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Let X1, X, ... be a sequence of independent Rademacher random variables, i.e. P(X; = 1) = P(X; =

—1) = 1/2, and let S, = Y1, X; be their partial sums. This will be our standard setting for a
simple random walk.

1 Bounded Simple Walks

Theorem 1. (Kolmogorov’s Maximal Inequality). For independent random variables Yi,Ya, ...
such that EY; = 0 and Var(Y;) < oo, and T, = > ;" | Vi,

Var(T,
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Note: that the bound on the RHS is identical to to Chebyshev’s bound, but the inequality is much
stronger since Chebyshev only bounds P(|T,| > t) from above.

Proof. Fix some x. Let Aj be the event where |S;| > x but |S;| < z,j < k (we will break up
the processes (S,,) up according to the time that |Si| first exceeds x). Since Ags are disjoint and
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Note that Sila, and S, — Si are independent (the former depends on the r.v. Xi,..., X} while
the latter depends on Xj41, ..., Xj). Thus we can decompose [ 2S;14, - (S, — Sk)dP as E2S,14,
E(S, — Sk) = 0 (remember the second term is equal to zero). Since |Sk| > x on Ay and the Ags
are disjoint,
n
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Lemma 2. In our standard setting, P(|Sn| < v/n/4||Sn| < v/n/2) > 1/2.

Proof. Use the reflection principle as follows: Create a bijection between those paths where |S,| €
(v/n/4,/n/2] and those where |S/,| € [0,1/n/4). Wlog. suppose that S,, is positive. Let T' € [n] be
the time step where Sy = y/n/4 and for all t > T, S; > y/n/4. Form a unique S], by reflecting S,
at the point St across the line \/n/4. The reverse process takes S;, to a unique S,,. O

Theorem 3. In our standard setting, P (maxi<i<p |Sn| > ¢v/n) < a for constants ¢ and o = a(c)
a function of c.

Proof. When ¢ > 2, we can use Kolmogorov’s Maximal Inequality (Theorem directly to get
o= C% < i. When ¢ < 2, we divide [n] into intervals and upper-bound the probability of going
outside the strip +cy/n on each interval. For concreteness, let ¢ = 1/2. Divide [n] into 64 pieces
T) =[1,n/64), ..., Tos = [63n/64,n]. In order to upper-bound the probability that the walk exists
the strip ++/n/2, we will upper-bound the probability that the walk exists the strip of width v/n/4
from its starting position or ends outside ++/n/4. Bound the former probability by Theorem
P (maXTj<i§Tj+1 |Si — S| > /ﬁ/4) < 1/4. Suppose wlog. St; > 0. For the latter probability, we
note that it is equally likely for St,,, to be greater than St, or less than St;, so if St; < Vn/4,
the probability that St,,, < +/n/4 —if P (ma.XTj<i§Tj+l 1S — St > /ﬁ/4) — is bounded above
by P (STJ-+1 — STJ- < O) < 1/2. Let E; be the event ’STJ-‘ < \/ﬁ/4 A maxi<i<T; ‘Sl’ < @ Then,
conditioned on F;, we have that
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Since p; = p; for i,j € [64], let p := p; and write the above bound as
p(1+1-p+-+(1-p%)=1-(1-p™

Thus P <max1§i§n |Sn| < @) > (1/4)%4. More generally, for any constant ¢, we would divide [n]
into t = 16/c? intervals and get a lower bound of P (maxi<;<, |Sn| > ¢y/n) > (1/4)%. O

2 Ballot Theorem and its Implications

In an election A gets « votes and B gets 5 votes for a > . Let a dominating ballot sequence be a
sequence of the As and Bs such that in any prefix of the sequence there are more As than Bs.



Theorem 4. (Ballot Theorem). The probability that a random sequence is dominating is (o —

B)/(a+5).

