
Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Derandomizing Polynomial Identity Tests Means
Proving Circuit Lower Bounds

October 18, 2023

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Contents

Introduction

Lemma 1

Lemma 2

Lemma 3

Proof of Theorem

Open Problems

References

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Introduction

Theorem ([KI03])

PIT ∈ P =⇒ per ̸∈ Arth − P/poly or NEXP ̸⊆ P/poly

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Arithmetic circuits

• Representation for polynomials
• A Directed Acyclic Graph that computes a polynomial f over
F and set of variables x1, . . . , xn

• Vertices of in-degree 0 labeled with variable or field element
• All other vertices(gates) labeled with + or ×
• Edges labeled with field constants (1 by default)
• Size: number of edges
• For more details on Arithmetic circuits, check [SY10]

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Arithmetic circuits
Example

+

× +

+
+

x y −3

x
y

−3

2

-2

Figure: Circuit computing xy + 2y2

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Polynomial Identity Testing(PIT)

• Efficiently test whether an input polynomial as the circuit is
identically zero or not.

• For univariate, just check at degree + 1 points. Doesn’t work
for multivariate.

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Randomized Solution

Lemma
(PIT Lemma)(Schwartz-Zippel[Sch80]) Let f ∈ F[x1, . . . , xn] be a
non-zero polynomial of total degree d ≥ 0. Let S be any finite
subset of F, and let α1, . . . , αn be elements selected independently,
uniformly and randomly from S. Then,

Prα1,...,αn∈Sn [f (α1, . . . , αn) = 0] ≤ d
|S|

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Randomized Solution

Lemma
(PIT Lemma)(Schwartz-Zippel[Sch80]) Let f ∈ F[x1, . . . , xn] be a
non-zero polynomial of total degree d ≥ 0. Let S be any finite
subset of F, and let α1, . . . , αn be elements selected independently,
uniformly and randomly from S. Then,

Prα1,...,αn∈Sn [f (α1, . . . , αn) = 0] ≤ d
|S|

• Thus PIT ∈ coRP
• Open: Derandomizing PIT in poly(s)-time

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Pseudorandomness Generators(PRGs)

• Decrease the number of random bits required.
• For S : N −→ N, a 2O(n)-computable function

G : {0, 1}∗ −→ {0, 1}∗ is an S − prg , if ∀l ,
G : {0, 1}l −→ {0, 1}S(l), and ∀ circuits C of size ≤ S(l)3

|Prx∈Ul [C(G(x)) = 1] − Prx∈US(l) [C(x) = 1]| < 0.1

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Pseudorandomness Generators(PRGs)

• Decrease the number of random bits required.
• For S : N −→ N, a 2O(n)-computable function

G : {0, 1}∗ −→ {0, 1}∗ is an S − prg , if ∀l ,
G : {0, 1}l −→ {0, 1}S(l), and ∀ circuits C of size ≤ S(l)3

|Prx∈Ul [C(G(x)) = 1] − Prx∈US(l) [C(x) = 1]| < 0.1

• If a S-prg exists then ∀ functions l

BP − TIME (S(l(n))) ⊆ DTIME (2l(n)S(l(n)))

• A 2ϵl -prg =⇒ BPP=P

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Hardness

• Worst-case Hardness For f : {0, 1}∗ −→ {0, 1}, Hwrs(f) is
the largest S(n) st. ∀ circuit Cn ∈ size(S(n)),

Prx∈Un [Cn(x) = f (x)] < 1

• Average-case Hardness Havg(f) is the largest S(n) st. ∀
circuit Cn ∈ size(S(n)),

Prx∈Un [Cn(x) = f (x)] <
1
2 + 1

S(n)

• Can be shown that a worst-case hard function gives also an
average-case hard function.

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

NW-Design

Theorem
If ∃f ∈ E with Havg ≥ S(n), then ∃S ′(l)-prg, where
S ′(l) = S(n)0.01.

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Arithmetic Complexity Classes

• VP(Arth-P/poly): Family of polynomials that can be
computed by poly(n) size circuits and poly(n) degree.

• Example detn(x̄) =
∑

π∈Sym(n) sgn(π)
∏n

i=1 xi ,π(i) is in VP
• VNP: Arithmetic equivalent of NP. {fn}n in VNP if

fn(x) =
∑

w∈{0,1}t(n)

gn+t(n)(x , w)

• Example pern(x̄) =
∑

π∈Sym(n)
∏n

i=1 xi ,π(i) is in
VNP.(Complete for VNP). Also, complete for #P.

