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2 Problems

Definition
A k× n star array is a k× n array A whose entries are ∗ or blanks.

EXAMPLE:

A :=

 ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗



Problem 1: Given a star array A when is it possible to replace
some of the ∗ by non-negative integers (blanks become zero) s.t.
in the resulting integral array, all row sums equal R and all column
sums equal C for some R,C > 0?
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2 Problems (contd.)

Problem 2: Suppose q is a (large) prime, and suppose X,Y ⊂ Fq

s.t. |Y | = 10|X|, and |X| ≥ q/1000, is it possible to partition
Y := Y1 ⊔ · · · ⊔ Y|X| s.t. for each x ∈ X

I |Yx| = 10,
I For each y ∈ Yx, x+ y is a quadratic residue?
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In graph theoretic terms...

Problem 1: If A is a star array, there is an associated bipartite
graph GA = G(X,Y,E):
I X= Set of Rows of A, Y = Set of Columns of A,
I For x ∈ X, y ∈ Y , (x, y) ∈ E iff A(x, y) = ∗.

Problem 2: Consider the bipartite graph G(X,Y,E) where for
x ∈ X, y ∈ Y , (x, y) ∈ E iff x+ y is a quadratic residue.
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Perfect Matchings in Bipartite Graphs

Suppose k = n. If the associated bipartite graph has a perfect
matching (PM), i.e., a set of pairwise disjoint edges that span all
the vertices then Problem 1 admits an affirmative solution.

The converse also holds: If GA has no PM then the star array does
not have this property:
Hall’s theorem: G(X,Y ) has PM iff ∀S ⊆ X, |N(S)| ≥ |S|. Here,
N(S) is the set of neighbors of S.
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Hall’s Theorem: An illustration

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

X Y X Y

Each S ⊆ X satisfies |N(S)| ≥ |S|. So, G has a perfect matching.

It states that G(X,Y ) has a perfect matching iff
∀S ⊆ X, |N(S)| ≥ |S|.

What is an analogous result in the case when |X| = k and
|Y | = n?
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The Normalized Matching Property in Bipartite graphs

Definition
G = G(X,Y ) is said to have the Normalized Matching
Property (NMP) if

|N(S)|
|Y |

≥ |S|
|X|

for all S ⊆ X.

In particular, if |X| = |Y |, then this is the familiar Hall’s condition
for the existence of PM in G.

Notation: For A ⊆ X,B ⊆ Y , G(A,B) denotes the subgraph
induced by the vertices in A ∪B. e(A,B) := |{(A×B) ∩E(G)}|.
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Equivalent Criteria

NMP in bipartite graphs is rather well-understood due to the
following
Theorem
(Kleitman ’74) The following are equivalent:
I (NMP) G with |X| = k, |Y | = n has NMP.
I (LYM) For any independent set I in G, |I∩X|

k + |I∩Y |
n ≤ 1.

I (REG) There exists w : E → N ∪ {0} such that
∑
e∋x
e∈E

w(e)

(resp.
∑
e∋y
e∈E

w(e)) is equal for all x ∈ X (resp. for all y ∈ Y ).

By condition REG, it follows that the first problem reduces to
whether or not the corresponding graph has NMP.

Deepanshu Kush NMP in Random & Pseudorandom Graphs



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Equivalent Criteria

NMP in bipartite graphs is rather well-understood due to the
following
Theorem
(Kleitman ’74) The following are equivalent:
I (NMP) G with |X| = k, |Y | = n has NMP.
I (LYM) For any independent set I in G, |I∩X|

k + |I∩Y |
n ≤ 1.

I (REG) There exists w : E → N ∪ {0} such that
∑
e∋x
e∈E

w(e)

(resp.
∑
e∋y
e∈E

w(e)) is equal for all x ∈ X (resp. for all y ∈ Y ).

By condition REG, it follows that the first problem reduces to
whether or not the corresponding graph has NMP.

Deepanshu Kush NMP in Random & Pseudorandom Graphs



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structural Characterization: An illustration

In the first example, the graph GA is

b

b

b

b

b

b

b

b

b

X

Y

Every S ⊆ X satisfies |N(S)| ≥ 2|S|

b

b

b

b

b

b

b

b

b

X

Y

G is spanned by an X 2-thrill

True in general, i.e. when n
k = q ∈ N.But what about when

n/k ∋ N? Is there an appropriate generalisation? We shall return
to this later.
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A structural characterization for NMP when k | n

A copy of K1,q in G is called an X q-fan when the star is ‘pointed’
at a vertex in X.

A bunch of vertex disjoint X q-fans together is called an X
q-thrill. In particular, an X 1-thrill is simply a matching.

Lemma
If n = qk for some q ∈ N. Then G has NMP iff G is spanned by
an X q-thrill.
Proof: Clone q copies of each vertex of X and apply Hall’s
theorem.
The second problem also reduces to determining if the
corresponding graph has NMP.
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Complexity of checking for NMP

Checking if a given G(X,Y ) with |X| = k, |Y | = n can be done in
Poly(n, k):
I Clone each x ∈ X into x1, . . . , xn,
I Clone each y ∈ Y into y1, . . . , yk,
I Check if the resulting graph has a PM. To determine if a

graph G(V,E) has a PM can be done in O(|E|
√
|V |)).

