Simple Walk Primer

Lily Li

December 20, 2021

Let X_{1}, X_{2}, \ldots be a sequence of independent Rademacher random variables, i.e. $\mathbb{P}\left(X_{i}=1\right)=\mathbb{P}\left(X_{i}=\right.$ $-1)=1 / 2$, and let $S_{n}=\sum_{i=1}^{n} X_{i}$ be their partial sums. This will be our standard setting for a simple random walk.

1 Bounded Simple Walks

Theorem 1. (Kolmogorov's Maximal Inequality). For independent random variables Y_{1}, Y_{2}, \ldots such that $\mathbb{E} Y_{i}=0$ and $\operatorname{Var}\left(Y_{i}\right)<\infty$, and $T_{n}=\sum_{i=1}^{n} Y_{i}$,

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|T_{i}\right|>t\right) \leq \frac{\operatorname{Var}\left(T_{n}\right)}{t^{2}} .
$$

Note: that the bound on the RHS is identical to to Chebyshev's bound, but the inequality is much stronger since Chebyshev only bounds $\mathbb{P}\left(\left|T_{n}\right|>t\right)$ from above.

Proof. Fix some x. Let A_{k} be the event where $\left|S_{k}\right| \geq x$ but $\left|S_{j}\right|<x, j<k$ (we will break up the processes $\left(S_{n}\right)$ up according to the time that $\left|S_{k}\right|$ first exceeds $\left.x\right)$. Since A_{k} s are disjoint and $\left(S_{n}-S_{k}\right)^{2} \geq 0$,

$$
\begin{aligned}
\mathbb{E} S_{n}^{2} & \geq \sum_{k=1}^{n} \int_{A_{k}} S_{n}^{2} d \mathbb{P}=\sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2}+2 S_{k}\left(S_{n}-S_{k}\right)+\left(S_{n}-S_{k}\right)^{2} d \mathbb{P} \\
& \geq \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2}+\sum_{k=1}^{n} \int_{A_{k}} 2 S_{k}\left(S_{n}-S_{k}\right)
\end{aligned}
$$

Note that $S_{k} \mathbb{1}_{A_{k}}$ and $S_{n}-S_{k}$ are independent (the former depends on the r.v. X_{1}, \ldots, X_{k} while the latter depends on $\left.X_{k+1}, \ldots, X_{k}\right)$. Thus we can decompose $\int 2 S_{k} \mathbb{1}_{A_{k}} \cdot\left(S_{n}-S_{k}\right) d \mathbb{P}$ as $\mathbb{E} 2 S_{k} \mathbb{1}_{A_{k}}$. $\mathbb{E}\left(S_{n}-S_{k}\right)=0$ (remember the second term is equal to zero). Since $\left|S_{k}\right| \geq x$ on A_{k} and the $A_{k} \mathrm{~s}$ are disjoint,

$$
\mathbb{E} S_{n}^{2} \geq \sum_{k=1}^{n} \int_{A_{k}} S_{n}^{2} d \mathbb{P} \geq \sum_{k=1}^{n} x^{2} \mathbb{P}\left(A_{k}\right)=x^{2} \mathbb{P}\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) .
$$

Lemma 2. In our standard setting, $\mathbb{P}\left(\left|S_{n}\right| \leq \sqrt{n} / 4| | S_{n} \mid \leq \sqrt{n} / 2\right) \geq 1 / 2$.

Proof. Use the reflection principle as follows: Create a bijection between those paths where $\left|S_{n}\right| \in$ $(\sqrt{n} / 4, \sqrt{n} / 2]$ and those where $\left|S_{n}^{\prime}\right| \in[0, \sqrt{n} / 4)$. Wlog. suppose that S_{n} is positive. Let $T \in[n]$ be the time step where $S_{T}=\sqrt{n} / 4$ and for all $t>T, S_{t}>\sqrt{n} / 4$. Form a unique S_{n}^{\prime} by reflecting S_{n} at the point S_{T} across the line $\sqrt{n} / 4$. The reverse process takes S_{n}^{\prime} to a unique S_{n}.

Theorem 3. In our standard setting, $\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{n}\right| \geq c \sqrt{n}\right) \leq \alpha$ for constants c and $\alpha=\alpha(c)$ a function of c.

