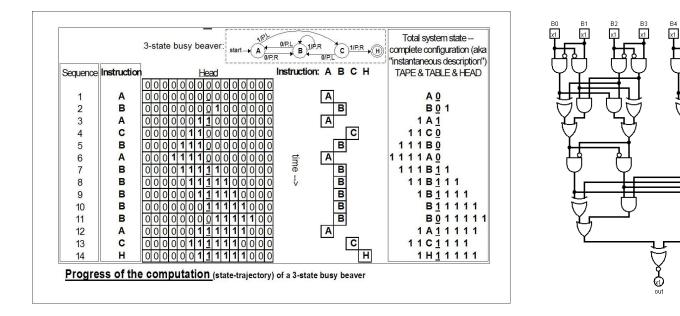
Query Complexity

Simple, Structured and Significant

Suhail Sherif, TSS

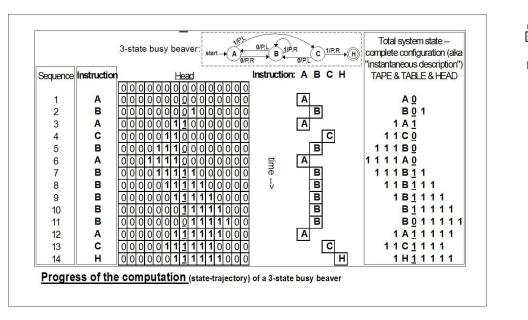
Turing Machines and Circuits

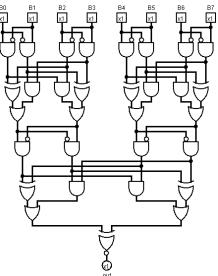
Nice, relevant models of computation, but...



Turing Machines and Circuits Nice, relevant models of computation, but...

• Too hard to reason about what they can do.





Input: Some input x, say as a bitstring of n bits. Output: f(x).

Input: Some input x, say as a bitstring of n bits. Output: f(x).

We don't know x. We can make queries to x. "What is the 5th bit of x?"

Input: Some input x, say as a bitstring of n bits. Output: f(x).

We don't know x. We can make queries to x. "What is the 5th bit of x?"

How many queries are needed in order to find out f(x)?

Query Complexity

Easier than TMs, Circuits

Query Complexity Easier than TMs, Circuits

٠

With $f(x) := x_i \mod 2$, i [n] deterministic, nondeterministic, randomized query complexities are n.

Query Complexity Easier than TMs, Circuits

With
$$f(x) := x_i \mod 2$$
,

i [n] deterministic, nondeterministic, randomized query complexities are n.

• With $f(x) := x_i$,

•

i [n] deterministic query complexity is n, but nondeterministic is 1.

Query Complexity Easier than TMs, Circuits

With
$$f(x) := x_i \mod 2$$
,

i [n] deterministic, nondeterministic, randomized query complexities are n.

•

•

With $f(x) := x_i$,

i [n] deterministic query complexity is n, but nondeterministic is 1.

 With f(x) := smallest prime factor of x, deterministic and non-deterministic query complexity is n.

• Query complexities of functions don't seem to reflect how hard the functions are to compute.

- Query complexities of functions don't seem to reflect how hard the functions are to compute.
- Can never get a query complexity larger than n.

- Query complexities of functions don't seem to reflect how hard the functions are to compute.
- Can never get a query complexity larger than n.
- Looking at input bits isn't hard, why are you even counting that?

- Query complexities of functions don't seem to reflect how hard the functions are to compute.
- Can never get a query complexity larger than n.
- Looking at input bits isn't hard, why are you even counting that?
- To sum it up, researching query complexity is useless.

- Query complexities of functions don't seem to reflect how hard the functions are to compute.
- Can never get a query complexity larger than n.
- Looking at input bits isn't hard, why are you even counting that?
- To sum it up, researching query complexity is useless.

Thank you for your attention. I am now open to questions.

Solve an impossible task with the help of a cryptic oracle.

Query Complexity

Relevance to TM Complexity

Elements of language L	
000	
0000	
00000	
000000	

Elements of language L	Elements of language O
000	110
0000	1001
00000	10000
000000	1011111

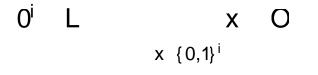
0ⁱ L x 0 x {0,1}ⁱ

Elements of language L	Elements of language O
000	110
0000	1001
00000	10000
000000	1011111

0ⁱ L x 0 x {0,1}ⁱ

Elements of language L	Elements of language O
000	110
0000	1001
00000	10000
0000000	1011111

L NP^O



L

Elements of language L	Elements of language O
000	110
0000	1001
00000	10000
0000000	1011111

L NP^O

M₁ ← 6^小' M₂ : P⁰

• P cannot "simulate" NP.

- P cannot "simulate" NP.
- Any proof that P = NP has to be subtle enough to not hold when there are oracles.

- P cannot "simulate" NP.
- Any proof that P = NP has to be subtle enough to not hold when there are oracles.
 - For instance, it cannot just be a diagonalization proof.

- P cannot "simulate" NP.
- Any proof that P = NP has to be subtle enough to not hold when there are oracles.
 - For instance, it cannot just be a diagonalization proof.
 - Also holds for proving P NP.

- P cannot "simulate" NP.
- Any proof that P = NP has to be subtle enough to not hold when there are oracles.
 - For instance, it cannot just be a diagonalization proof.
 - Also holds for proving P NP.
- Similar results for many pairs of complexity classes.

