness Conjecture

OV: Problem Description

O Two vectors $u, v \in\{0,1\}^{d}$ (or binary strings of length d) are orthogonal if $\sum_{i \in[d]} u_{i} \cdot v_{i}=0$

- Sum is considered over \mathbb{R} (not \mathbb{F}_{2})
\bigcirc Equivalently, they are orthogonal if $\mathrm{V}_{i \in[d]} u_{i} \wedge v_{i}=0$ (there is no position at which both vectors have a 1)

Problem:

O Input: Two lists A, B of $n d$-dimensional $0-1$ vectors
O Output: "Accept" iff there is an orthogonal pair $(u, v) \in A \times B$

What is d ?

O Obvious brute-force running time of $O\left(n^{2} \cdot d\right)$
O If d is sufficiently smaller than n (for e.g., $d \ll \log n$), we must have redundant vector copies in each list, so we can weed them out first and then brute-force

- In particular, it follows that if $d \leq(1-\varepsilon) \log n$ for some constant $\varepsilon>0$, then there is a $O\left(n^{2-\varepsilon} \cdot d\right)=\tilde{O}\left(n^{2-\varepsilon}\right)$ time algo for $O V_{n, d}$
O Natural question: What about $d=c \log n$ for any constant c ?
- Specifically, is there a universal constant $\varepsilon>0$ so that for every constant $c, O V_{n, c} \log n$ can be solved in $\tilde{O}\left(n^{2-\varepsilon}\right)$ time?
O Orthogonal Vectors Conjecture (OVC) [R. Williams, Theor. Comp. Sci. '05]: No, there is not!

Remarks:
O Think of this regime $(d=O(\log n))$ as the smallest possible for which $O V_{n, d}$ becomes interesting. OVC says that even in this case, "truly sub-quad. time" is impossible
O Note the order of quantifiers here! Because for a given constant $c, \tilde{O}\left(n^{2-\varepsilon_{c}}\right)$ is possible, for ε_{c} depending on c

Connection to SETH: why we believe in OVC

Strong Exponential Time Hypothesis: Introduction

○ $k-C N F-S A T$:
O Input: Boolean variables x_{1}, \ldots, x_{n} and a formula in the conjunctive normal form i.e. of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is the logical $O R$ of at most k variables (or their negations)
O Output: "Accept" iff there exists an assignment to these variables on which this formula evaluates to 1

O Obvious $O\left(2^{n} \cdot m n\right)$ algorithm
O SETH asserts that we can' \dagger do much better for arbitrary k. More precisely:
O SETH: for every $\varepsilon>0$, there is a k such that $k-C N F-S A T$ on n variables, m clauses cannot be solved in $2^{(1-\varepsilon) n} \cdot \operatorname{poly}(m)$ time

O Equivalently, if there is a $2^{(1-\varepsilon) n} \cdot \operatorname{poly}(m)$ time algorithm for some $\varepsilon>0$ that can solve SAT on CNF Formulas (for all k) on n variables and m clauses, then SETH is false

SETH implies OVC!

- Contrapositive: Want to show that a "fast" algo for OV yields "fast" algo for SAT
- In other words, given a SAT instance on n variables x_{1}, \ldots, x_{n} and m clauses C_{1}, \ldots, C_{m}, want to construct an OV instance on which we can apply this supposed "fast" algo
- This OV instance will have lists A, B of size $N=2^{n / 2}$, consisting of binary strings (vectors) of length m

O How to define these vectors? Use "split and list". Split variable set into halves: $\left\{x_{1}, \ldots, x_{n / 2}\right\}$ and $\left\{x_{n / 2+1}, \ldots, x_{n}\right\}$. A then consists of vectors u_{α}, where α is a partial assignment that assigns bits to the first half of variables. B consists of the set of v_{β}
O $u_{\alpha}(i)=\left\{\begin{array}{l}1, \text { if } \alpha \text { does not satisfy } C_{i} \\ 0, \text { otherwise }\end{array} \quad v_{\beta}(i)=\left\{\begin{array}{l}1, \text { if } \beta \text { does not satisfy } C_{i} \\ 0, \text { otherwise }\end{array}\right.\right.$

- So u_{α}, v_{β} are orthogonal iff $\alpha \cup \beta$ satisfies all the clauses

O Note that it takes $O\left(2^{n / 2} \cdot m\right)$ time to go from a given SAT instance to defining these lists A, B

- If there is an algo that solves $O V_{N, d}$ in $\tilde{O}\left(N^{2-\varepsilon}\right)$ time, then SAT, after above reduction, on any k can be solved in time

$$
O\left(2^{n / 2} \cdot m+\left(2^{n / 2}\right)^{2-\varepsilon}\right)=O\left(2^{\left(1-\frac{\varepsilon}{2}\right)^{n}}\right)
$$

- This contradicts SETH!