Proof. When $c>2$, we can use Kolmogorov's Maximal Inequality (Theorem 1) directly to get $\alpha=\frac{1}{c^{2}} \leq \frac{1}{4}$. When $c \leq 2$, we divide [n] into intervals and upper-bound the probability of going outside the strip $\pm c \sqrt{n}$ on each interval. For concreteness, let $c=1 / 2$. Divide [n] into 64 pieces $T_{1}=[1, n / 64), \ldots, T_{64}=[63 n / 64, n]$. In order to upper-bound the probability that the walk exists the strip $\pm \sqrt{n} / 2$, we will upper-bound the probability that the walk exists the strip of width $\sqrt{n} / 4$ from its starting position or ends outside $\pm \sqrt{n} / 4$. Bound the former probability by Theorem 1 , $\mathbb{P}\left(\max _{T_{j}<i \leq T_{j+1}}\left|S_{i}-S_{T_{j}}\right| \geq \sqrt{n} / 4\right) \leq 1 / 4$. Suppose wlog. $S_{T_{j}} \geq 0$. For the latter probability, we note that it is equally likely for $S_{T_{j+1}}$ to be greater than $S_{T_{j}}$ or less than $S_{T_{j}}$, so if $S_{T_{j}} \leq \sqrt{n} / 4$, the probability that $S_{T_{j+1}} \leq \sqrt{n} / 4-$ if $\mathbb{P}\left(\max _{T_{j}<i \leq T_{j+1}}\left|S_{i}-S_{T_{j}}\right| \geq \sqrt{n} / 4\right)$ - is bounded above by $\mathbb{P}\left(S_{T_{j+1}}-S_{T_{j}} \leq 0\right) \leq 1 / 2$. Let E_{i} be the event $\left|S_{T_{j}}\right| \leq \sqrt{n} / 4 \wedge \max _{1 \leq i \leq T_{j}}\left|S_{i}\right| \leq \frac{\sqrt{n}}{2}$. Then, conditioned on E_{i}, we have that

$$
\begin{aligned}
\mathbb{P}\left(\left.\max _{T_{j}<i \leq T_{j+1}}\left|S_{i}\right|>\frac{\sqrt{n}}{2} \right\rvert\, E_{i}\right) & \leq \mathbb{P}\left(\max _{T_{j}<i \leq T_{j+1}}\left|S_{i}-S_{T_{j}}\right| \geq \sqrt{n} / 4\right)+\mathbb{P}\left(\left|S_{T_{j+1}}\right|>\sqrt{n} / 4\right) \\
& \leq \frac{1}{4}+\frac{1}{2}=\frac{3}{4}
\end{aligned}
$$

Let $p_{j}=\mathbb{P}\left(\max _{T_{j-1}<i \leq T_{j}}\left|S_{i}-S_{T_{j-1}}\right|>\frac{\sqrt{n}}{4}\right)+\mathbb{P}\left(\left|S_{T_{j}}\right|>\sqrt{n} / 4\right) \leq \frac{3}{4}$. Thus, over all the intervals,

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{n}\right| \geq \frac{\sqrt{n}}{2}\right) \leq p_{1}+\left(1-p_{1}\right)\left(p_{2}+\left(1-p_{2}\right)\left(\cdots\left(p_{63}+\left(1-p_{63}\right) p_{64}\right)\right)\right)
$$

Since $p_{i}=p_{j}$ for $i, j \in[64]$, let $p:=p_{1}$ and write the above bound as

$$
p\left(1+(1-p)+\cdots+(1-p)^{63}\right)=1-(1-p)^{64}
$$

Thus $\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{n}\right| \leq \frac{\sqrt{n}}{2}\right) \geq(1 / 4)^{64}$. More generally, for any constant c, we would divide $[n]$ into $t=16 / c^{2}$ intervals and get a lower bound of $\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{n}\right| \geq c \sqrt{n}\right) \geq(1 / 4)^{t}$.

2 Ballot Theorem and its Implications

In an election A gets α votes and B gets β votes for $\alpha>\beta$. Let a dominating ballot sequence be a sequence of the $A \mathrm{~s}$ and $B \mathrm{~s}$ such that in any prefix of the sequence there are more $A \mathrm{~s}$ than $B \mathrm{~s}$.

