Introduction 0000000000000000 mal L O a 2 Ler oc Proof of Theorem

Open Problems

References 0

Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds

October 18, 2023

Introduction 000000000000000 nma 1 O 2 Le

Proof of Th

of Theorem

Den Problems

References 0

Contents

Introduction

Lemma 1

Lemma 2

Lemma 3

Proof of Theorem

Open Problems

References

Theorem ([KI03])

 $PIT \in P \implies per \notin Arth - P/poly \text{ or } NEXP \nsubseteq P/poly$

Arithmetic circuits

- Representation for polynomials
- A Directed Acyclic Graph that computes a polynomial f over F and set of variables x₁,..., x_n
- Vertices of in-degree 0 labeled with variable or field element
- All other vertices(gates) labeled with + or imes
- Edges labeled with field constants (1 by default)
- Size: number of edges
- For more details on Arithmetic circuits, check [SY10]

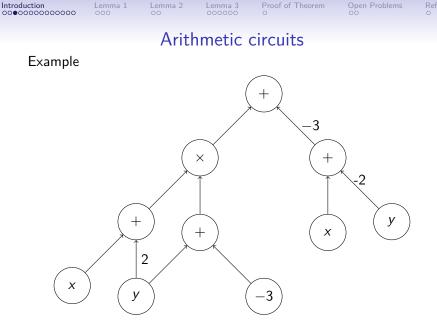


Figure: Circuit computing $xy + 2y^2$

- Efficiently test whether an input polynomial as the circuit is identically zero or not.
- For univariate, just check at *degree* + 1 points. Doesn't work for multivariate.

Randomized Solution

Lemma

(PIT Lemma)(Schwartz-Zippel[Sch80]) Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ be a non-zero polynomial of total degree $d \ge 0$. Let S be any finite subset of \mathbb{F} , and let $\alpha_1, \ldots, \alpha_n$ be elements selected independently, uniformly and randomly from S. Then,

$$Pr_{\alpha_1,\ldots,\alpha_n\in S^n}[f(\alpha_1,\ldots,\alpha_n)=0]\leq rac{d}{|S|}$$

Randomized Solution

Lemma

(PIT Lemma)(Schwartz-Zippel[Sch80]) Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ be a non-zero polynomial of total degree $d \ge 0$. Let S be any finite subset of \mathbb{F} , and let $\alpha_1, \ldots, \alpha_n$ be elements selected independently, uniformly and randomly from S. Then,

$$Pr_{\alpha_1,\ldots,\alpha_n\in S^n}[f(\alpha_1,\ldots,\alpha_n)=0]\leq rac{d}{|S|}$$

- Thus $PIT \in coRP$
- Open: Derandomizing PIT in poly(s)-time

Pseudorandomness Generators(PRGs)

- Decrease the number of random bits required.
- For $S : \mathbb{N} \to \mathbb{N}$, a $2^{O(n)}$ -computable function $G : \{0,1\}^* \to \{0,1\}^*$ is an S - prg, if $\forall I$, $G : \{0,1\}^I \to \{0,1\}^{S(I)}$, and \forall circuits C of size $\leq S(I)^3$

$$|Pr_{x \in U_{l}}[C(G(x)) = 1] - Pr_{x \in U_{S(l)}}[C(x) = 1]| < 0.1$$

Pseudorandomness Generators(PRGs)

- Decrease the number of random bits required.
- For $S : \mathbb{N} \to \mathbb{N}$, a $2^{O(n)}$ -computable function $G : \{0,1\}^* \to \{0,1\}^*$ is an S - prg, if $\forall I$, $G : \{0,1\}^I \to \{0,1\}^{S(I)}$, and \forall circuits C of size $\leq S(I)^3$

$$|Pr_{x \in U_{l}}[C(G(x)) = 1] - Pr_{x \in U_{S(l)}}[C(x) = 1]| < 0.1$$

 $BP - TIME(S(I(n))) \subseteq DTIME(2^{I(n)}S(I(n)))$

• A $2^{\epsilon l}$ -prg \implies BPP=P

Introduction

• Worst-case Hardness For $f : \{0,1\}^* \to \{0,1\}$, $H_{wrs}(f)$ is the largest S(n) st. \forall circuit $C_n \in size(S(n))$,

$$Pr_{x\in U_n}[C_n(x)=f(x)]<1$$

Average-case Hardness H_{avg}(f) is the largest S(n) st. ∀ circuit C_n ∈ size(S(n)),

$$Pr_{x \in U_n}[C_n(x) = f(x)] < \frac{1}{2} + \frac{1}{S(n)}$$

• Can be shown that a worst-case hard function gives also an average-case hard function.

Theorem If $\exists f \in E$ with $H_{avg} \geq S(n)$, then $\exists S'(I)$ -prg, where $S'(I) = S(n)^{0.01}$.