Fast Algorithm for OV

O Reminder: OVC states that there is no universal constant $\varepsilon>0$ so that for every constant $c, O V_{n, c} \log n$ can be solved in $\tilde{O}\left(n^{2-\varepsilon}\right)$ time
O But for a given c, one may still hope for $\tilde{O}\left(n^{2-\varepsilon_{c}}\right)$ time
O And indeed, Abboud, R. Williams, and Yu (SODA '15) prove the following:
O Theorem: For Boolean vectors of dimension $d=c(n) \log n$, OV can be solved in $n^{\left\{2-\frac{1}{O(\log c(n))}\right\}}$ time by a randomized algorithm that is correct with high probability
O T. M. Chan and R. Williams (SODA '16) derandomize this:
O Theorem: There is a deterministic algorithm for $O V_{n, d=c(n) \log n}$ that runs in $\left.n^{\left\{2-\frac{1}{O(\log c(n))}\right.}\right\}$ time, provided $\left.d \leq 2^{\left\{(\log n)^{\{(1)}\right\}}\right\}$

All hail the polynomial method

O Checking if a pair of vectors $\left(x_{i}, y_{j}\right) \in A \times B$ is orthogonal is the formula

$$
E\left(x_{i}, y_{j}\right)=\Lambda_{k=1}^{d}\left(\neg x_{i}[k] \vee \neg y_{j}[k]\right)
$$

○ Block them up into s parts $A_{1}, \ldots, A_{s} \& B_{1}, \ldots, B_{s}$, each containing n / s vectors (s tbd)

- Write down the formula that evaluates if there is an orthogonal pair in $A_{i} \times B_{j}$ (big $O R$ of s^{2} pairs of $E(\cdot, \cdot)$)
- Convert that formula into a polynomial, of not-too-large degree! How?

○ Razborov \& Smolensky in the 80s figured out low-degree "probabilistic" polynomials that "approximate" $A N D$ and $O R$ functions really well
O Finally, set s accordingly to use "fast rectangular matrix multiplication" by Coppersmith (\exists constant $C \approx 0.172$ s.t. multiplication of an $N \times N^{C}$ matrix with an $N^{C} \times N$ matrix can be done using $\tilde{O}\left(N^{2}\right)$ arithmetic operations)

Orthogonal Vectors: The Upshot

Orthogonal Vectors: The Upshot

Orthogonal Vectors: The Upshot

$>$ Belief: very hard to do in truly sub-quad. time

Orthogonal Vectors: The Upshot

$>$ Belief: very hard to do in truly sub-quad. time
\rightarrow Pretty cool that a faster-than-brute-force exists

Orthogonal Vectors: The Upshot

>Belief: very hard to do in truly sab-quad. time , Pretty cool that a faster-than-brute-force exists

Let's talk alout Communication

Let's talk about Communication

Let's talk about Communication
 given to Alias. \sim given to Bob.

Let's talk about Communication
 given to Aha ${ }^{\sim}$ given to Bob.

USC as few bits of communication as prosible to compute F.

Let's talk about Communication

given to Aha ${ }^{\circ}$ given to Bob.
Use as few bits of communication as possible to compute F.
\rightarrow Allowed to use public coins (ie, shared randomeere) to compute F why.

Simple Example: Equality.

Simple Example: Equality.
\rightarrow Alice Bob are given n/2-bit strings each. Determine if they are equal.

Simple Example: Equality.
\rightarrow Alice Bob are given $n / 2$-bit strings each. Determine if they are equal.
\rightarrow Takes $\theta(n)$ bits deterministically.

