Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds

October 18, 2023

Contents

Introduction

Lemma 1

Lemma 2

Lemma 3

Proof of Theorem

Open Problems

References

Introduction

Theorem ([KI03])

$$
\text { PIT } \in P \Longrightarrow \text { per } \notin \text { Arth }-P / \text { poly or NEXP } \nsubseteq P / \text { poly }
$$

Arithmetic circuits

- Representation for polynomials
- A Directed Acyclic Graph that computes a polynomial f over \mathbb{F} and set of variables x_{1}, \ldots, x_{n}
- Vertices of in-degree 0 labeled with variable or field element
- All other vertices(gates) labeled with + or \times
- Edges labeled with field constants (1 by default)
- Size: number of edges
- For more details on Arithmetic circuits, check [SY10]

Arithmetic circuits

Example

Figure: Circuit computing $x y+2 y^{2}$

Polynomial Identity Testing(PIT)

- Efficiently test whether an input polynomial as the circuit is identically zero or not.
- For univariate, just check at degree +1 points. Doesn't work for multivariate.

Randomized Solution

Lemma

(PIT Lemma)(Schwartz-Zippel[Sch80]) Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero polynomial of total degree $d \geq 0$. Let S be any finite subset of \mathbb{F}, and let $\alpha_{1}, \ldots, \alpha_{n}$ be elements selected independently, uniformly and randomly from S. Then,

Randomized Solution

Lemma

(PIT Lemma)(Schwartz-Zippel[Sch80]) Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero polynomial of total degree $d \geq 0$. Let S be any finite subset of \mathbb{F}, and let $\alpha_{1}, \ldots, \alpha_{n}$ be elements selected independently, uniformly and randomly from S. Then,

$$
\operatorname{Pr}_{\alpha_{1}, \ldots, \alpha_{n} \in S^{n}}\left[f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

- Thus PIT \in coRP
- Open: Derandomizing PIT in poly(s)-time

Pseudorandomness Generators(PRGs)

- Decrease the number of random bits required.
- For $S: \mathbb{N} \rightarrow \mathbb{N}$, a $2^{O(n)}$-computable function
$G:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is an $S-p r g$, if $\forall I$,
$G:\{0,1\}^{\prime} \rightarrow\{0,1\}^{S(I)}$, and \forall circuits C of size $\leq S(I)^{3}$

$$
\left|\operatorname{Pr}_{x \in U_{l}}[C(G(x))=1]-\operatorname{Pr}_{x \in U_{S(1)}}[C(x)=1]\right|<0.1
$$

Pseudorandomness Generators(PRGs)

- Decrease the number of random bits required.
- For $S: \mathbb{N} \rightarrow \mathbb{N}$, a $2^{O(n)}$-computable function $G:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is an $S-p r g$, if $\forall I$, $G:\{0,1\}^{\prime} \rightarrow\{0,1\}^{S(I)}$, and \forall circuits C of size $\leq S(I)^{3}$

$$
\left|\operatorname{Pr}_{x \in U_{l}}[C(G(x))=1]-\operatorname{Pr}_{x \in U_{S(l)}}[C(x)=1]\right|<0.1
$$

- If a S-prg exists then \forall functions I

$$
B P-\operatorname{TIME}(S(I(n))) \subseteq D \operatorname{TIME}\left(2^{\prime(n)} S(I(n))\right)
$$

- $\mathrm{A} 2^{\epsilon I}$ - $\mathrm{prg} \Longrightarrow \mathrm{BPP}=\mathrm{P}$

Hardness

- Worst-case Hardness For $f:\{0,1\}^{*} \rightarrow\{0,1\}, H_{\text {wrs }}(f)$ is the largest $S(n)$ st. \forall circuit $C_{n} \in \operatorname{size}(S(n))$,

$$
\operatorname{Pr}_{x \in U_{n}}\left[C_{n}(x)=f(x)\right]<1
$$

- Average-case Hardness $H_{\text {avg }}(f)$ is the largest $S(n)$ st. \forall circuit $C_{n} \in \operatorname{size}(S(n))$,

$$
\operatorname{Pr}_{x \in U_{n}}\left[C_{n}(x)=f(x)\right]<\frac{1}{2}+\frac{1}{S(n)}
$$

- Can be shown that a worst-case hard function gives also an average-case hard function.