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Arithmetic Complexity Classes

• VP(Arth-P/poly): Family of polynomials that can be
computed by poly(n) size circuits and poly(n) degree.

• Example detn(x̄) =
∑

π∈Sym(n) sgn(π)
∏n

i=1 xi ,π(i) is in VP
• VNP: Arithmetic equivalent of NP. {fn}n in VNP if

fn(x) =
∑

w∈{0,1}t(n)

gn+t(n)(x , w)

• Example pern(x̄) =
∑

π∈Sym(n)
∏n

i=1 xi ,π(i) is in
VNP.(Complete for VNP). Also, complete for #P.

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Polynomial Hierarchy

• Σ0 := P, Σ1 := NP, Σ2 := NPΣ1 ,. . .

• L ∈ Σ2 iff ∃ poly time TM N st. ∀ x , x ∈ L iff
∃y1∀y2N(x , y1, y2) = 1

• Σ3 will be ∃y1∀y2∃y3, and so on
• Similar exists with Πi with coNP
• PH = ∪iΣi
• PH ⊆ Pper (Toda’s theorem)

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Interactive Protocols

• Replace ∀ with ”For most"(M).
• My N(y) = 1 iff Pry [N(y) = 1] ≥ 3/4
• MA[k] ∃y1My2∃y3 . . . N(x , y1, y2, . . . , yk) = 1
• AM[1] = BPP, MA[1] = NP. MA usually refers to MA[2]
• IP = ∪c>0AM[nc] = PSPACE

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Structure

• Preliminaries: Arithmetic circuits, PIT, PRGs
• Lemma 1

PIT ∈ P and per ∈ Arth − P/poly =⇒ Pper ⊆ NP.
• Lemma 2 EXP ⊆ P/poly =⇒ EXP = MA
• Lemma 3 NEXP ∈ P/poly =⇒ NEXP = EXP.
• Proof of Theorem: Combining to get the main theorem.
• Conclusion: Implications and Future Scope

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Lemma 1

Lemma
PIT ∈ P and per ∈ Arth − P/poly =⇒ Pper ⊆ NP.
Proof Idea

• "Guess" the small circuit for permanent and verify it using
PIT ∈ P.

• pern(A) =
∑

i∈[n] A1i .per(A′
1i) where A′

1i is the corresponding
minor.

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

• Let Cn be arithmetic circuit corresponding to the pern.
• Protocol for obtaining the circuit.

1. Given Cn−1, we guess the circuit for Cn as follows:

Cn(A) =
∑
i∈[n]

A1i .Cn−1(A′
1i) (1)

2. Use PIT for verifying whether the above expression is correct
or not.

3. Repeat it for circuits Cn−1 which we used for minors and so on.
• Using this recursive guess and verify procedure, we can get a

circuit Cn(A) = pern(A) by induction on n.

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

• Now we show Pper ⊆ NP
• Let L ∈ Pper .

Guess Cn for pern using the recursive procedure.
Use this circuit Cn for pern instead of the oracle

• PIT ∈ P, implies the entire verification is in P.
• per ∈ Arth − P/poly , implies the guess that our machine

need to do is poly-sized.
• This gives L ∈ NP =⇒ Pper ⊆ NP

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Lemma 2

Lemma
EXP ⊆ P/poly =⇒ EXP = MA
Proof Idea First show EXP ⊆ P/poly =⇒ EXP = Σ2.

• Consider L ∈ EXP, with TM N. Encode steps of N Using the
circuit and ∃∀

• Compute j-th bit of i-th configuration of N(x) in exp-time
=⇒ ∃ poly-size C(x , i , j) computing it.

• x ∈ L ⇐⇒ ∃C , ∀(i , j)[C(x , i , j) −→ C(x , i + 1, j) is a valid
step].

• Thus, EXP = Σ2

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Lemma 2

Lemma
EXP ⊆ P/poly =⇒ EXP = MA
Proof Idea contd.

• Σ2 ⊆ PSPACE = IP ⊆ EXP = Σ2, i.e.
PSPACE = IP = EXP ⊆ P/poly .

• We have a IP protocol for L. We convert it one round.
• Prover in IP is a PSPACE machine, simulate using a poly-size

circuit family {Cn}n∈N

• 1-round protocol for checking x ∈ L:
Prover: Send his circuit Cn, for n = |x |.
Verifier: Simulate the IP protocol using Cn as P.