- P cannot "simulate" NP.
- Any proof that P = NP has to be subtle enough to not hold when there are oracles.
 - For instance, it cannot just be a diagonalization proof.
 - Also holds for proving P NP.
- Similar results for many pairs of complexity classes.
 - EXPTIME can simulate polytime quantum, but PH cannot.

Nonoracular

Still spectacular

- In the oracle separations, we created languages forcing the algorithm to stick to using the oracle.
- More generally, we can abstract out certain approaches to solving problems by forcing our algorithm to only use data relevant to the approach.

Sort [100,23,13,141,2,20,15]

Sort [100,23,13,141,2,20,15]

Desired approach: Don't look at the numbers except to compare them.

Sort [100,23,13,141,2,20,15]

Desired approach: Don't look at the numbers except to compare them.

Input: A sequence of numbers x_1, \ldots, x_n .

Output: The sorted sequence.

Sort [100,23,13,141,2,20,15]

Desired approach: Don't look at the numbers except to compare them.

Input: A sequence of numbers x₁, ..., x_n. Not what we wanted. Output: The sorted sequence.

Sort [100,23,13,141,2,20,15]

Desired approach: Don't look at the numbers except to compare them.

Input: A sequence of bits $\begin{cases} b_{i,j} \\ (i,j) \\ (i,j)$

```
10^{6890} \mod 14017 = 1
```

 $10^{6890} \mod 14017 = 1$

If we can find the period (6890 above), we can factor.

 $10^{6890} \mod 14017 = 1$

If we can find the period (6890 above), we can factor.

Ideal approach: Find the period only by computing elements of the sequence with no further involvement of 14017.

```
10^{1} \mod 14017 = 10

10^{2} \mod 14017 = 100

10^{3} \mod 14017 = 1000

10^{4} \mod 14017 = 1000

10^{5} \mod 14017 = 1881

10^{6} \mod 14017 = 4793

10^{7} \mod 14017 = 5879

10^{890} \mod 14017 = 1
```

If we can find the period (6890 above), we can factor.

Ideal approach: Find the period only by computing elements of the sequence with no further involvement of 14017.

```
10^{1} \mod 14017 = 10

10^{2} \mod 14017 = 100

10^{3} \mod 14017 = 1000

10^{4} \mod 14017 = 10000

10^{5} \mod 14017 = 1881

10^{6} \mod 14017 = 4793

10^{7} \mod 14017 = 5879

10^{890} \mod 14017 = 1
```

If we can find the period (6890 above), we can factor.

Ideal approach: Find the period only by computing elements of the sequence with no further involvement of 14017.

Input: A sequence of numbers in the range [M] with the promise that the ith element is a^i MOC N. (a and N are unknown.)

Output: The period of the input sequence.

```
10^{1} \mod 14017 = 10

10^{2} \mod 14017 = 100

10^{3} \mod 14017 = 1000

10^{4} \mod 14017 = 10000

10^{5} \mod 14017 = 1881

10^{6} \mod 14017 = 4793

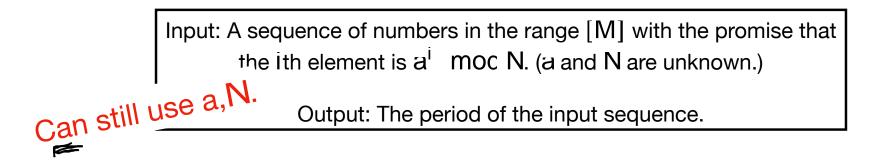
10^{7} \mod 14017 = 5879

10^{8} \mod 14017 = 2722

10^{6890} \mod 14017 = 1
```

If we can find the period (6890 above), we can factor.

Ideal approach: Find the period only by computing elements of the sequence with no further involvement of 14017.



```
10^{1} \mod 14017 = 10

10^{2} \mod 14017 = 100

10^{3} \mod 14017 = 1000

10^{4} \mod 14017 = 1000

10^{5} \mod 14017 = 1881

10^{6} \mod 14017 = 4793

10^{7} \mod 14017 = 5879

10^{890} \mod 14017 = 1
```

If we can find the period (6890 above), we can factor.

Ideal approach: Find the period only by computing elements of the sequence with no further involvement of 14017.

```
10^{1} \mod 14017 = 10

10^{2} \mod 14017 = 100

10^{3} \mod 14017 = 1000

10^{4} \mod 14017 = 10000

10^{5} \mod 14017 = 1881

10^{6} \mod 14017 = 4793

10^{7} \mod 14017 = 5879

10^{890} \mod 14017 = 1
```

If we can find the period (6890 above), we can factor.

Ideal approach: Find the period only by computing elements of the sequence with no further involvement of 14017.

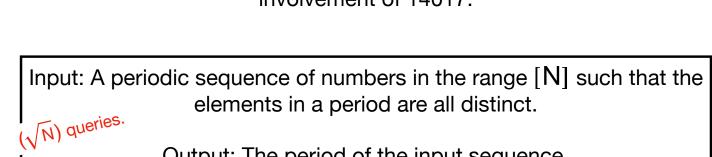
Input: A periodic sequence of numbers in the range [N] such that the elements in a period are all distinct.

Output: The period of the input sequence.

```
10^1 \mod 14017 = 10
  10^2 \mod 14017 = 100
  10^3 \mod 14017 = 1000
  10^4 \mod 14017 = 10000
  10^5 \mod 14017 = 1881
  10^6 \mod 14017 = 4793
  10^7 \mod 14017 = 5879
  10^8 \mod 14017 = 2722
10^{6890} \mod 14017 = 1
```

If we can find the period (6890 above), we can factor.

Ideal approach: Find the period only by computing elements of the sequence with no further involvement of 14017.



