Nisan's Pseudorandom Generator for Space-Bounded Computation

Ian Mertz

University of Toronto

November 8, 2021

Pseudorandom Generators

Pseudorandom generator $G:\{0,1\}^{\ell} \rightarrow\{0,1\}^{n} \epsilon$-fools the class \mathcal{C} if for all $C \in \mathcal{C}$,

$$
\left|\operatorname{Pr}_{x \sim \mathcal{U}_{n}}^{\operatorname{Pr}}[C(x)=1]-\underset{s \sim \mathcal{U}_{\ell}}{ }[C(G(s))=1]\right| \leq \epsilon
$$

small technical note: C only gets one pass over the input

Nisan's pseudorandom generator

Main result [Nisan'90]: for any S, there is a PRG G which 2^{-S}-fools $\operatorname{SPACE}(S)$, where the seed length ℓ is $O(S \log n)$.

Additionally, G can be computed in space $O(\ell)$.
(note that $S=o(\log n)$ isn't very interesting)

Nisan's pseudorandom generator

Main result [Nisan'90]: for any S, there is a PRG G which 2^{-S}-fools $\operatorname{SPACE}(S)$, where the seed length ℓ is $O(S \log n)$.

This means we can fool logspace machines using $O\left(\log ^{2} n\right)$ random bits, aka $B P L \subseteq L^{2}$.
(BPL: two-sided error)

Nisan's pseudorandom generator

Main result [Nisan'90]: for any S, there is a PRG G which 2^{-S}-fools $\operatorname{SPACE}(S)$, where the seed length ℓ is $O(S \log n)$.

Savich's theorem: $\operatorname{SPACE}\left(S^{2}\right) \supseteq \operatorname{NSPACE}(S)$
($\supseteq \operatorname{RSPACE}(S):$ one-sided error)

Advantages:

1) we get BPSPACE(S)
2) gives us a black-box strategy.

Prelims: universal hash family

Hash family $\mathcal{H} \subseteq\left\{h:\{0,1\}^{m} \rightarrow\{0,1\}^{m}\right\}$.

One nice property: for all $x, y \in\{0,1\}^{m}, \operatorname{Pr}_{h \sim \mathcal{H}}[h(x)=y]=2^{-m}$

Pairwise independence: for all $x_{1} \neq x_{2}, y_{1}, y_{2} \in\{0,1\}^{m}$,
$\operatorname{Pr}_{h \sim \mathcal{H}}\left[h\left(x_{1}\right)=y_{1} \wedge h\left(x_{2}\right)=y_{2}\right]=2^{-2 m}$

Prelims: universal hash family

side note: can actually get a pairwise independent hash family with description length $2 m$!

If we just wanted nice property, could pick XOR mask:
$h_{a}(x)=(x \oplus a)$.

Can instead pick $h_{a, b}(x)=(a * x) \oplus b$ (where $(a * x)_{j}=\sum_{i} a_{i+j} \bmod m \cdot x_{i} \bmod 2$ is the convolution operation).

Prelims: easier view of $\operatorname{SPACE}(S)$

Distinguisher Q : move from space S to a DFA with 2^{S} states (one for each setting of the work tape).

Our PRG will output n blocks of m bits, so we'll let each state of Q have 2^{m} transitions (aka we'll let it read the whole block at once).

Our goal will be to approximate M^{n}, where M is the transition matrix defined by $M[i, j]=\operatorname{Pr}_{x \sim\{0,1\}^{m}}\left[i \rightarrow_{x} j\right]$ for each $i, j \in\left[2^{S}\right]$.

Taking two steps

Main idea: can approximate two steps, aka $\operatorname{Pr}_{x_{1}, x_{2}}\left[i \rightarrow_{x_{1}, x_{2}} j\right]$, by using $h\left(x_{1}\right)$ in place of x_{2}.

Define M_{h} by $M_{h}[i, j]=\operatorname{Pr}_{x}\left[i \rightarrow_{x, h(x)} j\right]$, will show $M_{h} \approx_{\epsilon} M^{2}$.

After that it's just going to be a matter of iterating $\log n$ times.

