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This talk is based on the following

• [ODo21] Chapters 1, 2, 9

• [KKL88]
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Bahn mi or wraps?

Suppose the n of us are choosing between two equally good food
options for TSS (say bahn mi and wraps).

Since it’s boring to simply alternate between the two, we want to
introduce some randomness to the process. Additionally, since the
two options are equally good, we want to get bahn mi with
probability around 1/2

Here’s how we do it. I’ll flip a coin and decide: Heads we get bahn
mi, tails we get wraps.

There is a massive problem though. I am famously obsessed with
bahn mi, so you don’t trust that I will honestly report the outcome
of the coin flip.
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Collective Coin Flipping

To address this, we decide to have everyone flip coins instead of
just a single person (who can cheat).

Here’s how we decide to do it.

• Every flips a fair coin and writes the outcome of the flip to a
shared document.

• Get bahn mi if the number of heads is even, and wraps
otherwise.

Does this fix the issue? No!
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Robust to Cheaters

In 1985, this question was asked by Ben-Or and Linial: Can we
make a similar procedure more resilient to cheaters?

Write heads as −1 and tails as 1.

Let f : {−1, 1}n → {−1, 1} be such that Prx [f (x) = 1] = 1/2.

• Every flips a fair coin.

• Let x = x1x2...xn be the outcome of the coin flips.

• Get bahn mi f (x) = 1, and wraps otherwise.
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Questions we will answer today

1. What is functions f are the most resilient to a cheaters?

2. How big is does a coalition of cheaters need to be before they
can almost always decide outcome of f ?
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Influence

Definition (Influence)

Let f : {−1, 1}n → {−1, 1}, for any coordinate i ∈ [n], let

Inf i [f ] = Pr
x∼{−1,1}n

[f (x) ̸= f (x⊕i )]

Also define
MaxInf[f ] = max

i∈[n]
{Inf i [f ]} .
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Plan

• Functions with low influence.

• Fourier Analysis + Hypercontractivity.

• Proof of the KKL Theorem (a lower bound on MaxInf).

• Influence of coalitions.

A contraction is a function f such that ||f (x)|| ≤ ||x || i.e. it makes
the input vector shorter. A hypercontraction is (informally) a
function that makes the input much shorter.
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Warmup

What are the influences for the following functions

• The constant 1 function.

• The ith dictator function f (x) = xi .

• The Parity function.

• The OR function.

• The AND function.
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Inf i [f ] = Prx∼{−1,1}n [f (x) ̸= f (x⊕i )]



Low influence function

What are some balanced functions where MaxInf[f ] is small?
That is, no person should be able to pick the outcome with high
probability if they decide to cheat.
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Majority

What is the influence of the majority function?
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Tribes

Here’s another function. Split the group into many smaller groups,
and order bahn mi iff there exists a group in which EVERYONE in
the group wants bahn mi. This is called the Tribes function.

Formally, call the groups “tribes”, and let s be the number of
tribes and w be the size of each tribe.
Tribesw ,s : {−1, 1}ws → {−1, 1} is defined by

Tribesw ,s(x
(1), x (2), ..., x (s)) =

ORs

(
ANDw (x

(1)),ANDw (x
(2)), ...,ANDw (x

(s))
)
,

where each x (i) ∈ {−1, 1}w .
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Influence of Tribes

Since we want unbiased functions, we want
Pr[Tribesw ,s = −1] ≈ 1/2.

Pr[Tribesw ,s = −1] = 1− (1− 2−w )s ≈ 1− exp(−s2−w )

Setting s = 2w ln(2) we get that this is approximately 1/2.

You have influence if everyone in your tribe votes −1, and no other
tribe is already unanimous, this has probability

2−(w−1)(1− 2−w )s−1 ≈ 2−w exp(−s2−w ) ≈ 2−(w−1)

Influence Influence 15 / 52
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Influence of Tribes

Note that n = sw = ln(2)w2w , so w ≈ log(n)− log(log(n)). Thus,

Inf i [f ] ≈ 2−w = 2log(log(n))−log(n) = log(n)/n

Influence Influence 16 / 52

s = 2w ln(2), Inf i [f ] ≈ 2−(w−1)



Tribes vs. Majority

log(n)/n is much smaller than 1/
√
n, so a better choice to limit

the influence of potential cheaters. . .

