
Nisan’s Pseudorandom Generator for
Space-Bounded Computation

Ian Mertz

University of Toronto

November 8, 2021

Pseudorandom Generators

Pseudorandom generator G : {0, 1}` → {0, 1}n ε-fools the class C
if for all C ∈ C,

| Pr
x∼Un

[C (x) = 1]− Pr
s∼U`

[C (G (s)) = 1]| ≤ ε

small technical note: C only gets one pass over the input

Nisan’s pseudorandom generator

Main result [Nisan’90]: for any S , there is a PRG G which
2−S -fools SPACE (S), where the seed length ` is O(S log n).

Additionally, G can be computed in space O(`).

(note that S = o(log n) isn’t very interesting)

Nisan’s pseudorandom generator

Main result [Nisan’90]: for any S , there is a PRG G which
2−S -fools SPACE (S), where the seed length ` is O(S log n).

This means we can fool logspace machines using O(log2 n) random
bits, aka BPL ⊆ L2.

(BPL: two-sided error)

Nisan’s pseudorandom generator

Main result [Nisan’90]: for any S , there is a PRG G which
2−S -fools SPACE (S), where the seed length ` is O(S log n).

Savich’s theorem: SPACE (S2) ⊇ NSPACE (S)

(⊇ RSPACE (S): one-sided error)

Advantages:
1) we get BPSPACE (S)
2) gives us a black-box strategy.

Prelims: universal hash family

Hash family H ⊆ {h : {0, 1}m → {0, 1}m}.

One nice property: for all x , y ∈ {0, 1}m, Prh∼H[h(x) = y] = 2−m

Pairwise independence: for all x1 6= x2, y1, y2 ∈ {0, 1}m,
Prh∼H[h(x1) = y1 ∧ h(x2) = y2] = 2−2m

Prelims: universal hash family

side note: can actually get a pairwise independent hash family with
description length 2m!

If we just wanted nice property, could pick XOR mask:
ha(x) = (x ⊕ a).

Can instead pick ha,b(x) = (a ∗ x)⊕ b (where
(a ∗ x)j =

∑
i ai+j mod m · xi mod 2 is the convolution operation).

Prelims: easier view of SPACE (S)

Distinguisher Q: move from space S to a DFA with 2S states (one
for each setting of the work tape).

Our PRG will output n blocks of m bits, so we’ll let each state of Q
have 2m transitions (aka we’ll let it read the whole block at once).

Our goal will be to approximate Mn, where M is the transition
matrix defined by M[i , j] = Prx∼{0,1}m [i →x j] for each i , j ∈ [2S].

Taking two steps

Main idea: can approximate two steps, aka Prx1,x2 [i →x1,x2 j], by
using h(x1) in place of x2.

Define Mh by Mh[i , j] = Prx [i →x ,h(x) j], will show Mh ≈ε M2.

After that it’s just going to be a matter of iterating log n times.

Taking two steps

Fix i , j ∈ [2S], and for p ∈ [2S] let Aip := {x ∈ {0, 1}m : i →x p}
and Bpj := {x ∈ {0, 1}m : p →x j}.

|Mh[i , j]−M2[i , j]| = |Pr
x

[i →x ,h(x) j]− Pr
x1,x2

[i →x1,x2 j]|

=
∑
p

|Pr
x

[i →x p ∧ p →h(x) j]−

Prx1,x2 [i →x1 p ∧ p →x2 j]|

=
∑
p

|Pr
x

[x ∈ Aip ∧ h(x) ∈ Bpj]−
|Aip|
2m
·
|Bpj |
2m
|

Mixing Lemma

Let A,B ⊆ {0, 1}m. We say h is δ-independent for (A,B) if

|Prx [x ∈ A ∧ h(x) ∈ B]− |A|2m ·
|B|
2m | ≤ δ.

Main lemma: for any A,B, Pr
h

[h is not δ-independent for

(A,B)] < 1
2mδ2

.

If true, then for a random h, |Mh[i , j]−M2[i , j]| ≤ ε
22S

except with

probability 26S

2mε2
(set δ := ε/23S , sum over all p ∈ [2S]).

...which implies Mh and M2 are ε-close in total distance (sum over

all i , j ∈ [2S]) except w.p. 26S

2mε2
.

Proof of mixing lemma

Main lemma: Pr
h

[h is not δ-independent for (A,B)] < 1
2mδ2

.

Define C := 1
2m |{x ∈ A : h(x) ∈ B}|. Then

Eh[C] = 1
2m

∑
x∈A

Pr
h

[h(x) ∈ B]

= 1
2m

∑
x∈A

|B|
2m

= |A|
2m ·

|B|
2m < 1

fact: Varh[2m · C] < Eh[2mC], and so Varh[C] < 1
2mEh[C] < 1

2m

Chebyshev: Pr[|C − |A|2m ·
|B|
2m | > δ] < Varh[C]

δ2
< 1

2mδ2

Iterating

Recap: Mh and M2 are ε-close in total distance except with
probability 26S

2mε2
over the choice of hi .

Taking two steps: (x , h(x)) was almost as good as (x1, x2).

Taking four steps: ((x , h1(x)), (h2(x), h2(h1(x)))) should be
almost as good as (x1, x2, x3, x4).

Proof omitted, but the point is that for each new hi we double our
length and only (roughly) double our ε price in closeness, plus an

additive 26S

2mε2
in the potential error of the new hi .

