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LetX1, X2, ... be a sequence of independent Rademacher random variables, i.e. P(Xi = 1) = P(Xi =
−1) = 1/2, and let Sn =

∑n
i=1Xi be their partial sums. This will be our standard setting for a

simple random walk.

1 Bounded Simple Walks

Theorem 1. (Kolmogorov’s Maximal Inequality). For independent random variables Y1, Y2, ...
such that EYi = 0 and Var(Yi) < ∞, and Tn =

∑n
i=1 Yi,

P

(
max
1≤i≤n

|Ti| > t

)
≤ Var(Tn)

t2
.

Note: that the bound on the RHS is identical to to Chebyshev’s bound, but the inequality is much
stronger since Chebyshev only bounds P(|Tn| > t) from above.

Proof. Fix some x. Let Ak be the event where |Sk| ≥ x but |Sj | < x, j < k (we will break up
the processes (Sn) up according to the time that |Sk| first exceeds x). Since Aks are disjoint and
(Sn − Sk)

2 ≥ 0,

ES2
n ≥

n∑
k=1

∫
Ak

S2
ndP =

n∑
k=1

∫
Ak

S2
k + 2Sk(Sn − Sk) + (Sn − Sk)

2dP

≥
n∑

k=1

∫
Ak

S2
k +

n∑
k=1

∫
Ak

2Sk(Sn − Sk)

Note that Sk1Ak
and Sn − Sk are independent (the former depends on the r.v. X1, ..., Xk while

the latter depends on Xk+1, ..., Xk). Thus we can decompose
∫
2Sk1Ak

· (Sn − Sk)dP as E2Sk1Ak
·

E(Sn − Sk) = 0 (remember the second term is equal to zero). Since |Sk| ≥ x on Ak and the Aks
are disjoint,

ES2
n ≥

n∑
k=1

∫
Ak

S2
ndP ≥

n∑
k=1

x2P(Ak) = x2P

(
max
1≤k≤n

|Sk| ≥ x

)
.
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Lemma 2. In our standard setting, P(|Sn| ≤
√
n/4||Sn| ≤

√
n/2) ≥ 1/2.

Proof. Use the reflection principle as follows: Create a bijection between those paths where |Sn| ∈
(
√
n/4,

√
n/2] and those where |S′

n| ∈ [0,
√
n/4). Wlog. suppose that Sn is positive. Let T ∈ [n] be

the time step where ST =
√
n/4 and for all t > T , St >

√
n/4. Form a unique S′

n by reflecting Sn

at the point ST across the line
√
n/4. The reverse process takes S′

n to a unique Sn.

Theorem 3. In our standard setting, P (max1≤i≤n |Sn| ≥ c
√
n) ≤ α for constants c and α = α(c)

a function of c.

Proof. When c > 2, we can use Kolmogorov’s Maximal Inequality (Theorem 1) directly to get
α = 1

c2
≤ 1

4 . When c ≤ 2, we divide [n] into intervals and upper-bound the probability of going
outside the strip ±c

√
n on each interval. For concreteness, let c = 1/2. Divide [n] into 64 pieces

T1 = [1, n/64), ..., T64 = [63n/64, n]. In order to upper-bound the probability that the walk exists
the strip ±

√
n/2, we will upper-bound the probability that the walk exists the strip of width

√
n/4

from its starting position or ends outside ±
√
n/4. Bound the former probability by Theorem 1,

P
(
maxTj<i≤Tj+1 |Si − STj | ≥

√
n/4

)
≤ 1/4. Suppose wlog. STj ≥ 0. For the latter probability, we

note that it is equally likely for STj+1 to be greater than STj or less than STj , so if STj ≤
√
n/4,

the probability that STj+1 ≤
√
n/4 — if P

(
maxTj<i≤Tj+1 |Si − STj | ≥

√
n/4

)
— is bounded above

by P
(
STj+1 − STj ≤ 0

)
≤ 1/2. Let Ei be the event |STj | ≤

√
n/4 ∧ max1≤i≤Tj |Si| ≤

√
n
2 . Then,

conditioned on Ei, we have that

P

(
max

Tj<i≤Tj+1

|Si| >
√
n

2
| Ei

)
≤ P

(
max

Tj<i≤Tj+1

|Si − STj | ≥
√
n/4

)
+ P

(
|STj+1 | >

√
n/4

)
≤ 1

4
+

1

2
=

3

4
.

Let pj = P
(
maxTj−1<i≤Tj |Si − STj−1 | >

√
n
4

)
+P

(
|STj | >

√
n/4

)
≤ 3

4 . Thus, over all the intervals,

P

(
max
1≤i≤n

|Sn| ≥
√
n

2

)
≤ p1 + (1− p1) (p2 + (1− p2) (· · · (p63 + (1− p63)p64))) .

Since pi = pj for i, j ∈ [64], let p := p1 and write the above bound as

p
(
1 + (1− p) + · · ·+ (1− p)63

)
= 1− (1− p)64.

Thus P
(
max1≤i≤n |Sn| ≤

√
n
2

)
≥ (1/4)64. More generally, for any constant c, we would divide [n]

into t = 16/c2 intervals and get a lower bound of P (max1≤i≤n |Sn| ≥ c
√
n) ≥ (1/4)t.