Can we do even better than Tribes?
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Tribes is Optimal

Theorem (KKL (1988))

Let f : {−1, 1}n → {−1, 1}. Then

MaxInf[f ] = Var[f ] · Ω(log(n)/n)

Note that if f is unbiased Var[f ] = 1.
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Fourier Analyis over {−1, 1}n

Let S ⊆ [n], x ∈ {−1, 1}n, let xS =
∏

i∈S xi (and x∅ = 1).

Theorem (Fourier Expansion Theorem)

∀f : {−1, 1}n → C, f can be uniquely expressed as a multilinear
polynomial

f =
∑
S⊆[n]

f̂ (S)xS

I.e. {xS : S ⊆ [n]} is a basis for the space of functions from
{0, 1}n → C.
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Inner product and norms

Define the inner product

⟨f , g⟩ = E
x∼{−1,1}n

[f (x)g(x)]

Also define the p norm

||f ||p = E
x∼{−1,1}n

[|f (x)|p]1/p

.
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Basic Properties

Expectation of the basis functions is 0 except for the constant 1
function.

Proof:

E[xS ] =

{
1 S = ∅
0 else

Proof, E[1] = 1, obviously. E[xS ] =
∏

i∈S E[xi ] = 0, since xi s are
independently −1, 1 with probability 1/2.
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Basic Properties

{xS : S ⊆ [n]} is an orthonomal basis for the space of functions.

Proof: 〈
xS , xT

〉
= E[xSxT ] = E[xS∆T ] =

{
1 S = T

0 else
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Basic Properties

Plancherel’s Theorem. Suppose f =
∑

S⊆[n] f̂ (S)x
S , and

g =
∑

T⊆[n] ĝ(T )xT , then

⟨f , g⟩ =
∑
S⊆[n]

f̂ (S)ĝ(S)

Proof

⟨f , g⟩ =

〈∑
S⊆[n]

f̂ (S)xS ,
∑
T⊆[n]

ĝ(T )xT

〉
=

∑
S ,T⊆[n]

f̂ (S)ĝ(T )
〈
xS , xT

〉
Use orthonomalness.
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Basic Properties

This special case of the previous slides is called Parseval’s Theorem.

||f ||22 = ⟨f , f ⟩ =
∑
S⊆[n]

f̂ (S)2
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Spectral Sample

If f : {−1, 1}n → {−1, 1}, ||f ||22 = E[f 2] = 1. Thus, by Parseval’s
Theorem: ∑

S⊆[n]

f̂ (S)2 = 1

Define the spectral sample S to be a distribution on subsets of [n]
that takes value S with probability f̂ (S)2.
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Decomposition

Write f as a multilinear polynomial using the Fourier Expansion
Theorem. We can write f as xid(x) + e(x) where d and e are
polynomials that don’t depend on xi .

Note that

f (x i→1) = d(x) + e(x), f (x i→−1) = −d(x) + e(x),

Rearranging for d(x) and e(x), we have that

d(x) =
f (x i→1)− f (x i→−1)

2
, e(x) =

f (x i→1) + f (x i→−1)

2
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Decomposition

For each i , let Di , Ei be the operators mapping f to the first and
second part of this decomposition respectively. I.e.
Di f : {−1, 1}n → {−1, 1} is the function such that

Di f (x) =
f (x i→1)− f (x i→−1)

2
,

and Ei f : {−1, 1}n → {−1, 1} is such that

Ei f (x) =
f (x i→1) + f (x i→−1)

2
,

and f = xiDi f + Ei f

Fourier Analysis + Hypercontractivity Influence 28 / 52



The Discrete Derivative

Di is called the discrete derivative. If f : {−1, 1}n → {−1, 1}, then

Di f (x) =

{
0 if f (x) = f (x⊕i )

±1 if f (x) ̸= f (x⊕i )
.

Thus, Inf i [f ] = E[Di f
2] = ||Di f ||22
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Di f (x) =
f (x i→1)−f (x i→−1)

2



Fourier Transform of Di f

From the definition of Di f , we find that

Di f =
∑

S⊆[n],i∈S

f̂ (S)xS\{i}
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Fourier Transform of Inf i [f ]

Using the fourier expansion of Di f , and Parseval’s we get

Inf i [f ] = ||Di f ||2 =
∑

S⊆[n],i∈S

f̂ (S)2.

Summing over i , we get

I [f ] =
∑
S⊆[n]

|S |f̂ (S)2 = E
S∼S

[|S |].
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Di f =
∑

S⊆[n],i∈S f̂ (S)x
S\{i}



Variance

Suppose f is unbiased (i.e. E[f ] = 0), then
Var[f ] = E[f 2]− E[f ]2 = 1, since f 2 is the constant 1 function.