NW-Design

Theorem
If $\exists f \in E$ with $H_{\text {avg }} \geq S(n)$, then $\exists S^{\prime}(I)$-prg, where $S^{\prime}(I)=S(n)^{0.01}$.

Arithmetic Complexity Classes

- VP(Arth-P/poly): Family of polynomials that can be computed by poly (n) size circuits and $p o l y(n)$ degree.
- Example $\operatorname{det}_{n}(\bar{x})=\sum_{\pi \in \operatorname{Sym}(n)} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}$ is in VP
- VNP: Arithmetic equivalent of NP. $\left\{f_{n}\right\}_{n}$ in VNP if

- Example $\operatorname{per}_{n}(\bar{x})=\sum_{\pi \in S_{y m(n)}} \prod_{i=1}^{n} x_{i, \pi(i)}$ is in VNP.(Complete for VNP). Also, complete for \#P

Arithmetic Complexity Classes

- VP(Arth-P/poly): Family of polynomials that can be computed by poly(n) size circuits and poly(n) degree.
- Example $\operatorname{det}_{n}(\bar{x})=\sum_{\pi \in \operatorname{Sym}(n)} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}$ is in VP
- VNP: Arithmetic equivalent of NP. $\left\{f_{n}\right\}_{n}$ in VNP if

$$
f_{n}(x)=\sum_{w \in\{0,1\}(t n)} g_{n+t(n)}(x, w)
$$

- Example $\operatorname{per}_{n}(\bar{x})=\sum_{\pi \in \operatorname{Sym}(n)} \prod_{i=1}^{n} x_{i, \pi(i)}$ is in VNP.(Complete for VNP). Also, complete for \#P.

Polynomial Hierarchy

- $\Sigma_{0}:=P, \Sigma_{1}:=N P, \Sigma_{2}:=N P^{\Sigma_{1}}, \ldots$
- $L \in \Sigma_{2}$ iff \exists poly time TM N st. $\forall x, x \in L$ iff $\exists y_{1} \forall y_{2} N\left(x, y_{1}, y_{2}\right)=1$
- Σ_{3} will be $\exists y_{1} \forall y_{2} \exists y_{3}$, and so on
- Similar exists with Π_{i} with coNP
- $P H=\cup_{i} \Sigma_{i}$
- $P H \subseteq P^{\text {per }}$ (Toda's theorem)

Interactive Protocols

- Replace \forall with "For most" (\mathcal{M}).
- My $N(y)=1$ iff $\operatorname{Pr}_{y}[N(y)=1] \geq 3 / 4$
- $M A[k] \exists y_{1} \mathcal{M} y_{2} \exists y_{3} \ldots N\left(x, y_{1}, y_{2}, \ldots, y_{k}\right)=1$
- $A M[1]=B P P, M A[1]=N P$. MA usually refers to $M A[2]$
- $I P=\cup_{c>0} A M\left[n^{c}\right]=P S P A C E$

Structure

- Preliminaries: Arithmetic circuits, PIT, PRGs
- Lemma 1
$P I T \in P$ and per \in Arth $-P /$ poly $\Longrightarrow P^{p e r} \subseteq N P$.
- Lemma $2 E X P \subseteq P /$ poly $\Longrightarrow E X P=M A$
- Lemma 3 NEXP $\in P /$ poly $\Longrightarrow N E X P=E X P$.
- Proof of Theorem: Combining to get the main theorem.
- Conclusion: Implications and Future Scope

Lemma 1

Lemma
$P I T \in P$ and per \in Arth $-P /$ poly $\Longrightarrow P^{\text {per }} \subseteq N P$.

Proof Idea

- "Guess" the small circuit for permanent and verify it using $P I T \in P$.
- $\operatorname{per}_{n}(A)=\sum_{i \in[n]} A_{1 i} \cdot \operatorname{per}\left(A_{1 i}^{\prime}\right)$ where $A_{1 i}^{\prime}$ is the corresponding minor.
- Let C_{n} be arithmetic circuit corresponding to the per_{n}.
- Protocol for obtaining the circuit.