Requires

Output: The period of the input sequence.

```
10^{1} \mod 14017 = 10

10^{2} \mod 14017 = 100

10^{3} \mod 14017 = 1000

10^{4} \mod 14017 = 10000

10^{5} \mod 14017 = 1881

10^{6} \mod 14017 = 4793

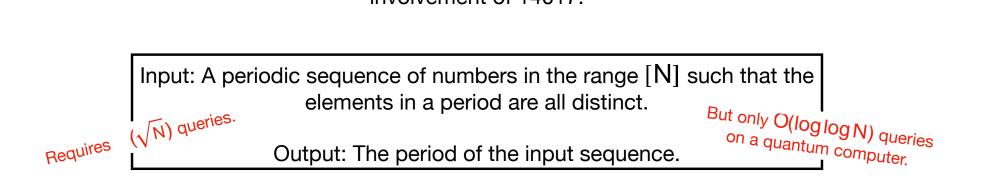
10^{7} \mod 14017 = 5879

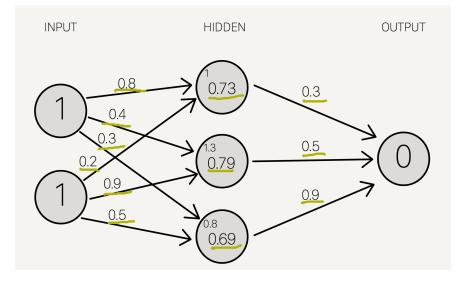
10^{8} \mod 14017 = 2722

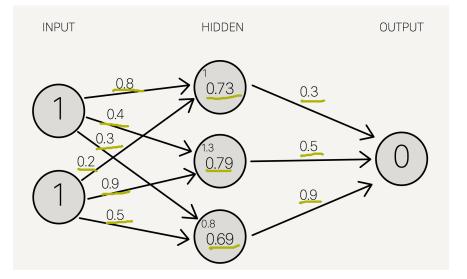
10^{6890} \mod 14017 = 1
```

If we can find the period (6890 above), we can factor.

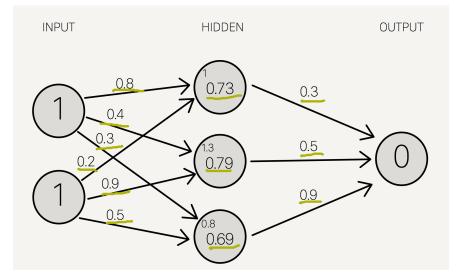
Ideal approach: Find the period only by computing elements of the sequence with no further involvement of 14017.





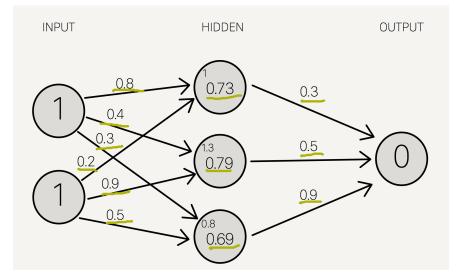


Find parameters that minimize the loss.



Find parameters that minimize the loss.

los: ⁿ



Find parameters that minimize the loss.

los: ⁿ

Easy to compute **IOS**s.

• Think of the input as $\{ IOS(X) \}_{X}$ n

- Think of the input as $\{ IOS(x) \}_{x}$ n
- Easy to compute **loss** Querying the input is doable.

- Think of the input as $\{ IOS(x) \}_{x}$ n
- Easy to compute **IOS**: Querying the input is doable.
- But the popular algorithm for this is Gradient Descent.

- Think of the input as $\{ IOS(X) \}_{X}$ n
- Easy to compute **IOSs** Querying the input is doable.
- But the popular algorithm for this is Gradient Descent.
 - Finding f given query access to f:

- Think of the input as $\{ IOS(X) \}_{X}$ n
- Easy to compute **IOS**: Querying the input is doable.
- But the popular algorithm for this is Gradient Descent.
 - Finding f given query access to f:
 - Requires (\sqrt{n}) queries.

- Think of the input as $\{ IOS(x) \}_{x}$ n
- Easy to compute **IOS**: Querying the input is doable.
- But the popular algorithm for this is Gradient Descent.
 - Finding f given query access to f:
 - Requires (\sqrt{n}) queries.
 - Or 1 query with a quantum computer.

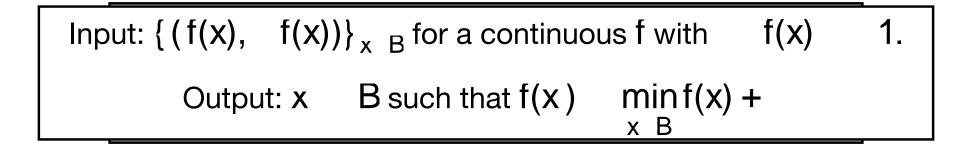
- Think of the input as $\{ IOS(x) \}_{x}$ n
- Easy to compute **IOS**: Querying the input is doable.
- But the popular algorithm for this is Gradient Descent.
 - Finding f given query access to f:
 - Requires (\sqrt{n}) queries.
 - Or 1 query with a quantum computer.
 - Finding f given access to the network for f is easy.