Var[f ] = ⟨f , f ⟩−⟨f , 1⟩2 =

∑
S⊆[n]

f̂ (S)2

− f̂ (∅)2 =
∑

S⊆[n],S ̸=∅

f̂ (S)2
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Comparing

Summarizing the previous two slides,

I [f ] =
∑

S⊆[n],S ̸=∅

|S |f̂ (S)2,

and
Var[f ] =

∑
S⊆[n],S ̸=∅

f̂ (S)2.

Additionally, if f is unbiased, then Var[f ] = 1.

From these we can see that Var[f ] ≤ I [f ], so we get an immediate
lower bound on MaxInf[f ] of Var[f ]/n. In this case, that’s 1/n
since f is unbiased.
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|S |f̂ (S)2,

and
Var[f ] =

∑
S⊆[n],S ̸=∅

f̂ (S)2.

Additionally, if f is unbiased, then Var[f ] = 1.

We want a better lower bound. Here’s some intuition for the proof:
Either I [f ] = Ω(log(n)), in which case MaxInf[f ] = Ω(log(n)/n)
by averaging. OR, I [f ] = o(log(n)). Since the first sum is small
but the second sum needs to sum up to 1, f̂ (S) should be
concentrated on small sets S , the proof will show that this is
impossible when MaxInf[f ] is small.

Fourier Analysis + Hypercontractivity Influence 33 / 52



Fourier Weight Concentrated on Small Sets

The game is to distribute the f̂ (S) such that the sum of the
squares is 1, but the sum weighted by the size of |S | is small. We
might define a score like this, where wS is large for small S and
small for large S . ∑

S⊆[n]

wS · f̂ (S)2
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Noise Operator

Let ρ ∈ [0, 1]. For fixed x ∈ {−1, 1}n, write y ∼ Nρ(x) to denote a
random string y drawn as follows. For each i ∈ [n], independently,

yi =

{
xi with probability ρ

uniformly random with probability 1− ρ

Then define the noise operator Tρ such that

Tρf (x) = E
y∼Nρ(x)

[f (y)]
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FT of the Noise Operator

Note that Tρ is linear since expectation is linear. I.e.
Tρ(f + αg) = Tρf + αTρg

Thus, Tρf =
∑

S⊆[n] f̂ (S)Tρx
S , and

Tρx
S(x) = E

y∼Nρ(x)
[yS ]

=
∏
i∈S

Ey∼Nρ(x)[yi ]

=
∏
i∈S

(ρxi )

= ρ|S |xS
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Fourier Transform of the Noise Operator

Thus,
Tρf =

∑
S⊆[n]

ρ|S |f̂ (S)xS
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I [f ] =
∑

S⊆[n],S ̸=∅

|S |f̂ (S)2,

Var[f ] =
∑

S⊆[n],S ̸=∅

f̂ (S)2 = 1

||T√
ρf ||22 =

∑
S⊆[n]

ρ|S|f̂ (S)2

Fourier Analysis + Hypercontractivity Influence 38 / 52

Tρf =
∑

S⊆[n] ρ
|S |f̂ (S)xS



Contraction

An operator T is called a contraction if ||Tf || ≤ ||f ||.
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Norms

For any 1 ≤ p ≤ q,
||f ||p ≤ ||f ||q

Proof: Apply Jensen’s Inequality

E[|f |p]q/p ≤ E[(|f |p)q/p] =⇒ E[|f |p]1/p ≤ E[|f |q]1/q

For example, if f : {−1, 1} → {0, 1} was a function with
expectation 1/2, ||f ||2 = 1/

√
2 ≈ 0.71, ||f ||4 = 1/ 4

√
2 ≈ 0.84.

Note: Usually, if using the sum norm instead of the expectation norm, the

inequality is the other way around.
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(2, 4)-Hypercontractivity Theorem

Theorem

||T1/
√
3f ||4 ≤ ||f ||2

Proof: By induction on n, (use the decomposition f = xnd + e).
See [ODo21], p253 for the details.
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(4/3, 2)-HC Theorem

Theorem

||T1/
√
3f ||2 ≤ ||f ||4/3

Proof: Let T = T1/
√
3

||Tf ||22 = ⟨Tf ,Tf ⟩ = ⟨f ,TTf ⟩ ≤ ||f ||4/3||TTf ||4 ≤ ||f ||4/3||Tf ||2

Where the first inequality follows from Hölder’s Inequality, and the
second follows from the (2, 4)-Hypercontractivity Theorem.
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Proof of the KKL Theorem

The proof considers the sum
∑

i∈[n] ||T1/
√
3Di f ||22.