2 Ballot Theorem and its Implications

In an election A gets α votes and B gets β votes for α > β. Let a dominating ballot sequence be a
sequence of the As and Bs such that in any prefix of the sequence there are more As than Bs.
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Theorem 4. (Ballot Theorem). The probability that a random sequence is dominating is (α −
β)/(α+ β).

Proof. Here we will use the reflection principle. Let Ni,j be the number of paths from (0, 0) to
(i, j). Let y = α − β and n = α + β. The number of dominant ballot sequences is equivalent
to the number of path from (1, 1) to (n, y) which do not touch the x-axis. We can write this as
Nn−1,y−1−Nn−1,y+1 since the latter term is exactly the number of paths which intersect the x-axis.
It follows that

Nn−1,y−1 −Nn−1,y+1 =

(
n− 1

a− 1

)
−
(
n− 1

a

)
=

(n− 1)!

(α− 1)!(n− α)!
− (n− 1)!

α!(n− α− 1)!

=

(
n

a

)
·
(
a− (n− a)

n

)
=

(
n

a

)
·
(y
n

)

There is another beautiful proof of Dvoretzky and Motzkin which goes as follows: Arrange the α
As and β B in a circle. Repeatedly remove pairs of AB until only α−β As remain. Note that each
A is the start of a dominating ballot sequence.

From this, we can compute the distribution of the time to hit 0 for a simple random walk.

Lemma 5. P(S1 ̸= 0, ..., S2n ̸= 0) = P(S2n = 0).

Proof. The proof structure is very similar to that of the Ballot Theorem (Theorem 4). Note that
P(S1 ̸= 0, ..., Sn ̸= 0) = P(S1 > 0, ...., Sn > 0) + P(S1 < 0, ...., Sn < 0). Since the two terms are
symmetric, it suffices to compute P(S1 > 0, ...., Sn > 0). Let pn,x = P(Sn = x). Condition on the
value of Sn to obtain P(S1 > 0, ..., S2n−1 > 0, S2n = 2r) we note that

P(S1 > 0, ..., S2n−1 > 0, S2n = 2r) =
N2n−1,2r−1 −N2n−1,2r+1

22n
=

(p2n−1,2r−1 − p2n−1,2r+1)

2
.

It follows that

P (S1 > 0, ..., S2n > 0) =
1

2

∞∑
r=1

p2n−1,2r−1 − p2n−1,2r+1 =
p2n−1,1

2
=

P(S2n = 0)

2
.

Note: S2n is distributed like a binomal with mean zero and variance 2n, thus P(S2n = 0) ∼ 1√
πn

by

the central limit theorem approximation of the central term. Generally P(S2n = 2k) ∼ 1√
πn

e−x2/2

where 2k/
√
2n → x. You obtain this by applying Stirlings to

(
2n
n+k

)
and arguing carefully.1

1In particular, we have(
1 +

k

n

)−n−k

·
(
1− k

n

)−n+k

·
(

1√
πn

)
·
(
1 +

k

n

)−1/2

·
(
1− k

n

)−1/2

.

Then you use the lemma that if cj → 0, aj → ∞, and ajcj → λ, then (1 + cj)
aj → eλ.
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Let L2n = sup{m ≤ 2n : Sm = 0} be the last time the random walk visits zero. Let u2m = P(S2m =
0). Then P(L2n = 2k) = u2ku2n−2k. This is because P(L2n = 2k) = P(S2k = 0) · P(S2k+1 ̸=
0, ..., S2n ̸= 0) = P(S2k = 0) · P(S2n−2k = 0).

Theorem 6. (Arcsine Law for the Last Visit to Zero). For 0 < a < b < 1,

P

(
a ≤ L2n

2n
≤ b

)
→ 1

π

∫ b

a

1√
x(1− x)

dx.

Note: by substituting y =
√
x and dy = 1

2
√
x
dx, and changing the limits of integration to

√
a and

√
b respectively, we have that

1

π

∫ b

a

1√
x(1− x)

dx =
2

π

∫ √
b

√
a

1√
(1− y)2

dy =
2

π

(
arcsin(

√
b)− arcsin(

√
a)
)

which is a standard trig integral by further substitution y = sin(θ) and dy = cos(θ)dθ.

Proof. Using Lemma 5 and the subsequent note, we obtain

nP(L2n = 2k) = nu2ku2n−2k → f(x) :=
1

π
·

(
1√

x(1− x)

)

when k/n → x. Letting fn(x) = nP(L2n = 2k) for 2k/2n ≤ x ≤ 2(k + 1)/2n, we can approximate

P

(
a ≤ L2n

2n
≤ b

)
=

nb′∑
k=na′

P(L2n = 2k) ≈
∫ b′

a′
fn(x)dx

where 2na′ and 2nb′ are the smallest and largest even integers greater than or equal to and ≥ 2na
and ≤ 2nb respectively. We obtain the desired inequality, since fn(x) → f(x).

Theorem 7. (Arcsine Law for Time Above Zero). Let A2n be the number of segments (k −
1, Sk−1) → (k, Sk) that lie above the x-axis, and u2m = P(S2m = 0) as before. Then P(A2n = 2k) =

u2ku2n−2k and so A2n
d
= L2n.

The proof is by induction on n. Let α2k,2n = P(A2n = 2k). When n = 1, either both edges are
above or both below the x-axis with equal probability so α0,2 = α2,2 = 1/2. Next consider k = n
and then all k such that 1 ≤ k < n (this also requires the probability of first return to zero).
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