Taking two steps

Fix $i, j \in\left[2^{S}\right]$, and for $p \in\left[2^{S}\right]$ let $A_{i p}:=\left\{x \in\{0,1\}^{m}: i \rightarrow_{x} p\right\}$ and $B_{p j}:=\left\{x \in\{0,1\}^{m}: p \rightarrow_{x} j\right\}$.

$$
\begin{aligned}
\left|M_{h}[i, j]-M^{2}[i, j]\right|= & \left|\operatorname{Pr}_{x}\left[i \rightarrow_{x, h(x)} j\right]-\underset{x_{1}, x_{2}}{\operatorname{Pr}}\left[i \rightarrow_{x_{1}, x_{2}} j\right]\right| \\
= & \sum_{p} \mid \underset{x}{\operatorname{Pr}}\left[i \rightarrow_{x} p \wedge p \rightarrow_{h(x)} j\right]- \\
& \operatorname{Pr}_{x_{1}, x_{2}}\left[i \rightarrow_{x_{1}} p \wedge p \rightarrow_{x_{2}} j\right] \mid \\
= & \sum_{p}\left|\operatorname{Pr}_{x}\left[x \in A_{i p} \wedge h(x) \in B_{p j}\right]-\frac{\left|A_{i p}\right|}{2^{m}} \cdot \frac{\left|B_{p j}\right|}{2^{m}}\right|
\end{aligned}
$$

Mixing Lemma

Let $A, B \subseteq\{0,1\}^{m}$. We say h is δ-independent for (A, B) if
$\left|\operatorname{Pr}_{x}[x \in A \wedge h(x) \in B]-\frac{|A|}{2^{m}} \cdot \frac{|B|}{2^{m}}\right| \leq \delta$.

Main lemma: for any $A, B, \operatorname{Pr}_{h}[h$ is not δ-independent for $(A, B)]<\frac{1}{2^{m} \delta^{2}}$.

If true, then for a random $h,\left|M_{h}[i, j]-M^{2}[i, j]\right| \leq \frac{\epsilon}{2^{2 S}}$ except with probability $\frac{2^{6 S}}{2^{m} \epsilon^{2}}\left(\right.$ set $\delta:=\epsilon / 2^{3 S}$, sum over all $\left.p \in\left[2^{S}\right]\right)$.
...which implies M_{h} and M^{2} are ϵ-close in total distance (sum over all $i, j \in\left[2^{S}\right]$) except w.p. $\frac{2^{6 S}}{2^{m} \epsilon^{2}}$.

Proof of mixing lemma

Main lemma: $\underset{h}{\operatorname{Pr}}[h$ is not δ-independent for $(A, B)]<\frac{1}{2^{m} \delta^{2}}$.

Define $C:=\frac{1}{2^{m}}|\{x \in A: h(x) \in B\}|$. Then
$\mathbb{E}_{h}[C]=\frac{1}{2^{m}} \sum_{x \in A} \operatorname{Pr}_{h}[h(x) \in B]$
$=\frac{1}{2^{m}} \sum_{x \in A} \frac{|B|}{2^{m}}$
$=\frac{|A|}{2^{m}} \cdot \frac{|B|}{2^{m}}<1$
fact: $\operatorname{Var}_{h}\left[2^{m} \cdot C\right]<\mathbb{E}_{h}\left[2^{m} C\right]$, and so $\operatorname{Var}_{h}[C]<\frac{1}{2^{m}} \mathbb{E}_{h}[C]<\frac{1}{2^{m}}$

Chebyshev: $\operatorname{Pr}\left[\left|C-\frac{|A|}{2^{m}} \cdot \frac{|B|}{2^{m}}\right|>\delta\right]<\frac{\operatorname{Var}_{n}[C]}{\delta^{2}}<\frac{1}{2^{m} \delta^{2}}$

Iterating

Recap: M_{h} and M^{2} are ϵ-close in total distance except with probability $\frac{2^{65}}{2^{m} \epsilon^{2}}$ over the choice of h_{i}.

Taking two steps: $(x, h(x))$ was almost as good as $\left(x_{1}, x_{2}\right)$.

Taking four steps: $\left(\left(x, h_{1}(x)\right),\left(h_{2}(x), h_{2}\left(h_{1}(x)\right)\right)\right)$ should be almost as good as $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.