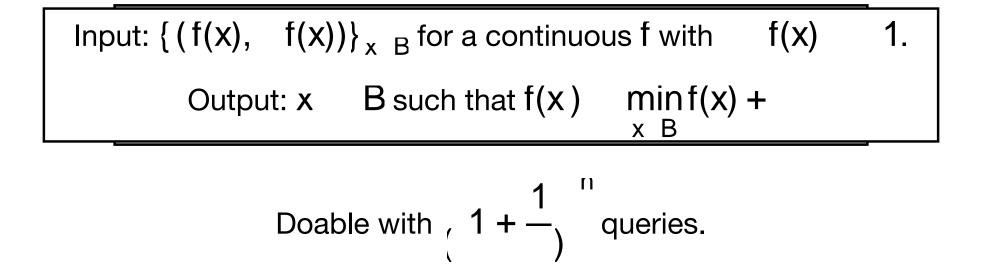
- Think of the input as $\{ IOS(x) \}_{x}$ n
- Easy to compute **IOS**: Querying the input is doable.
- But the popular algorithm for this is Gradient Descent.
 - Finding f given query access to f:
 - Requires (\sqrt{n}) queries.
 - Or 1 query with a quantum computer.
 - Finding f given access to the network for f is easy.
- Think of the input as $\{ (IOSS(X), IOSS(X)) \}_{X}$

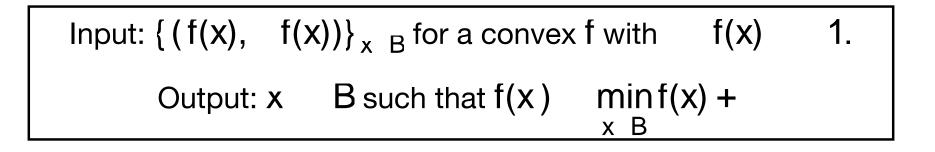
Joint work with Ankit Garg, Robin Kothari and Praneeth Netrapalli.

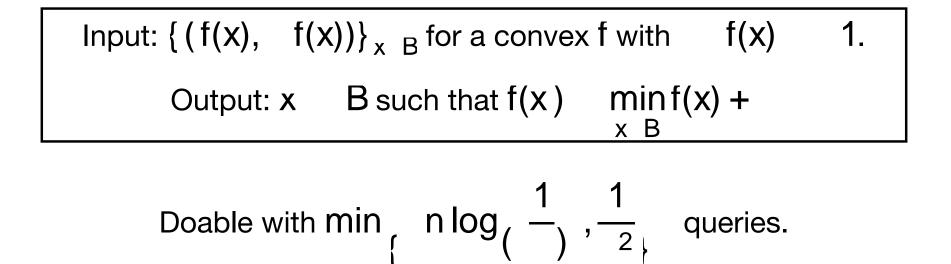
Input: { (f(x), f(x))} x = n, x = 1 for a continuous f. Output: argmin f(x) x = B

Input: { (f(x), f(x))} x n, x + 1 for a continuous f. Output: x B such that f(x) min f(x) + x B









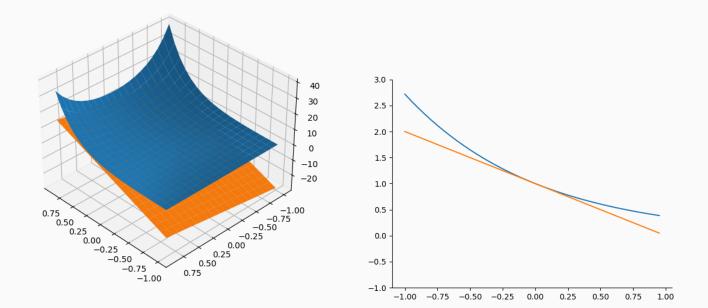
Theorem (Garg Kothari Netrapalli S 20)

The dimension-independent complexity of first-order convex optimization is (1/2) even for quantum algorithms.

The Task

Given: a convex region B, rst-order oracle access to a convex function $f : R^n \ R$.

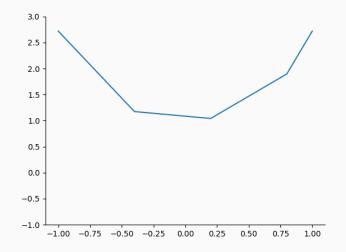
Find $x^0 2 B$ s.t. $f(x^0) \min_{x2B} f(x) + .$



The Task

Given: a convex region B, rst-order oracle access to a convex function $f : R^n ! R$.

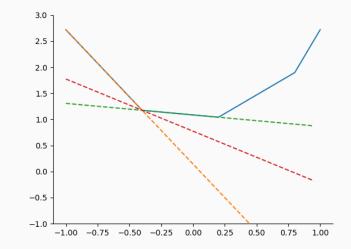
Find $x^0 2 B$ s.t. $f(x^0) \min_{x2B} f(x) + .$



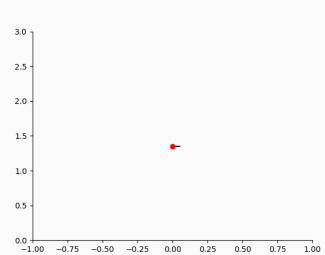
The Task

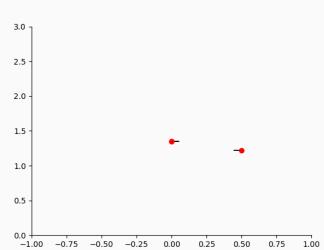
Given: a convex region B, rst-order oracle access to a convex function $f : R^n \ R$.