Arithmetic Complexity Classes

- **VP**(Arth-P/poly): Family of polynomials that can be computed by *poly*(*n*) size circuits and *poly*(*n*) degree.
- Example $det_n(\bar{x}) = \sum_{\pi \in Sym(n)} sgn(\pi) \prod_{i=1}^n x_{i,\pi(i)}$ is in VP
- **VNP**: Arithmetic equivalent of NP. $\{f_n\}_n$ in VNP if

$$f_n(x) = \sum_{w \in \{0,1\}^{t(n)}} g_{n+t(n)}(x,w)$$

 Example per_n(x̄) = ∑_{π∈Sym(n)} ∏ⁿ_{i=1} x_{i,π(i)} is in VNP.(Complete for VNP). Also, complete for #P.

Arithmetic Complexity Classes

- **VP**(Arth-P/poly): Family of polynomials that can be computed by *poly*(*n*) size circuits and *poly*(*n*) degree.
- Example $det_n(\bar{x}) = \sum_{\pi \in Sym(n)} sgn(\pi) \prod_{i=1}^n x_{i,\pi(i)}$ is in VP
- **VNP**: Arithmetic equivalent of NP. $\{f_n\}_n$ in VNP if

$$f_n(x) = \sum_{w \in \{0,1\}^{t(n)}} g_{n+t(n)}(x,w)$$

Example per_n(x̄) = ∑_{π∈Sym(n)} ∏ⁿ_{i=1} x_{i,π(i)} is in VNP.(Complete for VNP). Also, complete for #P.

Polynomial Hierarchy

•
$$\Sigma_0 := P$$
, $\Sigma_1 := NP$, $\Sigma_2 := NP^{\Sigma_1}$,...

- $L \in \Sigma_2$ iff \exists poly time TM N st. $\forall x, x \in L$ iff $\exists y_1 \forall y_2 N(x, y_1, y_2) = 1$
- Σ_3 will be $\exists y_1 \forall y_2 \exists y_3$, and so on
- Similar exists with Π_i with coNP
- $PH = \cup_i \Sigma_i$
- *PH* ⊆ *P^{per}* (Toda's theorem)

Interactive Protocols

- Replace \forall with "For most"(\mathcal{M}).
- $My \ N(y) = 1 \text{ iff } Pr_y[N(y) = 1] \ge 3/4$
- $MA[k] \exists y_1 \mathcal{M} y_2 \exists y_3 \dots N(x, y_1, y_2, \dots, y_k) = 1$
- AM[1] = BPP, MA[1] = NP. MA usually refers to MA[2]

•
$$IP = \bigcup_{c>0} AM[n^c] = PSPACE$$

• **Preliminaries:** Arithmetic circuits, PIT, PRGs

Lemma 2 EXP ⊆ P/poly ⇒ EXP = MA
Lemma 3 NEXP ∈ P/poly ⇒ NEXP = EXP.

Conclusion: Implications and Future Scope

 $PIT \in P$ and $per \in Arth - P/poly \implies P^{per} \subseteq NP$.

Proof of Theorem: Combining to get the main theorem.

Lemma 1

Lemma

$PIT \in P \text{ and } per \in Arth - P/poly \implies P^{per} \subseteq NP.$

Proof Idea

- "Guess" the small circuit for permanent and verify it using $PIT \in P$.
- per_n(A) = ∑_{i∈[n]} A_{1i}.per(A'_{1i}) where A'_{1i} is the corresponding minor.

Introduction	Lemma 1	Lemma 2	Lemma 3	Proof of Theorem	Open Problems	References
000000000000000	○●○	00	000000	O		O

- Let C_n be arithmetic circuit corresponding to the per_n .
- Protocol for obtaining the circuit.
 - 1. Given C_{n-1} , we guess the circuit for C_n as follows:

$$C_n(A) = \sum_{i \in [n]} A_{1i}.C_{n-1}(A'_{1i}).\ldots.(1)$$

- 2. Use PIT for verifying whether the above expression is correct or not.
- 3. Repeat it for circuits C_{n-1} which we used for minors and so on.
- Using this recursive guess and verify procedure, we can get a circuit $C_n(A) = per_n(A)$ by induction on n.

Introduction	Lemma 1	Lemma 2	Lemma 3	Proof of Theorem	Open Problems	References
00000000000000	00●	00	000000	O	00	O

- Now we show $P^{per} \subseteq NP$
- Let $L \in P^{per}$.

Guess C_n for per_n using the recursive procedure. Use this circuit C_n for per_n instead of the oracle

- $PIT \in P$, implies the entire verification is in P.
- per ∈ Arth − P/poly, implies the guess that our machine need to do is poly-sized.
- This gives $L \in NP \implies P^{per} \subseteq NP$

Lemma $EXP \subseteq P/poly \implies EXP = MA$

Proof Idea First show $EXP \subseteq P/poly \implies EXP = \Sigma_2$.