Proof omitted, but the point is that for each new h_{i} we double our length and only (roughly) double our ϵ price in closeness, plus an additive $\frac{2^{65}}{2^{m} \epsilon^{2}}$ in the potential error of the new h_{i}.

Defining Nisan's PRG

Seed will be $x \in\{0,1\}^{m}, h_{1}, h_{2} \ldots h_{\log n}$, length is $m+2 m \cdot \log n=O(m \log n)$.

$$
G_{0}(x):=x
$$

$$
G_{k}\left(x, h_{1} \ldots h_{k}\right):=G_{k-1}\left(x, h_{1} \ldots h_{k-1}\right) \circ G_{k-1}\left(h_{k}(x), h_{1} \ldots h_{k-1}\right)
$$

Constraints:
$-\left|M^{n}-M_{h_{1} \ldots h_{\log } \mid}\right| \leq \epsilon \cdot(n-1) \leq 2^{-S}$
$-\frac{2^{6 S} \cdot \log n}{2^{m} \cdot \epsilon^{2}} \leq 2^{-S}$

Fix $\epsilon:=\frac{2^{-S}}{(n-1)}$, end up with $m:=9 S+2 \log (n-1)=O(S)$.

More passes?

Note that we only allow one pass over the random tape (most reasonable definition for space-bounded complexity classes).
$R L[k], B P L[k]$: allow k passes $\left(R^{*} L, B P^{*} L\right.$: unlimited)

Need to be careful, $B P^{*} L$ can equal $P S P A C E$ if we don't restrict the runtime, and is not known to be in P even if we do...

More error buys two passes

Claim [David-Papakonstantinou-Sidiropoulos'10]: any PRG G which ϵ-fools $\operatorname{SPACE}(2 S)$ also $\epsilon \cdot 2^{2 S}$-fools $\operatorname{SPACE}(S)$ with two passes.

Note that we could've picked $\epsilon \geq 2^{-C S}$ for no real cost

We could even pick $2^{-C S^{k}}$ if we let $m=(C+1) S^{k}$, so if we are ok with seed length $O\left(\log ^{O(1)} n\right)$, we can fool $O\left(\log ^{O(1)} n\right)$ space even with $O\left(\log { }^{O(1)} n\right)$ passes (iterate $O(\log \log n)$ times).

More error buys two passes

Claim [David-Papakonstantinou-Sidiropoulos'10]: any PRG G which ϵ-fools $\operatorname{SPACE}(2 S)$ also $\epsilon \cdot 2^{2 S}$-fools $\operatorname{SPACE}(S)$ with two passes.

Assume otherwise, so FSM Q with 2^{S} states has $\left|\operatorname{Pr}_{s \sim \mathcal{U}_{l}}\left[Q\left(G^{2}(s)\right)=1\right]-\operatorname{Pr}_{x \sim \mathcal{U}_{n}}\left[Q\left(x^{2}\right)=1\right]\right|>\epsilon \cdot 2^{2 S}$.

Define $p_{i, j}=\operatorname{Pr}_{s}\left[1 \rightarrow_{G(s)} i \wedge i \rightarrow_{G(s)} j\right]$ and $q_{i, j}=\operatorname{Pr}_{x}\left[1 \rightarrow_{x} i \wedge i \rightarrow_{x} j\right]$.
$\sum_{i, j}\left|p_{i, j}-q_{i, j}\right| \geq\left|\operatorname{Pr}_{s \sim \mathcal{U}_{\ell}}\left[Q\left(G^{2}(s)\right)=1\right]-\operatorname{Pr}_{x \sim \mathcal{U}_{n}}\left[Q\left(x^{2}\right)=1\right]\right|>\epsilon \cdot 2^{2 S}$
and so there exist $i^{*}, j^{*} \in\left[2^{S}\right]$ such that $\left|p_{i^{*}, j^{*}}-q_{i^{*}, j^{*}}\right|>\epsilon$.

More error buys two passes

Claim [David-Papakonstantinou-Sidiropoulos'10]: any PRG G which ϵ-fools $\operatorname{SPACE}(2 S)$ also $\epsilon \cdot 2^{2 S}$-fools $\operatorname{SPACE}(S)$ with two passes.