For Problem 2, how do we check if NMP holds in that associated
graph?
Is it even true?! If not, how true is it?
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NMP in posets

I NMP in ranked posets is a very important property and a
crucial hypothesis in several conjectures.

I Many interesting posets (Boolean lattice, poset of flats in
finite projective space etc) are all NMP posets though their
corresponding graphs are relatively very sparse.

Question: How dense must a ‘typical’ bipartite graph be for it to
have NMP?
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Enter Randomness: G(k, n, p)

G(n, p): The Erdős-Rényi random graph: Each pair (u, v) is an
edge independently with probability p.

G(k, n, p): Random bipartite graph with the vertex partition
(X,Y ) with |X| = k, |Y | = n: Each (x, y) ∈ X × Y is an edge
independently with probability p.

A Graph Property is a subset of all graphs closed under graph
isomorphism. A graph property P is monotone if the collection is
closed w.r.t. taking supergraphs, i.e., if G ∈ P and G ⊂ H then
H ∈ P.
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Threshold for graph property

p0 = p0(n) is a threshold for a property P if ∀p(n),

Pr[G(n, p) has P] →

{
0, if p/p0 → 0

1, if p/p0 → ∞

Theorem (Bollobás, Thomason, 85)
Every monotone graph property has a threshold.
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Threshold for Perfect matchings in G(n, n, p)

Theorem (Erdős-Rényi, 66’)
For ε > 0, and n ≫ 0,
I If p < (1−ε) logn

n , then whp G(n, n, p) does not have PM.
I If p > (1+ε) logn

n , then G(n, n, p) has PM. whp.

Here whp (with high probability) means

P(G(n, n, p) has PM) → 1 as n → ∞.

logn
n is a sharp threshold for the existence of perfect matchings in

G(n, n, p).
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Threshold for NMP?
Suppose p < (1−ε) logn

n . Let N = the number of isolated vertices
in Y .
I E(N) = n(1− p)n and by standard concentration bounds

(Chernoff), N > 0 whp.

I Same argument for G(k, n, p) to give: If p < (1−ε) logn
k ,

G(k, n, p) does not have NMP whp.

A Heuristic:
I Clone each vertex of X n/k times to get a new graph

G′(X ′, Y ).
I By Kleitman’s theorem, G has NMP if and only if the new

graph has a perfect matching.
I If G′ ∼ G(n, n, p′) (?!!) we need p′ & logn

n .
I Each vertex of X = union of n/k vertices of X ′, so threshold

for NMP is n
k · logn

n = logn
k .
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Our Results: A sharp threshold for NMP

Theorem
Suppose ε > 0, k ≫ε 0, and k ≤ n < exp(k). Then

I If p < (1−ε) logn
k , then whp G(k, n, p) does not have NMP.

I If p > (1+ε) logn
k , then G(k, n, p) has NMP whp.

logn
k is a sharp threshold for NMP in G(k, n, p).
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Pseudorandom Graphs: Brief Introduction

What does it mean to say that a graph behaves ‘random-like’?

Theorem (Erdős, Goldberg, Pach & Spencer ’88)
Let p = p(n) ≤ 0.99. Then asymptotically almost surely, in the
binomial random graph G(n, p), for any two subsets X,Y ⊆ V (G),

|e(X,Y )− p|X||Y || ≤ O(
√
pn|X||Y |).

Here is one way to capture ‘random-like’ behavior. Write p = e(G)

(n
2
)

.

I (CUT SIZES) If U,W are subsets of V (Gn), then

e(U,W ) ≈ p|U ||W |.
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Pseudorandom graphs: An introduction

Definition
(Thomason) A graph G on vertex set V is (p, β)-jumbled if, for all
vertex subsets X,Y ⊆ V (G),

|e(X,Y )− p|X||Y || ≤ β
√

|X||Y |

In the context of bipartite graphs:
Definition (Following Thomason ’89)
Suppose 0 < p < 1 and 0 ≤ ε < 1. A bipartite graph G(X,Y )
with |X| = k ≤ n = |Y | is called T-pseudorandom with parameters
(p, ε) if
I For each x ∈ X, d(x) ≥ pn,
I For x ̸= x′, x, x′ ∈ X, |N(x) ∩N(x′)| ≤ p2n(1 + ε).

Any two distinct vertices of X have at most p2n(1 + ε)
common neighbours.
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Main theorem of Thomason

These graphs are rightfully called pseudorandom because
Theorem
Let G(X,Y ) be a bipartite graph with |X| = k ≤ n = |Y |, which
is T-pseudorandom with parameters (p, ε). Then for every subset
A ⊆ X with 1/p ≤ |A| and every subset B ⊆ Y ,

|e(A,B)− p|A||B|| ≤
√

pn|A||B|(1 + εp|A|).
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Examples of T-pseudorandom graphs

Let X be the points in projective d-space over Fq, Y be the
‘hyperplanes’, then the corresponding incidence bipartite graph has
vertex parts of sizes |X| = |Y | = n := 1 + q + · · ·+ qd−1, and is
T-pseudorandom with parameters

p = n−1/2(1 + o(1)), ε = 0.