Simple Example: Equality.
\rightarrow Alice Bob are given $n / 2$-bit strings each. Determine if they are equal.
\rightarrow Takes $\theta(n)$ bits deterministically.
\rightarrow Gen we do bettor using randomness?

Simple Example: Equality.
\rightarrow Alice Bob are given $n / 2$-bit strings each. Determine if they are equal
$>$ Takes $\theta(n)$ bits deterministically.
\rightarrow Con we do bettor using randomness?
$>$ Yes, hashing!
z Pick a random $z \in\{0,1\}^{n / 2}$. They unswer yes iff $\langle x, z\rangle=\langle y, z\rangle$ (over \mathbb{F}_{2})

Simple Example: Equality.
\rightarrow Alice Bob are given $n / 2$-bit strings each. Determine if they are equal
$>$ Takes $\theta(n)$ bits deterministically.
\rightarrow Com we do bettor using randomness?
$>$ Yes, hashing!
z Pick a random $z \in\{0,1\}^{n / 2}$. They answer yes iff $\langle x, z\rangle=\langle y, z\rangle$ (over \mathbb{F}_{2})
$>$ If $x=y$, succeed w.p. 1. If $x \neq y$, succeed w.p. $\geqslant 1 / 2$.

Simple Example: Equality.
\rightarrow Alice Bob are given $n / 2$-bit strings each. Determine if they are equal
$>$ Takes $\theta(n)$ bits deterministically.
aGon we do bettor using randomness?
$>$ Yes, hashing!
z Pick a random $z \in\{0,1\}^{n / 2}$. They unswer yes if $\langle x, z\rangle=\langle y, z\rangle$ (over \mathbb{F}_{2})
$>$ If $x=y$, succeed w.p. 1. St $x \neq y$, succeed w.p. $\geqslant 1 / 2$.
Example of a ' I-sided error randomized communication protac) for \&q.

MA Communication Proto col.

MA Communication Protocol
a Now in addition to receiving ifs $x, y \in\{0,\}^{n}$ resp., they receive a "proof strip' $w \in\{0,1\}^{k}$

MA Communication Protocol
a Now in addition to receiving ilps $x, y \in\{0,\}^{n}$ resp., they reaine a 'proof string' $\omega \in\{0,1\}^{k}$. $>$ they execute a randomized protocol π (etd as a dist. over let protocols) sit:

MA Communication Protoced
a Now in addition to receiving ips $x, y \in\{0,\}^{n}$ resp., they reaine a 'proot striy' $\omega \in\{0,1\}^{k}$.
$>$ They exccute a vandomized protocol π (detd as a dist. oner det protocols) s.t:

1. (Complete ness) $F(x, y)=1 \Rightarrow \exists \omega$ s.t. $P_{r}[\pi(x, y,())=1] \geqslant 1-\varepsilon$

MA Communication Protocol
a Now in addition to receiving ifs $x, y \in\{0,\}^{n}$ resp., they receive a "proof string' $w \in\{0,1\}^{k}$
$>$ They execute a randomized protocol π (etd as a dist. over dit protocols) sit:

1. (complete ness) $F(x, y)=1 \Rightarrow \exists \omega$ sit. $P_{\pi}[\pi(x, q, \omega)=1] \geqslant 1-\varepsilon$
2. (Sound ness) $F(x, y)=0 \Rightarrow \forall \omega \operatorname{Pr}_{\pi}[\pi(x, y, \omega)=1] \leq \varepsilon$

MA Communication Protocol
a Now in addition to receiving imps $x, y \in\{0,\}^{n}$ resp., they receive a "proof string' $w \in\{0,1\}^{k}$
\rightarrow they execute a randomized protocol π (etd as a dist. over dit protocols) set:

1. (Complete ness) $F(x, y)=1 \Rightarrow \exists \omega$ sit. $\operatorname{Pr}_{\pi}[\pi(x, y, \omega)=1] \geqslant r^{-\xi}$
2. (Sound ness) $F(x, y)=0 \Rightarrow \forall \omega \operatorname{Pr}_{\pi}[\pi(x, y, \omega)=1] \leq \varepsilon$
\rightarrow We say an MA protocol has perfect completeness if. 1. holds wp. 1.