Upper bound. By the (4/3, 2)-Hypercontractivity Theorem, we
have

||T1/
√
3Di f ||2 ≤ ||Di f ||4/3 = E[|Di f |4/3]3/4 = Inf i [f ]

3/4

Thus, ∑
i∈[n]

||T1/
√
3Di f ||22 ≤

∑
i∈[n]

Inf i [f ]
3/2

=
∑
i∈[n]

Inf i [f ]
√

Inf i [f ]

≤
√

MaxInf[f ]I [f ]
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Proof of the KKL Theorem
Lower bound.

∑
i∈[n]

||T1/
√
3Di f ||22 =

n∑
i=1

∑
S⊆[n],i∈S

f̂ (S)2/3|S|−1

=
∑
|S|≥1

|S |f̂ (S)2/3|S|−1

≥
∑
|S|≥1

f̂ (S)2/3|S|

= E
S∼S

[3−|S|]

≥ 3− ES∼S [|S|]

= 3−I [f ]
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∑

S⊆[n],i∈S f̂ (S)x
S\{i}

Tρf =
∑

S⊆[n] ρ
|S |f̂ (S)xS

||f ||22 =
∑

S⊆[n] f̂ (S)
2 (Parseval’s Theorem)



Proof of the KKL Theorem

Combining the two inequalities, we get that
3−I [f ] ≤ I [f ]

√
MaxInf[f ], so(

3−I [f ]

I [f ]

)2

≤ MaxInf[f ].
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)2

≤ MaxInf[f ].

Case 1. I [f ] ≥ 0.1 log3(n). By averaging,
MaxInf[f ] ≥ Ω(log(n)/n).

Case 2. I [f ] < 0.1 log3(n). Then

MaxInf[f ] ≥ (n−0.1/0.1 log3(n))
2 = Ω(n−0.21) = Ω(log(n)/n)

Fourier Analysis + Hypercontractivity Influence 43 / 52



Influence

Fourier Analysis + Hypercontractivity

Generalizations

Generalizations Influence 44 / 52



Generalizations

• Generalizing to coalitions.

• Generalizing the domain to X n.
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Extension to Coalitions

The KKL theorem says that someone has influence at least
Ω(log(n)/n). How about the influence of a coalition?
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KKL for Coalitions

Theorem
For all unbiased f {−1, 1}n → {−1, 1}, there exists a set J, with
|J| = O(n/ log(n)), such that InfJ [f ] ≥ 0.99.
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Proof

Suppose that f is monotone (monotone functions minimize
influence anyway so this is fine). First we’ll show that there is a set
of coordinates that you can bribe to make the value of f 1 with
high probability.

You iteratively bribe the coordinate with the most influence. Let
f0 = f , define ft = f j→1

t−1 where j is the coordinate of largest
influence in ft−1. We have E[ft ] ≥ E[ft−1] +MaxInf[ft−1].

Run this for t iterations. If E[ft ] > 0.99, then great. Otherwise,
Var[f ] = Ω(1), so by KKL the MaxInf[fi ] for each i < t is
Ω(log(n)/n). Thus, E[ft ] ≥ Ω(log(n)/n)t, setting
t = O(n/ log(n)) suffices to make this 0.99. Let J1 be the set of
coordinates you bribed along the way.
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Proof

Do the same thing but bribe them to vote the other way instead,
get another set J−1 such that having them all bribed to vote −1,
the probability that the outcome is −1 is −0.99. Then J1 ∪ J−1

has large influence.
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KKL for Coalitions

More generally,

Theorem
For all ϵ > 0, and unbiased f {−1, 1}n → {−1, 1}, there exists a
set J, with |J| ≤ O(log(1/ϵ)n/ log(n)), such that InfJ [f ] ≥ 1− ϵ.
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Function Resilient to Coalitions

The Tribes Function minimizes MaxInf but is not resilient to large
coalitions - you just need to bribe a single tribe (of size rougly
log(n)− log(log(n))) to get large influence.

The best known construction is due to [AL93], which has o(1)
influences for all coalitions of size o(n/ log2(n)). It’s kind of like a
randomized tribes.
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Open Questions

• Combinatorial proof?

• Coalitions lower bound for [0, 1].

• Is the [AL93] construction optimal? Also, can we derandomize
it?

• Generalizing the codomain? E.g. what if we were choosing
between bahn mi, wraps, AND burgers.
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