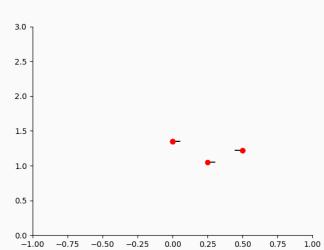
Find
$$x^0 2 B$$
 s.t. $f(x^0) \min_{x^{2B}} f(x) + .$

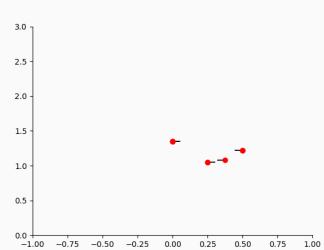


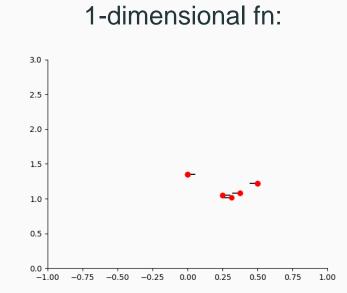
g 2 rf(x), f(x + v) f(x) + hv, gi for all v











1-dimensional fn:

log(1/) steps.

n-dimensional fn: (Center of Gravity Method)

n-dimensional fn: (Center of Gravity Method)

 $\log \quad \frac{\text{Vol}(B(1))}{\text{Vol}(B())}$

 $= n \log(1/)$ steps.

Center of Gravity Method n log(1/) steps.

Projected Subgradient Descent

Center of Gravity Method n log(1/) steps.

Projected Subgradient Descent

●х

$$x \bullet x^0 = x g_x$$

Center of Gravity Method n log(1/) steps.

Projected Subgradient Descent

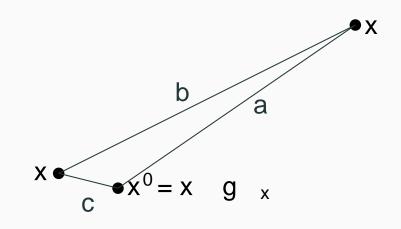
●Х

$$x \bullet x^0 = x g_x$$

 hg_x, x xi f(x) f(x)

Center of Gravity Method n log(1/) steps.

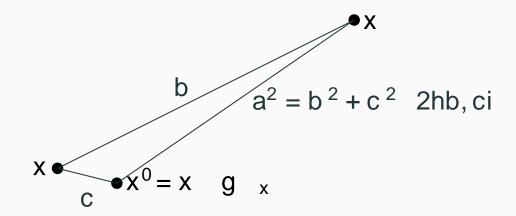
Projected Subgradient Descent



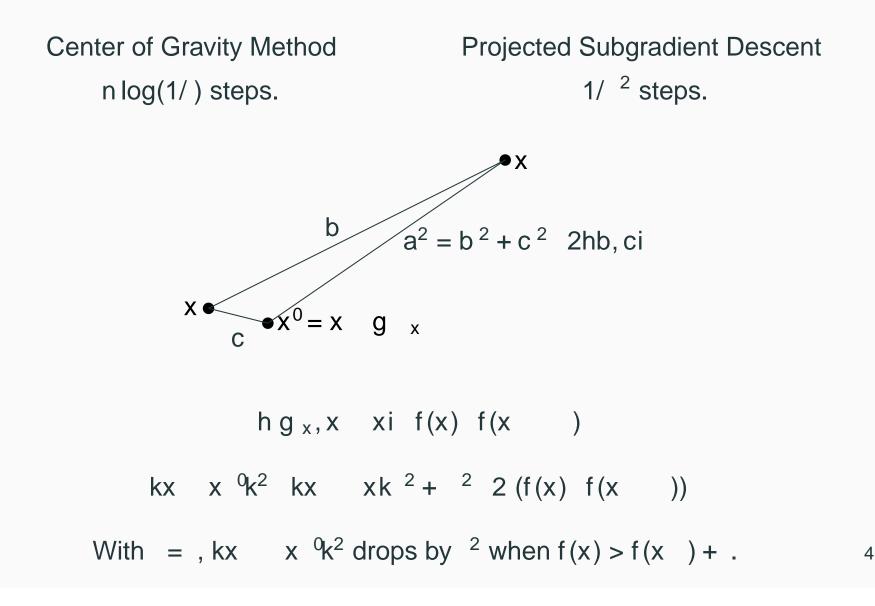
 $hg_x, x xi f(x) f(x)$

Center of Gravity Method n log(1/) steps.

Projected Subgradient Descent

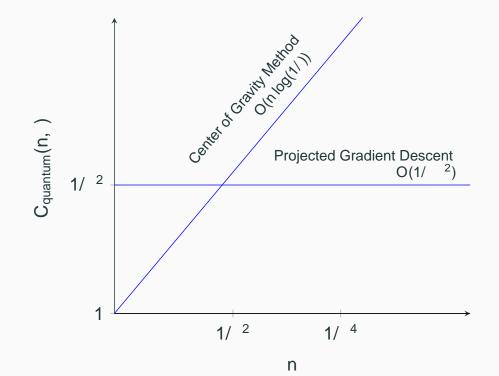


h g_x, x xi f(x) f(x) kx x ${}^{0}k^{2}$ kx xk 2 + 2 2 (f(x) f(x))



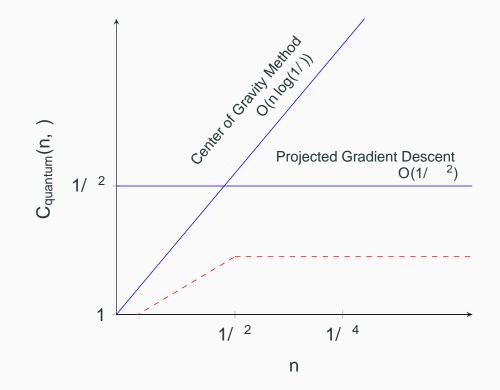
Center of Gravity Method n log(1/) steps. **Projected Subgradient Descent**

 $1/^{2}$ steps.