MA Communication Protocol
I Now in addition to receiving ifs $x, y \in\{0,\}^{n}$ resp., they receive a "proof string $\omega \in\{0,1\}^{k}$
\rightarrow they execute a randomized protocol π (detd as a dist over dit protocols) set:

1. (Complete ness) $F(x, y)=1 \Rightarrow \exists \omega$ sit. $\operatorname{Pr}_{\pi}[\pi(x, y, \omega)=1] \geqslant 1-\xi$
2. (Sound ness) $F(x, y)=0 \Rightarrow \forall \omega \operatorname{Pr}_{\pi}[\pi(x, y, \omega)=1] \leq \varepsilon$
\rightarrow We say an MA protocol has perfect completeness if. 1. holds w p.
$>$ Complexity: $=k+$ \#of bits of ammuication (in worst coot)

Task: Design a 1-sided error MA protocol for an LTF

Task: Design a 1-sided crroo MA protiool for an LTF
Recall: $f\left(x_{1},-, x_{n}\right)=1 \Leftrightarrow \sum_{1}^{n} w_{i} x_{i} \geqslant \theta$

Task: Design a 1-sided crror MA protocol for an LTF
Recall: $f\left(x_{1},, x_{n}\right)=1 \Leftrightarrow \sum_{1}^{n} \omega_{i} x_{i} \geqslant \theta$
\rightarrow Plice receines $x_{1}, \ldots, x_{n / 2}$, Beb receives $x_{n_{2}+1, \ldots}, x_{n}$

Task: Design a 1-sided crror MA protocol for an LTF
Recall: $f\left(x_{1},-, x_{n}\right)=1 \Leftrightarrow \sum_{i}^{n} \omega_{i} x_{i} \geqslant \theta$
\rightarrow Plice recoins $x_{1}, \ldots, x_{n_{2}}, B, b$ receines $x_{n_{2}+1,1,}, x_{n}$
$>$ Alice receines $\sigma:[n / 2] \rightarrow\{0,1\}^{n / 2}$, Bob $\tau:[n / 2] \rightarrow\{0,1\}^{n / 2}$

Task: Design a 1-sided crror MA protocol for an LTF
Recall: $f\left(x_{1}, \ldots, x_{n}\right)=1 \Leftrightarrow \sum^{n} \omega_{i} x_{i} \geqslant 0$
$>$ Plice receines $\overbrace{x_{1}, \ldots, x_{n / 2}}^{x}$, Beb receines $\overbrace{x_{n_{2}+1}, 1, x_{n}}^{y}$
\rightarrow Alice receicus $\sigma:[n / 2] \rightarrow\{0,1\}^{n / 2}, B_{0} b \quad \tau:[n / 2] \rightarrow\{0,1\}^{n / 2}$
$>$ Alice computes $\sum_{x_{j} \in x} \omega_{j} \sigma\left(x_{j}\right), B_{0} b \sum_{x_{j} \in y} \omega_{j} t\left(x_{j}\right)$

Task: Design a 1-sided error MA protocol for an LTF
Recall: $f\left(x_{1}, \ldots, x_{n}\right)=1 \Leftrightarrow \sum^{n} \omega_{i} x_{i} \geqslant 0$
\rightarrow Alice receives $\overbrace{x_{1}, \ldots, x_{n / 2}}^{x}$, Bub receives $\overbrace{x_{n_{2}+1}, \rightarrow x_{n}}^{y}$
\rightarrow Alice receives $\sigma:[n / 2] \rightarrow\{0,1\}^{n / 2}$, Bob $\quad\left[:[n \mid z] \rightarrow\{0,1\}^{n / 2}\right.$
$>$ Alice computes $\sum_{x_{j} \in x} \omega_{j} \sigma\left(x_{j}\right), B_{0} b \sum_{x_{j} \in y} \omega_{j} t\left(x_{j}\right)$

$$
\begin{aligned}
& >\text { Alice computes } \sum_{x_{j \in x}} \omega_{j} \sigma\left(x_{j}\right), B_{0} b \sum_{x_{j} \in y} \omega_{j}\left(\left\langle x_{j}\right)\right. \\
& >F_{\sigma}:=\theta-\sum_{x} \omega_{j} \sigma\left(x_{j}\right)+n \cdot 2^{M}, F_{\tau}=\sum_{y} \omega_{j} T\left(x_{j}\right)+n \cdot 2^{M}
\end{aligned}
$$