New machine Q^{\prime} to break G in a single pass with probability at least ϵ :
$2^{2 S}$ states (i, j) such that $(i, j) \rightarrow_{x}\left(i^{\prime}, j^{\prime}\right)$ iff $i \rightarrow_{x} i^{\prime} \wedge j \rightarrow_{x} j^{\prime}$.
Start state $\left(1, i^{*}\right)$, accept state $\left(i^{*}, j^{*}\right)$.

$$
\left|\operatorname{Pr}_{s \sim \mathcal{U}_{\ell}}\left[Q^{\prime}(G(s))=1\right]-\operatorname{Pr}_{x \sim \mathcal{U}_{n}}\left[Q^{\prime}(x)=1\right]\right|=\left|p_{i^{*}, j^{*}}-q_{i^{*}, j^{*}}\right|>\epsilon
$$

Even more passes

Claim [David-Papakonstantinou-Sidiropoulos'10]: for $S=\log n$, Nisan's PRG can be broken in logspace if given $n^{O(1)}$ passes, even for $m=2^{O(\sqrt{\log n})}$.

No longer true of every PRG, but I believe it is true of every known PRG against logspace (since they're all modifications of Nisan's PRG).

In fact, only need that h_{1} is affine (might not be hard to guess how we break it now...)

They make a claim in their paper that if you could fool Q with an arbitrary number of passes, then $L \subsetneq N P$, but we couldn't figure out why that's true.

Even more passes

Claim [David-Papakonstantinou-Sidiropoulos'10]: for $S=\log n$, Nisan's PRG can be broken in logspace if given $n^{O(1)}$ passes, even for $m=2^{O(\sqrt{\log n})}$.

Treat the blocks as $\left(y_{1} \ldots y_{n / 2}\right),\left(z_{1} \ldots z_{n / 2}\right)$, where either all z_{i} s are uniform or each z_{i} is $h_{1}\left(y_{i}\right)$.
$h_{1}(x)=f_{1}(x)+b_{1}$ where f_{1} is a linear function (no constant terms). Thus if $y_{i_{1}} \ldots y_{i_{t}}$ are linearly dependent and t is even,

$$
\sum_{j} h_{1}\left(y_{i_{j}}\right)=\sum_{j} f_{1}\left(y_{i_{j}}\right)+t \cdot b_{1}=f_{1}\left(\sum_{j} y_{i_{j}}\right)=f_{1}(0)=0
$$

In other words, if we knew dependent $y_{i_{1}} \ldots y_{i_{t}}$, we can simply test if $\sum_{j} z_{i j}=0$.

Even more passes

Claim [David-Papakonstantinou-Sidiropoulos'10]: for $S=\log n$, Nisan's PRG can be broken in logspace if given $n^{O(1)}$ passes, even for $m=2^{O(\sqrt{\log n})}$.
[Mulmuley'87]: finding a set of linearly dependent m-dimensional vectors can be done in $N C^{2} \subseteq \operatorname{SPACE}\left(\log ^{2} m\right) \cap \operatorname{TIME}\left(m^{O(1)}\right)$.
$m \leq 2^{O(\sqrt{\log n})}<n / 2-1$, and so a dependency exists and finding it only takes space S. The time to find the dependency and add up all the corresponding $z_{i} s$ is at most $m^{O(1)}<n$.

Even more passes

Claim [David-Papakonstantinou-Sidiropoulos'10]: for $S=\log n$, Nisan's PRG can be broken in logspace if given $n^{O(1)}$ passes, even for $m=2^{O(\sqrt{\log n})}$.

Technicalities:

- ensuring the connection has even size: find a dependency in $\left(y_{1} \ldots y_{n / 4}\right)$ and a dependency in $\left(y_{n / 4+1} \ldots y_{n / 2}\right)$, if either is an even size collection then test that one, otherwise test the union.
- none of the vectors $y_{1} \ldots y_{n / 2}$ are the all-zeroes vector with exponentially large probability
- in the case of random $z_{1} \ldots z_{n / 2}, \sum_{j} z_{i_{j}} \neq 0$ with exponentially large probability

Open problems

Logarithmic seed length!

Resistance to more passes!