1. Given C_{n-1}, we guess the circuit for C_{n} as follows:

$$
C_{n}(A)=\sum_{i \in[n]} A_{1 i} \cdot C_{n-1}\left(A_{1 i}^{\prime}\right) \ldots \ldots(1)
$$

2. Use PIT for verifying whether the above expression is correct or not.
3. Repeat it for circuits C_{n-1} which we used for minors and so on.

- Using this recursive guess and verify procedure, we can get a circuit $C_{n}(A)=\operatorname{per}_{n}(A)$ by induction on n.
- Now we show $P^{p e r} \subseteq N P$
- Let $L \in P^{p e r}$.

Guess C_{n} for per $_{n}$ using the recursive procedure. Use this circuit C_{n} for per $_{n}$ instead of the oracle

- $P I T \in P$, implies the entire verification is in P.
- per \in Arth $-P /$ poly, implies the guess that our machine need to do is poly-sized.
- This gives $L \in N P \Longrightarrow P^{\text {per }} \subseteq N P$

Lemma 2

Lemma
$E X P \subseteq P /$ poly $\Longrightarrow E X P=M A$
Proof Idea First show $E X P \subseteq P /$ poly $\Longrightarrow E X P=\Sigma_{2}$.

- Consider $L \in E X P$, with TM N. Encode steps of N Using the circuit and $\exists \forall$
- Compute j-th bit of i-th configuration of $N(x)$ in exp-time $\Longrightarrow \exists$ poly-size $C(x, i, j)$ computing it.
- $x \in L \Longleftrightarrow \exists C, \forall(i, j)[C(x, i, j) \rightarrow C(x, i+1, j)$ is a valid step].
- Thus, $\operatorname{EXP}=\Sigma_{2}$

Lemma 2

Lemma
$E X P \subseteq P /$ poly $\Longrightarrow E X P=M A$

Proof Idea contd.

- $\Sigma_{2} \subseteq P S P A C E=I P \subseteq E X P=\Sigma_{2}$, i.e. $P S P A C E=I P=E X P \subseteq P /$ poly .
- We have a IP protocol for L. We convert it one round.
- Prover in IP is a PSPACE machine, simulate using a poly-size circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$
- 1-round protocol for checking $x \in L$:

Prover: Send his circuit C_{n}, for $n=|x|$.
Verifier: Simulate the IP protocol using C_{n} as P.

- Thus, $E X P=M A$

Lemma 3

Lemma

$N E X P \subseteq P /$ poly $\Longrightarrow N E X P=E X P$

Proof Idea

- Assume $\exists L \in N E X P \backslash E X P$, st. $\exists c>0$ and machine $R(x, y)$ running in $\exp \left(|x|^{10 c}\right)$

$$
x \in L \Longleftrightarrow \exists y \in\{0,1\}^{\exp \left(|x|^{c}\right)} R(x, y)=1
$$

- y is hard for EXP. What is its circuit complexity? We use it to compute hard-function

Lemma 3

Lemma
$N E X P \subseteq P /$ poly $\Longrightarrow N E X P=E X P$
Proof Idea contd.
Consider the machine $M_{D}, \forall D>0$ as follows:

- construct $t t$ of all circuits of size $n^{100 D}$, with n^{c} input.
- if $\exists C, R(x, t t)=1$ ACCEPT, else REJECT

Running Time: $\exp \left(n^{100 D}+n^{10 c}\right)$

Lemma 3

Lemma
NEXP $\subseteq P /$ poly \Longrightarrow NEXP $=$ EXP

Proof Idea contd.

- $L \notin E X P \Longrightarrow M_{D}$ cannot solve L
- Therefore, for infinitely many x 's, y is such that $H_{\text {wrs }}\left(f_{y}\right)>n^{100 D}$.
- Using $N W$ design we have a I^{D} prg.

Lemma 3

Lemma
$N E X P \subseteq P /$ poly $\Longrightarrow N E X P=E X P$
Proof Idea contd.