Center of Gravity Method n log(1/) steps. Projected Subgradient Descent

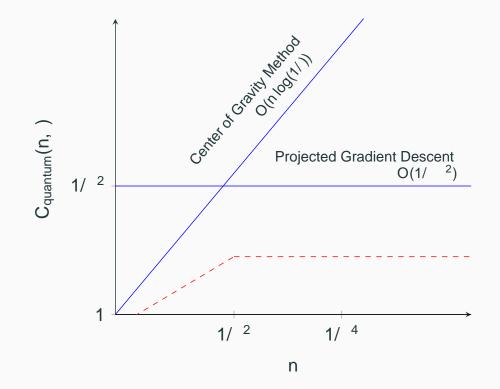
 $1/^{2}$ steps.



The dimension-independent complexity is at least 1/ [CCLW '19].

Center of Gravity Method n log(1/) steps. Projected Subgradient Descent

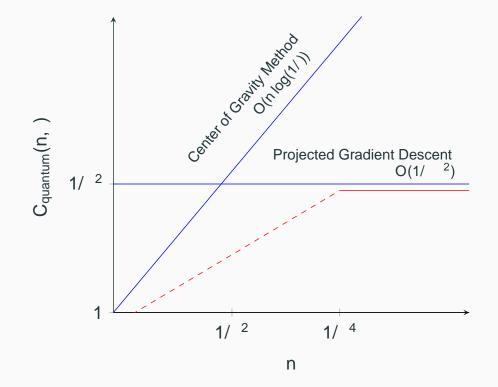
1/² steps.



The dimension-independent complexity is at least 1/² [GKNS '20].

Center of Gravity Method n log(1/) steps. Projected Subgradient Descent

1/² steps.



1/ ² is the correct complexity for n > 1/ ⁴ [GKNS '20].

Lower Bounds

The Base Function

$f : R^n ! R$

 $f(x) = max\{x_1, x_2, ..., x_n\}.$

The Base Function

$f: R^n ! R$

$$f(x) = \max\{x_1, x_2, \dots, x_n\}.$$

Minimum = $p\frac{1}{\overline{n}}$, at $x = -p\frac{1}{\overline{n}}$, ..., $p\frac{1}{\overline{n}}$.

The Base Function

$f : R^n ! R$

$$\begin{split} f(x) &= max\{x_1, x_2, \dots, x_n\}.\\ \text{Minimum} &= \quad p\frac{1}{\overline{n}}, \text{ at } x = \quad p\frac{1}{\overline{n}}, \dots, \quad p\frac{1}{\overline{n}} \ .\\ \text{If } x_i \text{ is a maximum, then } e_i \text{ is a subgradient.} \end{split}$$

$z \ 2 \ \{+1, \ 1\}^{n}$ $f_z(x) = \max\{z_1 x_1, z_2 x_2, \dots, z_n x_n\}.$

$$z \ 2 \ \{+1, \ 1\}^{n}$$

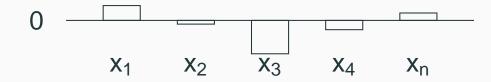
$$f_{z}(x) = \max\{z_{1}x_{1}, z_{2}x_{2}, \dots, z_{n}x_{n}\}.$$
Minimum = $P_{\overline{n}}^{1}$, at $x = P_{\overline{n}}^{\overline{21}}, \dots, P_{\overline{n}}^{\overline{2n}}$.
Set = $P_{\overline{n}}^{\underline{9}}$.

$$z \ 2 \ \{+1, \ 1\}^{n}$$

$$f_{z}(x) = \max\{z_{1}x_{1}, z_{2}x_{2}, \dots, z_{n}x_{n}\}.$$
Minimum = $P^{1}_{\overline{n}}, \text{ at } x = P^{21}_{\overline{n}}, \dots, P^{2n}_{\overline{n}}$.
Set = $P^{.9}_{\overline{n}}.$

The behaviour of f

 $z_1 \hspace{0.1in} z_2 \hspace{0.1in} z_3 \hspace{0.1in} z_4 \hspace{0.1in} z_n$



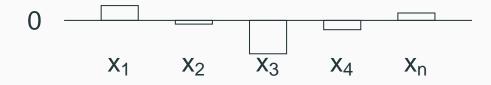
$$z \ 2 \ \{+1, \ 1\}^{n}$$

$$f_{z}(x) = \max\{z_{1}x_{1}, z_{2}x_{2}, \dots, z_{n}x_{n}\}.$$
Minimum = $P^{1}_{\overline{n}}, \text{ at } x = P^{21}_{\overline{n}}, \dots, P^{2n}_{\overline{n}}$.
Set = $P^{0.9}_{\overline{n}}.$

The behaviour of f

 $z_1 \hspace{0.1in} z_2 \hspace{0.1in} z_3 \hspace{0.1in} z_4 \hspace{0.1in} z_n$

+



$$z \ 2 \ \{+1, \ 1\}^{n}$$

$$f_{z}(x) = \max\{z \ _{1}x_{1}, z_{2}x_{2}, \dots, z_{n}x_{n}\}.$$

$$Minimum = P^{1}_{\overline{n}}, at \ x = P^{\frac{21}{\overline{n}}}, \dots, P^{\frac{2n}{\overline{n}}}_{\overline{n}}.$$

$$Set = P^{\frac{9}{\overline{n}}}.$$
The behaviour of f

$$Z_1$$
 Z_2 Z_3 Z_4 Z_n

+ +

$$z 2 \{+1, 1\}^{n}$$

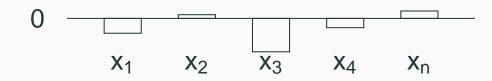
$$f_{z}(x) = \max\{z_{1}x_{1}, z_{2}x_{2}, \dots, z_{n}x_{n}\}.$$
Minimum = $p\frac{1}{n}$, at $x = p\frac{z_{1}}{n}$, \dots , $p\frac{z_{n}}{n}$.
Set = $\frac{\beta \cdot 9}{n}$.
The behaviour of f
 z_{1} z_{2} z_{3} z_{4} z_{n}
+ + +