- Consider L ∈ EXP, with TM N. Encode steps of N Using the circuit and ∃∀
- Compute *j*-th bit of *i*-th configuration of N(x) in exp-time $\implies \exists$ poly-size C(x, i, j) computing it.
- $x \in L \iff \exists C, \forall (i,j)[C(x,i,j) \rightarrow C(x,i+1,j) \text{ is a valid step }].$
- Thus, $EXP = \Sigma_2$

 $EXP \subseteq P/poly \implies EXP = MA$

- $\Sigma_2 \subseteq PSPACE = IP \subseteq EXP = \Sigma_2$, i.e. $PSPACE = IP = EXP \subseteq P/poly$.
- We have a IP protocol for L. We convert it one round.
- Prover in IP is a PSPACE machine, simulate using a poly-size circuit family {C_n}_{n∈ℕ}
- 1-round protocol for checking x ∈ L:
 Prover: Send his circuit C_n, for n = |x|.
 Verifier: Simulate the IP protocol using C_n as P.
- Thus, EXP = MA

Lemma $NEXP \subseteq P/poly \implies NEXP = EXP$ **Proof Idea**

• Assume $\exists L \in NEXP \setminus EXP$, st. $\exists c > 0$ and machine R(x, y) running in $exp(|x|^{10c})$

$$x \in L \iff \exists y \in \{0,1\}^{exp(|x|^c)} R(x,y) = 1$$

• *y* is hard for *EXP*. What is its circuit complexity? We use it to compute hard-function

Lemma

$NEXP \subseteq P/poly \implies NEXP = EXP$

Proof Idea contd.

Consider the machine M_D , $\forall D > 0$ as follows:

- construct tt of all circuits of size n^{100D} , with n^c input.
- if $\exists C, R(x, tt) = 1$ ACCEPT, else REJECT

Running Time: $exp(n^{100D} + n^{10c})$

$NEXP \subseteq P/poly \implies NEXP = EXP$

- $L \notin EXP \implies M_D$ cannot solve L
- Therefore, for infinitely many x's, y is such that $H_{wrs}(f_y) > n^{100D}$.
- Using *NW* design we have a *I^D* prg.

Lemma $NEXP \subseteq P/poly \implies NEXP = EXP$

- $EXP \subset NEXP \subseteq P/poly$. So from lemma 2, we have an EXP=MA
- ∀L ∈ EXP, Prover tries to show that x ∈ L by sending a short proof to Verifier.
- Verifier verifies it, using a randomized algo in say n^D steps.
- Using the I^D prg, we can reduce the number of random bits from n^D to n for Verifier.

Lemma $NEXP \subseteq P/poly \implies NEXP = EXP$

- If we have n as the input length of some string which is "hard" for the tt circuits, we can replace the Verifier by a non-deterministic algorithm in $poly(n^d)2^{n^c}$ time that does not toss any random coins by using the prg obtained before (the 2^{n^c} factor is for calculating the n random bits deterministically)
- This gives $L \in NTIME(2^{n^c})$ "infinitely often" with n-bit advice. Thus, $EXP \subseteq NTIME(2^{n^c})$ "infinitely often" with n-bit advice
- But NEXP ⊆ P/poly. Thus we have NTIME (2^{n^{c'}})
 ⊆ SIZE(n^{c'}) for a constant c'. So EXP ⊆ SIZE(n^{c'}) infinitely often.

 $\textit{NEXP} \subseteq \textit{P/poly} \implies \textit{NEXP} = \textit{EXP}$

- ∃ c' such that every language in EXP can be decided on infinitely many inputs by a circuit family of size n + n^{c'}. Yet this can be ruled out using elementary diagonalization.
- Set of all circuits of size n^{c'} has size 2^{n^{c'}}. Evaluate all circuits in the set on all α₁...α_{2ⁿ} n-bit strings.
- Assume majority circuits compute b_i on α_i. Remove all these circuits. The set becomes empty at i ≤ n^{c'+1}.
- Complement of $b_1 \dots b_{2^n}$ is the truth table for the function that cannot be computed by a circuit of size $n^{c'}$.

Proof of Theorem

Proof of Theorem

Theorem

 $PIT \in P \implies per \notin Arth - P/poly \text{ or } NEXP \nsubseteq P/poly$

- Suppose PIT ∈ P, per ∈ Arth P/poly and NEXP ⊆ P/poly.
- From lemmas 2 and 3, $NEXP = EXP = MA \subseteq PH$.
- Also, PH ⊆ P^{per} (Toda's theorem)
- So NEXP ⊆ P^{per}
- Now as we have PIT ∈ P and per ∈ Arth P/poly, using lemma 1, we get P^{per} ⊆ NP
- Combining these two, we get NEXP ⊆ NP, which contradicts the non-deterministic time hierarchy theorem. Thus, at least one of the assumptions is false, which gives:

 $PIT \in P \implies per \notin Arth - P/poly \text{ or } NEXP \nsubseteq P/poly$

- BPP = P, PIT ∈ P, per ∉ Arth P/poly and NEXP ⊈ P/poly.(we believe all of these to be true)
 - Does BPP=P imply circuit lower bounds for EXP (instead of NEXP)?

Questions

Questions?

References I

Valentine Kabanets and Russell Impagliazzo.

Derandomizing polynomial identity tests meansproving circuit lower bounds.

ACM symposium on Theory of computing, 2003.

Jacob T Schwart.

Fast probabilistic algorithms for verification of polynomial identities.

Journal of the ACM (JACM), 1980.

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions.

Foundations and Trends in Theoretical Computer Science: Vol. 5, 2010.