Task: Design a 1-sided error MA protocol for an LTF
Recall: $f\left(x_{1}, \ldots, x_{n}\right)=1 \Leftrightarrow \sum^{n} \omega_{i} x_{i} \geqslant 0$
\rightarrow Alice receives $\overbrace{x_{1}, \ldots, x_{n / 2}}^{x}$, Bub receives $\overbrace{x_{n_{k}+1}, \rightarrow x_{n}}^{y}$
$>$ Alice receives $\sigma:[n / 2] \rightarrow\{0,1\}^{n / 2}$, Bob $\tau:[n / 2] \rightarrow\{0,1\}^{n / 2}$
$>$ Alice computes $\sum_{x_{j} \in x} \omega_{j} \sigma\left(x_{j}\right), B_{0} b \sum_{x_{j} \in y} \omega_{j} t\left(x_{j}\right)$
$>F_{\sigma}:=\theta-\sum_{x}^{x_{j} \in x} \omega_{j} r\left(x_{j}\right)+n \cdot 2^{M}, \quad F_{\tau}=\sum_{y} \omega_{j} \tau\left(x_{i}\right)+n \cdot 2^{M}$
$>$ Then, $F\left({ }_{\sigma}^{x} \cup \tau\right)=1 \Leftrightarrow F_{\sigma} \leq F_{\tau}$

New Task: Design an MA Protocol for INequality

Nw Task: Design an MA Protocol for INequality
Stupid question: Given two numbers, how do you tell that one is larger than the other?

New Task: Design an MA Protocol for INequality. Stupid question: Given two numbers, how do you tell that one is larger than the other?

No, really!: Goren

$$
\begin{aligned}
& 1,087,352,600,501 \\
& \& \quad 1,087,352,613,009
\end{aligned}
$$

New Task: Design an MA Protocol for INequality. Stupid question: Given two numbers, how do you tell that one is larger than the other?

No, really!: Goren

$$
\begin{aligned}
& 1,087,352,600,501 \\
& 1,087,352,613,009
\end{aligned}
$$

which one is larger? Why? Give a 'short' proof.

Nw Task: Design an MA Protocol for INequality. Stupid question: Given two numbers, how do you tell that one is larger than the other?
No, really!: Goren

$$
\begin{aligned}
& 1,087,352,600,501^{6} \\
& \& \quad 1,087,352,613,009
\end{aligned}
$$

which one is larger? Why? Give a 'short' proof.

Recall: Alice knows F_{σ}, Bob knows F_{i}.

Recall: Alice knows F_{σ}, Bob kn wo F_{T}. Both are R-bit numbers where $R=\left\lceil\log \left(n \cdot 2^{M+1}\right)\right\rceil$

Recall: Alice knows F_{σ}, Bob kenws F_{i}.
Both are R-bit numbers where $R=\left\{\log \left(n \cdot 2^{M+1}\right)\right\rceil$
Protocol (giro randomly generated hashes $z_{1}, \ldots, z_{t} \in\{0,\}^{+}$)
1 . Prover supplies an ind $i \in[R+1]$.

Recall: Alice knows F_{σ}, Bob kenws F_{i}.
Both are R-bit numbers where $R=\left\{\log \left(n \cdot 2^{M+1}\right)\right\rceil$
Protocol (giro randomly generated hashes $z_{1}, \ldots, z_{t} \in\{0,\}^{+}$)

1. Prover supplies an index $i \in[R+1]$.
2. If $i \in[R]$, Alice \& Bob chad if:
(i) $F_{\sigma}(i)<F_{T}(i)$
(ii) $\left\langle F_{\sigma}\left(\langle i), z_{j}(\langle i)\rangle=\left\langle F_{T}\left(\langle i), z_{j}(\langle i)\rangle \forall j \in[t]\right.\right.\right.\right.$.