Proof. Here we will use the reflection principle. Let IV;; be the number of paths from (0,0) to
(i,j). Let y = a— 8 and n = a + B. The number of dominant ballot sequences is equivalent
to the number of path from (1,1) to (n,y) which do not touch the x-axis. We can write this as
Np—1,y—1—Np—1,4+1 since the latter term is exactly the number of paths which intersect the z-axis.

It follows that
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There is another beautiful proof of Dvoretzky and Motzkin which goes as follows: Arrange the «
As and 8 B in a circle. Repeatedly remove pairs of AB until only oo — 8 As remain. Note that each
A is the start of a dominating ballot sequence.

From this, we can compute the distribution of the time to hit 0 for a simple random walk.

Lemma 5. P(S; #0, ..., S2, # 0) = P(Sy, =0).

Proof. The proof structure is very similar to that of the Ballot Theorem (Theorem . Note that
P(S1 #0,...,8, #0) =P(S1 >0,..... 5, > 0) + P(S1 <0,...., S, <0). Since the two terms are
symmetric, it suffices to compute P(S; > 0, ....,.S;, > 0). Let p,, = P(S, = z). Condition on the
value of S, to obtain P(S; > 0, ..., Sop—1 > 0, S2, = 2r) we note that

Non—12r—1 — Nop—120+1  (P2n—1,2r—1 — P2n—1,2r+1)

P(Sl > 05 "')SZTL—]. > 07 SQn = 2T) = 92n = B .

It follows that

P(51>0,...,5%n >0) = §Zp2n—1,27‘—1 — P2n—12r+1 = b2 5 Lt _ ( 22 ) 0

r=1

Note: Sy, is distributed like a binomal with mean zero and variance 2n, thus P(S2, = 0) ~ \/% by

the central limit theorem approzimation of the central term. Generally P(Sa, = 2k) ~ ﬁe_ﬁ/z

where 2k/+/2n — x. You obtain this by applying Stirlings to (nQ_fk) and arguing carefully

n particular, we have
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Then you use the lemma that if ¢; — 0, a; — co, and ajc; — A, then (1 +¢;)% — e*.



Let Lo, = sup{m < 2n: Sy, = 0} be the last time the random walk visits zero. Let ug,, = P(Sam, =
0). Then P(Lg, = 2k) = ugxug,_oxk. This is because P(Lo, = 2k) = P(So, = 0) - P(Sop11 #
0,..., 520, # 0) = P(Sa, = 0) - P(S2,—2r = 0).

Theorem 6. (Arcsine Law for the Last Visit to Zero). For 0 <a <b <1,
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Note: by substituting y = v/x and dy = 2fdx and changing the limits of integration to \/a and
Vb respectively, we have that

Vb
T = i/\/a (ll—y)2dy = % (arcsin(\/g) — arcsin(ﬁ))

- NZoErh

which is a standard trig integral by further substitution y = sin(0) and dy = cos(0)d6.

Proof. Using Lemma [5| and the subsequent note, we obtain

nP(LQn = 2k‘) = NUKUIH—2k — f(m) = % . (M)

when k/n — x. Letting f,,(z) = nP(Lga, = 2k) for 2k/2n < x < 2(k + 1)/2n, we can approximate

n
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where 2na’ and 2nb’ are the smallest and largest even integers greater than or equal to and > 2na
and < 2nb respectively. We obtain the desired inequality, since f,(x) — f(x). O

Theorem 7. (Arcsine Law for Time Above Zero). Let Az, be the number of segments (k —
1,Sk-1) — (k, Sk) that lie above the x-axis, and uzy, = P(S2m = 0) as before. Then P(Ag, = 2k) =

d
Uk Uop—2k and 50 Az, = Lop.

The proof is by induction on n. Let agp 2, = P(A2, = 2k). When n = 1, either both edges are
above or both below the z-axis with equal probability so ag2 = a22 = 1/2. Next consider k = n
and then all k£ such that 1 < k < n (this also requires the probability of first return to zero).
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