2 bits of z revealed per query.

$$z \ 2 \ \{+1, \ 1\}^{n}$$

$$f_{z}(x) = \max\{z_{1}x_{1}, z_{2}x_{2}, \dots, z_{n}x_{n}\}.$$
Minimum = $p\frac{1}{\overline{n}}, \text{ at } x = p\frac{z_{1}}{\overline{n}}, \dots, p\frac{z_{n}}{\overline{n}}$.
Set = $p\frac{.9}{\overline{n}}.$
The behaviour of f
 $z_{1} \ z_{2} \ z_{3} \ z_{4} \ z_{n}$

+ +



$$z \ 2 \ \{+1, \ 1\} \quad {}^{n}$$

$$f_{z}(x) = \max\{z \ _{1}x_{1}, z_{2}x_{2}, \dots, z_{n}x_{n}\}.$$
Minimum = $P^{1}_{\overline{n}}, \text{ at } x = P^{\frac{21}{\overline{n}}}, \dots, P^{\frac{2n}{\overline{n}}}$.
Set = $P^{\frac{9}{\overline{n}}}.$
The behaviour of f

$$z_1$$
 z_2 z_3 z_4 z_n

+ + +

Function Class

$$z \ 2 \ \{+1, \ 1\}^{n}$$

$$f_{z}(x) = \max\{z_{1}x_{1}, z_{2}x_{2}, \dots, z_{n}x_{n}\}.$$
Minimum = $p^{1}_{\overline{n}}, \text{ at } x = p^{\frac{21}{n}}, \dots, p^{\frac{2n}{n}}$.
Set = $p^{\frac{9}{n}}$.
The behaviour of f
 $z_{1} \ z_{2} \ z_{3} \ z_{4} \ z_{n}$
+ + + +

 $X_1 \quad X_2 \quad X_3 \quad X_4$

Finding -optimal point =) learning z.

Xn

7

Function Class

$$z \ 2 \ \{+1, \ 1\}^{n}$$

$$f_{z}(x) = \max\{z_{1}x_{1}, z_{2}x_{2}, \dots, z_{n}x_{n}\}.$$

$$Minimum = P^{1}_{\overline{n}}, at \ x = P^{1}_{\overline{n}}, \dots, P^{n}_{\overline{n}}.$$

$$Set = P^{0}_{\overline{n}}.$$

$$The behaviour of f$$

 z_1 z_2 z_3 z_4 z_n

+ + +

0
$$x_1$$
 x_2 x_3 x_4 x_n
Requires (n) = (1/ ²) queries.

Quantum Speedup

Belovs' algorithm: Given query access to ORs of z, can nd z in \overline{n} queries.

Lower Bounds

A Sequential Lower Bound

Forcing Sequentiality: II

Nemirovsky Tudin 83

 $f_{v_1,v_2,...,v_k}(x) = \max\{hv_1, xi, hv_2, xi, hv_3, xi2, \dots, hv_k, xi(k1)\}$

where $\{v_1, \ldots, v_k\}$ form an orthonormal set in \mathbb{R}^n .

$$\begin{split} f_{v_1,v_2,\ldots,v_k}(x) &= max\{hv_1,xi,hv_2,xi,hv_3,xi2,\cdots,hv_k,xi(k\ 1)\} \\ \text{where } \{v_1,\ldots,v_k\} \text{ form an orthonormal set in } \mathbb{R}^n. \\ max\{hv_1,xi,hv_2,xi,\ldots,hv_k,xi\} \text{ takes a minimum value of } p\frac{1}{k} \text{ in the unit ball.} \end{split}$$

$$\begin{split} f_{v_1,v_2,\ldots,v_k}(x) &= max\{hv_1,xi,hv_2,xi,hv_3,xi2,\cdots,hv_k,xi(k\ 1)\} \\ \text{where } \{v_1,\ldots,v_k\} \text{ form an orthonormal set in } \mathbb{R}^n. \\ max\{hv_1,xi,hv_2,xi,\ldots,hv_k,xi\} \text{ takes a minimum value of } p\frac{1}{\overline{k}} \text{ in the unit ball.} \\ \frac{1/k}{\sqrt{3/2}}. \end{split}$$

$$\begin{split} f_{v_1,v_2,\ldots,v_k}(x) &= max\{hv_1,xi,hv_2,xi,hv_3,xi2,\cdots,hv_k,xi(k\ 1)\ \}\\ \text{where }\{v_1,\ldots,v_k\} \text{ form an orthonormal set in } \mathbb{R}^n.\\ max\{hv_1,xi,hv_2,xi,\ldots,hv_k,xi\} \text{ takes a minimum value of } p\frac{1}{\overline{k}} \text{ in the unit ball.}\\ 1/k \quad \frac{3/2}{n}, \qquad q \quad \frac{\log n}{n}. \end{split}$$

$$\begin{split} f_{v_1,v_2,\ldots,v_k}(x) &= max\{hv_1,xi,hv_2,xi,hv_3,xi2,\cdots,hv_k,xi(k\ 1)\} \\ \text{where } \{v_1,\ldots,v_k\} \text{ form an orthonormal set in } \mathbb{R}^n. \\ max\{hv_1,xi,hv_2,xi,\ldots,hv_k,xi\} \text{ takes a minimum value of } p\frac{1}{\overline{k}} \text{ in the unit ball.} \\ & 1/k \quad \frac{3/2}{n}, \qquad q \quad \frac{\log n}{n}. \\ \text{Want to say that each vector has to be learnt in order.} \end{split}$$