Recall: Alice knows F_{σ}, Bob knows F_{i}.
Both are R-bit numbers where $R=\left\{\log \left(n \cdot 2^{M+1}\right)\right\rceil$
Protocol (giro randomly querated hashes $z_{1}, \ldots, z_{t} \in\{0,\}^{+}$)

1. Prover supplies an index $i \in[R+1]$.
2. If $i \in[R]$, Alice \& Bob chad if:
(i) $F_{\sigma}(i)<F_{\tau}(i)$
(ii) $\left\langle F_{\sigma}\left(\langle i), z_{j}(\langle i)\rangle=\left\langle F_{T}\left(\langle i), z_{j}(\langle i)\rangle \forall j \in[t]\right.\right.\right.\right.$. It both hold, output 'yes'. (ic. σ UT sat. $F)$. O/w, (no $^{\prime \prime}$).

Recall: Alice knows F_{σ}, Bob ken us F_{i}
Both are R-bit numbers where $R=\left\{\log \left(n \cdot 2^{M+1}\right)\right\rceil$
Protocol (giro randomly querated hashes $z_{1}, \ldots, z_{t} \in\{0,\}^{+}$)

1. Prover supplies an index $i \in[R+1]$
2. If $i \in[R]$, Alice \& Bob chad if:
(i) $F_{\sigma}(i)<F_{T}(i)$
(ii) $\left\langle f_{\sigma}\left(\langle i), z_{j}(\langle i)\rangle=\left\langle F_{T}\left(\langle i), z_{j}(\langle i)\rangle \forall j \in[t]\right.\right.\right.\right.$.

It both hold, output 'ye'. (ic.-.VU sat. F). O/w, (${ }_{n o}$ ").
3. If $i=R+1$, only check (ii)

Recall: Alice knows F_{σ}, Bob knows F_{i}
Both are R-bit numbers where $R=\left\{\log \left(n \cdot 2^{M+1}\right)\right\rceil$
Protocol (giro randomly generated hashes $z_{1}, \ldots, z_{t} \in\{0,1\}$)

1. Prover supplies an index $i \in[R+1]$
2. If $i \in[R]$, Alice \& Bob chad if:
$(\bar{u})\left\langle f_{\sigma}\left(\langle i), z_{j}(\langle i)\rangle=\left\langle F_{T}\left(\langle i), z_{j}(\langle i)\rangle \forall j \in[T]\right.\right.\right.\right.$.
(i) $F_{\sigma}(i)<F_{T}(i)$

At both hold, output 'yes'. (ic .oUT sat. F). O/w, (${ }_{n o}$ ")
3. If $i=\widehat{R+1}$, only check (ii). Same

Note: This protocol has perfect completeness.

Note: This protocol has perfect completeness \& By Setting $t=\log (1 / \varepsilon)$, we can 'boost' the error to \mathcal{E}.

Note: This protocol has perfect completeness \& By Setting $t=\log (1 / \varepsilon)$, we can 'boost' the error to ε.
Next question: How to use this simple protocol to reduce 0-1 IP to OV?

Reduction to OV: of Sketch

Reduction to OV: of Sketch
Given a 0-1 IP instance: $\left(\sum_{j=1}^{n} \omega_{i j} x_{j} \geqslant \theta_{i=1}\right)$

$$
i=1,-1, m
$$

Reduction to OV: of Sketch
given a 0-1 IP instance: $\left(\sum_{j=1}^{n} \omega_{i j} x_{j} \geqslant \theta_{i}\right)$ $i=1,-1, m$
generate an or instance as follows:

Reduction to OV: of Sketch
Given a 0-1 IP instance: $\left(\sum_{j=1}^{n} \omega_{i j} x_{j} \geqslant \theta_{i}\right)$
generate an $o r$ instance as follows:

What are the $d=m \cdot R \cdot 2^{t}$ coordinates?

What are the \qquad $d=m \cdot R \cdot 2^{t}$ coordinates? $>m$ clauses $>R$ diff-choices $>2^{t}$ diff-choics of index i (ic. 'proof string) of 'hash values'.

What are the $d=m \cdot R \cdot 2^{t}$ coordinates?
$>m$ clauses $>R$ diff-choices $>2^{t}$ diff. choices of index i (ic. 'proof string) of 'hash values'.
\Rightarrow Then for $u_{\gamma} \in A, v_{\tau} \in B$ - they have a 1 in a common location iff OUT is NOT satisfying.

Finally, running the Chan-Williams fast algo for OV on this instance gins us the claimed

$$
2^{n-\frac{n}{o(\log m)}} \text { run-time for 0-1 IP. }
$$

Thank You!