• Thus, EXP = MA

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Lemma 3

Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea

• Assume ∃L ∈ NEXP \ EXP, st. ∃c > 0 and machine R(x , y)
running in exp(|x |10c)

x ∈ L ⇐⇒ ∃y ∈ {0, 1}exp(|x |c)R(x , y) = 1

• y is hard for EXP. What is its circuit complexity? We use it
to compute hard-function

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Lemma 3

Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea contd.
Consider the machine MD, ∀D > 0 as follows:

• construct tt of all circuits of size n100D, with nc input.
• if ∃C , R(x , tt) = 1 ACCEPT, else REJECT

Running Time: exp(n100D + n10c)

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Lemma 3

Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea contd.

• L ̸∈ EXP =⇒ MD cannot solve L
• Therefore, for infinitely many x ’s, y is such that

Hwrs(fy) > n100D.
• Using NW design we have a lD prg.

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Lemma 3

Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea contd.

• EXP ⊂ NEXP ⊆ P/poly . So from lemma 2, we have an
EXP=MA

• ∀L ∈ EXP, Prover tries to show that x ∈ L by sending a short
proof to Verifier.

• Verifier verifies it, using a randomized algo in say nD steps.
• Using the lD prg, we can reduce the number of random bits

from nD to n for Verifier.

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Lemma 3
Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea contd.

• If we have n as the input length of some string which is
"hard" for the tt circuits, we can replace the Verifier by a
non-deterministic algorithm in poly(nd)2nc time that does not
toss any random coins by using the prg obtained before (the
2nc factor is for calculating the n random bits
deterministically)

• This gives L ∈ NTIME (2nc) "infinitely often" with n-bit
advice. Thus, EXP ⊆ NTIME (2nc) "infinitely often" with
n-bit advice

• But NEXP ⊆ P/poly . Thus we have NTIME (2nc′
)

⊆ SIZE (nc′) for a constant c ′. So EXP ⊆ SIZE (nc′) infinitely
often.

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Lemma 3

Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea contd.

• ∃ c’ such that every language in EXP can be decided on
infinitely many inputs by a circuit family of size n + nc′ . Yet
this can be ruled out using elementary diagonalization.

• Set of all circuits of size nc′ has size 2nc′
. Evaluate all circuits

in the set on all α1 . . . α2n n-bit strings.
• Assume majority circuits compute bi on αi . Remove all these

circuits. The set becomes empty at i ≤ nc′+1.
• Complement of b1 . . . b2n is the truth table for the function

that cannot be computed by a circuit of size nc′ .

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Proof of Theorem
Theorem

PIT ∈ P =⇒ per ̸∈ Arth − P/poly or NEXP ̸⊆ P/poly

• Suppose PIT ∈ P, per ∈ Arth − P/poly and
NEXP ⊆ P/poly .

• From lemmas 2 and 3,NEXP = EXP = MA ⊆ PH.
• Also, PH ⊆ Pper (Toda’s theorem)
• So NEXP ⊆ Pper

• Now as we have PIT ∈ P and per ∈ Arth − P/poly , using
lemma 1, we get Pper ⊆ NP

• Combining these two, we get NEXP ⊆ NP, which contradicts
the non-deterministic time hierarchy theorem. Thus, at least
one of the assumptions is false, which gives:

PIT ∈ P =⇒ per ̸∈ Arth − P/poly or NEXP ̸⊆ P/poly

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Open Problems

• BPP = P, PIT ∈ P, per ̸∈ Arth − P/poly and
NEXP ̸⊆ P/poly .(we believe all of these to be true)

• Does BPP=P imply circuit lower bounds for EXP (instead of
NEXP)?

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

Questions

Questions?

Introduction Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Open Problems References

References I

Valentine Kabanets and Russell Impagliazzo.
Derandomizing polynomial identity tests meansproving circuit
lower bounds.
ACM symposium on Theory of computing, 2003.

Jacob T Schwart.
Fast probabilistic algorithms for verification of polynomial
identities.
Journal of the ACM (JACM), 1980.

Amir Shpilka and Amir Yehudayoff.
Arithmetic circuits: A survey of recent results and open
questions.
Foundations and Trends in Theoretical Computer Science: Vol.
5, 2010.

	Introduction
	Lemma 1
	Lemma 2
	Lemma 3
	Proof of Theorem
	Open Problems
	References