Defining Nisan’s PRG

Seed will be x ∈ {0, 1}m, h1, h2 . . . hlog n, length is
m + 2m · log n = O(m log n).

G0(x) := x

Gk(x , h1 . . . hk) := Gk−1(x , h1 . . . hk−1) ◦ Gk−1(hk(x), h1 . . . hk−1)

Constraints:
- |Mn −Mh1...hlog n

| ≤ ε · (n − 1) ≤ 2−S

- 26S ·log n
2m·ε2 ≤ 2−S

Fix ε := 2−S

(n−1) , end up with m := 9S + 2 log(n − 1) = O(S).

More passes?

Note that we only allow one pass over the random tape (most
reasonable definition for space-bounded complexity classes).

RL[k],BPL[k]: allow k passes (R∗L,BP∗L: unlimited)

Need to be careful, BP∗L can equal PSPACE if we don’t restrict
the runtime, and is not known to be in P even if we do...

More error buys two passes

Claim [David-Papakonstantinou-Sidiropoulos’10]: any PRG
G which ε-fools SPACE (2S) also ε · 22S -fools SPACE (S) with
two passes.

Note that we could’ve picked ε ≥ 2−CS for no real cost

We could even pick 2−CS
k

if we let m = (C + 1)Sk , so if we are ok
with seed length O(logO(1) n), we can fool O(logO(1) n) space even
with O(logO(1) n) passes (iterate O(log log n) times).

More error buys two passes

Claim [David-Papakonstantinou-Sidiropoulos’10]: any PRG
G which ε-fools SPACE (2S) also ε · 22S -fools SPACE (S) with
two passes.

Assume otherwise, so FSM Q with 2S states has
|Prs∼U` [Q(G 2(s)) = 1]− Prx∼Un [Q(x2) = 1]| > ε · 22S .

Define pi ,j = Prs [1→G(s) i ∧ i →G(s) j] and
qi ,j = Prx [1→x i ∧ i →x j].∑
i ,j

|pi ,j − qi ,j | ≥ | Pr
s∼U`

[Q(G 2(s)) = 1]− Pr
x∼Un

[Q(x2) = 1]| > ε · 22S

and so there exist i∗, j∗ ∈ [2S] such that |pi∗,j∗ − qi∗,j∗ | > ε.

More error buys two passes

Claim [David-Papakonstantinou-Sidiropoulos’10]: any PRG
G which ε-fools SPACE (2S) also ε · 22S -fools SPACE (S) with
two passes.

New machine Q ′ to break G in a single pass with probability at
least ε:

22S states (i , j) such that (i , j)→x (i ′, j ′) iff i →x i ′ ∧ j →x j ′.

Start state (1, i∗), accept state (i∗, j∗).

| Pr
s∼U`

[Q ′(G (s)) = 1]− Pr
x∼Un

[Q ′(x) = 1]| = |pi∗,j∗ − qi∗,j∗ | > ε

Even more passes

Claim [David-Papakonstantinou-Sidiropoulos’10]: for
S = log n, Nisan’s PRG can be broken in logspace if given
nO(1) passes, even for m = 2O(

√
log n).

No longer true of every PRG, but I believe it is true of every known
PRG against logspace (since they’re all modifications of Nisan’s
PRG).

In fact, only need that h1 is affine (might not be hard to guess how
we break it now...)

They make a claim in their paper that if you could fool Q with an
arbitrary number of passes, then L (NP, but we couldn’t figure
out why that’s true.

Even more passes

Claim [David-Papakonstantinou-Sidiropoulos’10]: for
S = log n, Nisan’s PRG can be broken in logspace if given
nO(1) passes, even for m = 2O(

√
log n).

Treat the blocks as (y1 . . . yn/2), (z1 . . . zn/2), where either all zi s
are uniform or each zi is h1(yi).

h1(x) = f1(x) + b1 where f1 is a linear function (no constant
terms). Thus if yi1 . . . yit are linearly dependent and t is even,∑

j

h1(yij) =
∑
j

f1(yij) + t · b1 = f1(
∑
j

yij) = f1(0) = 0

In other words, if we knew dependent yi1 . . . yit , we can simply test
if
∑

j zij = 0.

Even more passes

Claim [David-Papakonstantinou-Sidiropoulos’10]: for
S = log n, Nisan’s PRG can be broken in logspace if given
nO(1) passes, even for m = 2O(

√
log n).

[Mulmuley’87]: finding a set of linearly dependent m-dimensional
vectors can be done in NC 2 ⊆ SPACE (log2m) ∩ TIME (mO(1)).

m ≤ 2O(
√
log n) < n/2− 1, and so a dependency exists and finding

it only takes space S . The time to find the dependency and add up
all the corresponding zi s is at most mO(1) < n.

Even more passes

Claim [David-Papakonstantinou-Sidiropoulos’10]: for
S = log n, Nisan’s PRG can be broken in logspace if given
nO(1) passes, even for m = 2O(

√
log n).

Technicalities:

- ensuring the connection has even size: find a dependency in
(y1 . . . yn/4) and a dependency in (yn/4+1 . . . yn/2), if either is an
even size collection then test that one, otherwise test the union.

- none of the vectors y1 . . . yn/2 are the all-zeroes vector with
exponentially large probability

- in the case of random z1 . . . zn/2,
∑

j zij 6= 0 with exponentially
large probability

Open problems

Logarithmic seed length!

Resistance to more passes!