- EXP $\subset N E X P \subseteq P /$ poly. So from lemma 2, we have an $\mathrm{EXP}=\mathrm{MA}$
- $\forall L \in E X P$, Prover tries to show that $x \in L$ by sending a short proof to Verifier.
- Verifier verifies it, using a randomized algo in say n^{D} steps.
- Using the I^{D} prg, we can reduce the number of random bits from n^{D} to n for Verifier.

Lemma 3

Lemma

$N E X P \subseteq P /$ poly $\Longrightarrow N E X P=E X P$

Proof Idea contd.

- If we have n as the input length of some string which is "hard" for the tt circuits, we can replace the Verifier by a non-deterministic algorithm in poly $\left(n^{d}\right) 2^{n^{c}}$ time that does not toss any random coins by using the prg obtained before (the $2^{n^{c}}$ factor is for calculating the n random bits deterministically)
- This gives $L \in$ NTIME ($2^{n^{c}}$) "infinitely often" with n-bit advice. Thus, EXP \subseteq NTIME ($\left.2^{n^{c}}\right)$ "infinitely often" with n-bit advice
- But NEXP $\subseteq P /$ poly. Thus we have NTIME $\left(2^{n^{c^{\prime}}}\right)$ $\subseteq \operatorname{SIZE}\left(n^{c^{\prime}}\right)$ for a constant c^{\prime}. So $E X P \subseteq \operatorname{SIZE}\left(n^{c^{\prime}}\right)$ infinitely often.

Lemma 3

Lemma
$N E X P \subseteq P /$ poly \Longrightarrow NEXP $=E X P$

Proof Idea contd.

- \exists c' such that every language in EXP can be decided on infinitely many inputs by a circuit family of size $n+n^{c^{\prime}}$. Yet this can be ruled out using elementary diagonalization.
- Set of all circuits of size $n^{c^{\prime}}$ has size $2^{n^{n^{\prime}}}$. Evaluate all circuits in the set on all $\alpha_{1} \ldots \alpha_{2^{n}} n$-bit strings.
- Assume majority circuits compute b_{i} on α_{i}. Remove all these circuits. The set becomes empty at $i \leq n^{c^{\prime}+1}$.
- Complement of $b_{1} \ldots b_{2^{n}}$ is the truth table for the function that cannot be computed by a circuit of size $n^{c^{\prime}}$.

Proof of Theorem

Theorem

$$
P I T \in P \Longrightarrow \text { per } \notin \text { Arth - P/poly or NEXP } \nsubseteq P / \text { poly }
$$

- Suppose PIT $\in P$, per \in Arth $-P /$ poly and $N E X P \subseteq P / p o l y$.
- From lemmas 2 and $3, N E X P=E X P=M A \subseteq P H$.
- Also, $P H \subseteq P^{\text {per }}$ (Toda's theorem)
- So $N E X P \subseteq P^{p e r}$
- Now as we have PIT $\in P$ and per \in Arth $-P /$ poly, using lemma 1, we get $P^{\text {per }} \subseteq N P$
- Combining these two, we get $N E X P \subseteq N P$, which contradicts the non-deterministic time hierarchy theorem. Thus, at least one of the assumptions is false, which gives:

$$
P I T \in P \Longrightarrow \text { per } \notin \text { Arth }-P / \text { poly or NEXP } \nsubseteq P / \text { poly }
$$

Open Problems

- $B P P=P$, PIT $\in P$, per \notin Arth $-P /$ poly and NEXP $\nsubseteq P /$ poly. (we believe all of these to be true)
- Does BPP=P imply circuit lower bounds for EXP (instead of NEXP)?

Questions

Questions?

References I

圊 Valentine Kabanets and Russell Impagliazzo．
Derandomizing polynomial identity tests meansproving circuit lower bounds．
ACM symposium on Theory of computing， 2003.
國 Jacob T Schwart．
Fast probabilistic algorithms for verification of polynomial identities．
Journal of the ACM（JACM）， 1980.
目 Amir Shpilka and Amir Yehudayoff．
Arithmetic circuits：A survey of recent results and open questions．
Foundations and Trends in Theoretical Computer Science：Vol．
5， 2010.