A Run of A

Make query to

 $\max\{hv_1, xi, hv_2, xi, \dots, hv_k, xi(k 1)\}.$ Make query to $\max\{hv_1, xi, hv_2, xi, \dots, hv_k, xi(k 1)\}.$ \vdots Make query to $\max\{hv_1, xi, hv_2, xi, \dots, hv_k, xi(k 1)\}.$

A Run of A

Make query to

 $\max\{hv_1, xi, hv_2, xi, \dots, hv_k, xi(k 1)\}.$ Make query to $\max\{hv_1, xi, hv_2, xi, \dots, hv_k, xi(k 1)\}.$ \vdots Make query to $\max\{hv_1, xi, hv_2, xi, \dots, hv_k, xi(k 1)\}.$

Once-Corrupted Run of A

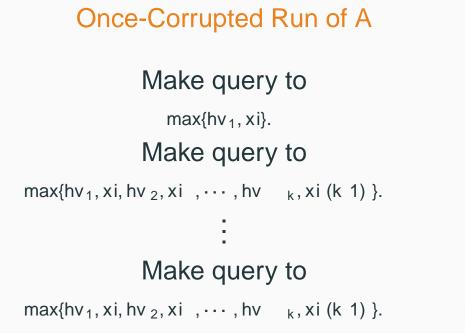
Make query to

max{hv₁, xi}. Make query to

 $max\{hv_1, xi, hv_2, xi, \dots, hv_k, xi(k 1)\}.$

Make query to

 $max\{hv_1, xi, hv_2, xi_1, \dots, hv_k, xi(k_1)\}.$



Twice-Corrupted Run of A

Make query to $max\{hv_1, xi\}$. Make query to $max\{hv_1, xi, hv_2, xi\}$. : Make query to $max\{hv_1, xi, hv_2, xi, \dots, hv_k, xi(k 1)\}$.

k 1-times Corrupted Run of A

Make query to

 $max\{hv_1, xi\}.$

Make query to

 $max\{hv_1, xi, hv_2, xi\}$.

Make query to

 $\max\{hv_1, xi, hv_2, xi_1, \dots, hv_{k1}, xi_k(k2)\}.$

Quantum Algorithms

- Can make queries in superposition.
- The state of the algorithm is represented by a vector.
- All quantum operations are unitary.

Quantum Algorithms

- Can make queries in superposition.
- The state of the algorithm is represented by a vector.
- All quantum operations are unitary. Given two states 1 and 2 such that k 1 2k = c, then after applying the same quantum operations on both, the resulting states also have distance c.

• Actual function used is slightly modi ed to account for queries outside the unit ball.

- Actual function used is slightly modi ed to account for queries outside the unit ball.
- n can be as small as $1/^{-6}$ for the above argument.

- Actual function used is slightly modi ed to account for queries outside the unit ball.
- n can be as small as $1/^{-6}$ for the above argument.
- Can bring n down to 1/⁴ using a clever trick from "Complexity of Highly Parallel Non-Smooth Convex Optimization"
 Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford

Smooth Convex Optimization

Higher-Order Convex Optimization

• Promise: f is convex,

p-times differentiable with r ^pf being L_p-Lipschitz.

• Query access to $O_f : x 7! (f(x), rf(x), r^{2}f(x), \dots, r^{p}f(x)).$

The Setting	The Upper Bound	The Lower Bound
	D	Det: $\left(\begin{array}{c} p \\ \overline{L_1/} \end{array}\right)$ Rand: $\left(\begin{array}{c} L_1/ \\ \overline{L_1/} \end{array}\right)$
p = 1	O(^P L ₁ /)	Rand: $(\stackrel{P}{} \overline{L_1} /)$
		Quant: -
	n	Quant: - Det: $(\frac{7/2}{p} L_2/)$ Rand: $(\frac{11/2}{L_2/})$
p = 2	O(^{7/2} L ₂ /)	Rand: $(11/2 L_2/)$
		Quant: -
	n	Det: $((3p+1)/2) \overline{L_p/}$ Rand: $((5p+1)/2) \overline{L_p/}$
р	$O((3p+1)/2)^{p} \overline{L_{p}/)}$	Rand: $((5p+1)/2)^{2}$ $\overline{L_{p}}/)$
		Quant: -

[Bubeck Jiang Lee Li Sidford '19] [Gasnikov Dvurechensky Gorbunov Vorontsova Selikhanovych Uribe '19] [Jiang Wang Zhang '19] We show that neither randomized nor quantum algorithms can do any better than deterministic algorithms.

8p 2 N, Q €D).

More about Query Complexity

Degree of a function f:

 $PARITY(x_1, x_2, x_3) = 4x_1x_2x_3 \quad 2x_1x_2 \quad 2x_1x_3 \quad 2x_2x_3 + x_1 + x_2 + x_3.$

Easy to prove: Query complexity of f degree of f.

Nisan Szegedy '92

Degree of f query complexity of f. (degree of f) 4 .

Query complexity of f is large, Degree of f is large.

Also randomized query complexity, quantum query complexity, approximate degree, certi cate complexity, sensitivity.