Theorem 4. (Ballot Theorem). The probability that a random sequence is dominating is $(\alpha-$ $\beta) /(\alpha+\beta)$.

Proof. Here we will use the reflection principle. Let $N_{i, j}$ be the number of paths from $(0,0)$ to (i, j). Let $y=\alpha-\beta$ and $n=\alpha+\beta$. The number of dominant ballot sequences is equivalent to the number of path from $(1,1)$ to (n, y) which do not touch the x-axis. We can write this as $N_{n-1, y-1}-N_{n-1, y+1}$ since the latter term is exactly the number of paths which intersect the x-axis. It follows that

$$
\begin{aligned}
N_{n-1, y-1}-N_{n-1, y+1} & =\binom{n-1}{a-1}-\binom{n-1}{a} \\
& =\frac{(n-1)!}{(\alpha-1)!(n-\alpha)!}-\frac{(n-1)!}{\alpha!(n-\alpha-1)!} \\
& =\binom{n}{a} \cdot\left(\frac{a-(n-a)}{n}\right)=\binom{n}{a} \cdot\left(\frac{y}{n}\right)
\end{aligned}
$$

There is another beautiful proof of Dvoretzky and Motzkin which goes as follows: Arrange the α A s and βB in a circle. Repeatedly remove pairs of $A B$ until only $\alpha-\beta A$ s remain. Note that each A is the start of a dominating ballot sequence.

From this, we can compute the distribution of the time to hit 0 for a simple random walk.
Lemma 5. $\mathbb{P}\left(S_{1} \neq 0, \ldots, S_{2 n} \neq 0\right)=\mathbb{P}\left(S_{2 n}=0\right)$.

Proof. The proof structure is very similar to that of the Ballot Theorem (Theorem 4). Note that $\mathbb{P}\left(S_{1} \neq 0, \ldots, S_{n} \neq 0\right)=\mathbb{P}\left(S_{1}>0, \ldots, S_{n}>0\right)+\mathbb{P}\left(S_{1}<0, \ldots, S_{n}<0\right)$. Since the two terms are symmetric, it suffices to compute $\mathbb{P}\left(S_{1}>0, \ldots, S_{n}>0\right)$. Let $p_{n, x}=\mathbb{P}\left(S_{n}=x\right)$. Condition on the value of S_{n} to obtain $\mathbb{P}\left(S_{1}>0, \ldots, S_{2 n-1}>0, S_{2 n}=2 r\right)$ we note that

$$
\mathbb{P}\left(S_{1}>0, \ldots, S_{2 n-1}>0, S_{2 n}=2 r\right)=\frac{N_{2 n-1,2 r-1}-N_{2 n-1,2 r+1}}{2^{2 n}}=\frac{\left(p_{2 n-1,2 r-1}-p_{2 n-1,2 r+1}\right)}{2}
$$

It follows that

$$
\mathbb{P}\left(S_{1}>0, \ldots, S_{2 n}>0\right)=\frac{1}{2} \sum_{r=1}^{\infty} p_{2 n-1,2 r-1}-p_{2 n-1,2 r+1}=\frac{p_{2 n-1,1}}{2}=\frac{\mathbb{P}\left(S_{2 n}=0\right)}{2}
$$

Note: $S_{2 n}$ is distributed like a binomal with mean zero and variance $2 n$, thus $\mathbb{P}\left(S_{2 n}=0\right) \sim \frac{1}{\sqrt{\pi n}}$ by the central limit theorem approximation of the central term. Generally $\mathbb{P}\left(S_{2 n}=2 k\right) \sim \frac{1}{\sqrt{\pi n}} e^{-x^{2} / 2}$ where $2 k / \sqrt{2 n} \rightarrow x$. You obtain this by applying Stirlings to $\binom{2 n}{n+k}$ and arguing carefully ${ }^{1}$
${ }^{1}$ In particular, we have

$$
\left(1+\frac{k}{n}\right)^{-n-k} \cdot\left(1-\frac{k}{n}\right)^{-n+k} \cdot\left(\frac{1}{\sqrt{\pi n}}\right) \cdot\left(1+\frac{k}{n}\right)^{-1 / 2} \cdot\left(1-\frac{k}{n}\right)^{-1 / 2}
$$

Then you use the lemma that if $c_{j} \rightarrow 0, a_{j} \rightarrow \infty$, and $a_{j} c_{j} \rightarrow \lambda$, then $\left(1+c_{j}\right)^{a_{j}} \rightarrow e^{\lambda}$.

Let $L_{2 n}=\sup \left\{m \leq 2 n: S_{m}=0\right\}$ be the last time the random walk visits zero. Let $u_{2 m}=\mathbb{P}\left(S_{2 m}=\right.$ $0)$. Then $\mathbb{P}\left(L_{2 n}=2 k\right)=u_{2 k} u_{2 n-2 k}$. This is because $\mathbb{P}\left(L_{2 n}=2 k\right)=\mathbb{P}\left(S_{2 k}=0\right) \cdot \mathbb{P}\left(S_{2 k+1} \neq\right.$ $\left.0, \ldots, S_{2 n} \neq 0\right)=\mathbb{P}\left(S_{2 k}=0\right) \cdot \mathbb{P}\left(S_{2 n-2 k}=0\right)$.

Theorem 6. (Arcsine Law for the Last Visit to Zero). For $0<a<b<1$,

$$
\mathbb{P}\left(a \leq \frac{L_{2 n}}{2 n} \leq b\right) \rightarrow \frac{1}{\pi} \int_{a}^{b} \frac{1}{\sqrt{x(1-x)}} d x .
$$

Note: by substituting $y=\sqrt{x}$ and $d y=\frac{1}{2 \sqrt{x}} d x$, and changing the limits of integration to \sqrt{a} and \sqrt{b} respectively, we have that

$$
\frac{1}{\pi} \int_{a}^{b} \frac{1}{\sqrt{x(1-x)}} d x=\frac{2}{\pi} \int_{\sqrt{a}}^{\sqrt{b}} \frac{1}{\sqrt{(1-y)^{2}}} d y=\frac{2}{\pi}(\arcsin (\sqrt{b})-\arcsin (\sqrt{a}))
$$

which is a standard trig integral by further substitution $y=\sin (\theta)$ and $d y=\cos (\theta) d \theta$.

Proof. Using Lemma 5 and the subsequent note, we obtain

$$
n \mathbb{P}\left(L_{2 n}=2 k\right)=n u_{2 k} u_{2 n-2 k} \rightarrow f(x):=\frac{1}{\pi} \cdot\left(\frac{1}{\sqrt{x(1-x)}}\right)
$$

when $k / n \rightarrow x$. Letting $f_{n}(x)=n \mathbb{P}\left(L_{2 n}=2 k\right)$ for $2 k / 2 n \leq x \leq 2(k+1) / 2 n$, we can approximate

$$
\mathbb{P}\left(a \leq \frac{L_{2 n}}{2 n} \leq b\right)=\sum_{k=n a^{\prime}}^{n b^{\prime}} \mathbb{P}\left(L_{2 n}=2 k\right) \approx \int_{a^{\prime}}^{b^{\prime}} f_{n}(x) d x
$$

where $2 n a^{\prime}$ and $2 n b^{\prime}$ are the smallest and largest even integers greater than or equal to and $\geq 2 n a$ and $\leq 2 n b$ respectively. We obtain the desired inequality, since $f_{n}(x) \rightarrow f(x)$.
Theorem 7. (Arcsine Law for Time Above Zero). Let $A_{2 n}$ be the number of segments ($k-$ $\left.1, S_{k-1}\right) \rightarrow\left(k, S_{k}\right)$ that lie above the x-axis, and $u_{2 m}=\mathbb{P}\left(S_{2 m}=0\right)$ as before. Then $\mathbb{P}\left(A_{2 n}=2 k\right)=$ $u_{2 k} u_{2 n-2 k}$ and so $A_{2 n} \stackrel{d}{=} L_{2 n}$.

The proof is by induction on n. Let $\alpha_{2 k, 2 n}=\mathbb{P}\left(A_{2 n}=2 k\right)$. When $n=1$, either both edges are above or both below the x-axis with equal probability so $\alpha_{0,2}=\alpha_{2,2}=1 / 2$. Next consider $k=n$ and then all k such that $1 \leq k<n$ (this also requires the probability of first return to zero).