The point-block incidence graphs for symmetric designs are also
T-pseudorandom.
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A robust model for pseudorandomness

T-pseudorandomness is algorithmically easily verifiable as it is
combinatorial in definition. It also has a certain sense of
robustness:

Lemma (N.B., D. Kush, 2019+)
Let 0 < ε < 1

2 and suppose G(X,Y ) is a T-pseudorandom
bipartite graph with parameters (p0, ε0) with |X| = k ≤ |Y | = n,
and suppose p0 ≥ 1√

k
. Then, for any integer ε3n/2 ≤ D ≤ ε3n,

there exist subsets CX ⊆ X and CY ⊆ Y such that
I |CY | = D and |CX | ≤ ηk, where η = exp(−C

ε ) for some fixed
constant C,

I G(X \ CX , Y \ CY ) is T-pseudorandom with parameters
(p1, ε1) where p1 = p0(1− ε) and ε1 ≤ 5(ε0 + 3ε).

Allows for efficient randomized algorithmic constructions of several
T-pseudorandom bipartite graphs.
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‘Almost’ NMP in Bipartite Graphs: NMP-Approximability

Informally: If one can remove a small proportion of vertices from
both parts s.t. the resulting graph has NMP, then it is
‘NMP-approximable’.

Formally,
Definition (NMP-Approximability)
Suppose ε > 0. For functions f, g : R+ → R+ such that
f(x), g(x) → 0 as x → 0, a bipartite graph G(X,Y ) is said to be
(f, g, ε)-NMP approximable if there are subsets X ⊆ X and
Y ⊆ Y such that:
I |X |

|X| ≤ f(ε), |Y|
|Y | ≤ g(ε)

I G(X \ X , Y \ Y) has NMP.
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Y ⊆ Y such that:
I |X |

|X| ≤ f(ε), |Y|
|Y | ≤ g(ε)

I G(X \ X , Y \ Y) has NMP.
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NMP-Approximability in T-pseudorandom graphs

Henceforth |X| = k, |Y | = n, and k ≤ n.

Theorem (N.B., D. Kush, 2019+)
Suppose 0 ≤ ε < 1, and let ω : N → R+ be a non-negative valued
function that satisfies ω(k) → ∞ as k → ∞. There exists an
integer k0 = k0(ε, ω) such that the following holds.

Suppose p ≥ ω(k)
k and suppose G = G(X,Y ) is T-pseudorandom

with parameters (p, ε). Then G is (f, g, ε)-NMP-approximable with

f(x), g(x) = O
(
x1/4 log(1/x)

)
.

Moreover, the deletion sets can be determined in polynomial time.
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Something about the proofs: Threshold for NMP

Start with the LYM characterization for NMP: Let p > (1+ε) logn
k

and G = G(k, n, p) not have NMP.

Kleitman’s theorem ⇒ there exists I = IX ∪ IY in G with |IX | = ℓ
and |IY | ≥

⌈
n
(
1− ℓ

k

)⌉
for some ℓ > 0. From the union bound,

P(G does not have NMP) ≤
k∑

ℓ=1

Pℓ

where for 1 ≤ ℓ ≤ k,

Pℓ =

(
k

ℓ

)(
n⌈

n
(
1− ℓ

k

)⌉)(1− p)ℓ⌈n(1−
ℓ
k )⌉ for ℓ < k

Pk = n · (1− p)k ≤ 1

nε
.
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The LYM approach

After some calculations (!) one can show
∑

ℓ Pℓ = o(1) if n ≫ k

or if p > 10 logn
k .

To get the sharp threshold we need other ideas, more ‘structure’.
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The proof of Erdős-Rényi for PM
Recall the Erdős-Rényi theorem: Sharp threshold for PM is logn

n .
Suppose p > (1+ε) logn

n and G(n, n, p) does not admit PM, then
there exists S ⊆ X s.t. |N(S)| < |S|.

Let S be a minimal such set. Then one has

I |S| ≤ n
2

I |N(S)| = |S| − 1

I Every vertex in N(S) is adjacent to at least 2 vertices of S.
A Union bound gives the following bound on the ‘error’ probability:

n/2∑
|S|=1

(
n

|S|

)(
n

|S| − 1

)
(1− p)|S|·(n−|S|+1)

((
|S|
2

)
· p2

)|S|−1

The large amount of ‘structure’ revealed by considering the
minimal violating set was critical!
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Completing the Proof: Extra ‘structure’

Fact
If G(X,Y ) has NMP, then G(Y,X) also has NMP, i.e., for any
T ⊆ Y, |NX(T )| ≥ k

n |T |.

Lemma
Suppose G(X,Y ) with |X| = k ≤ n = |Y | does not have NMP.
Then either there exists
I S ⊂ X that violates NMP for G(X,Y ) with |S| ≤ k

2 , or
I T ⊂ Y that violates NMP for G(Y,X) with |T | < n

2 + n
k .

Fact
Suppose p > (1+ε) logn

k . For any fixed r ∈ N, d(x) ≥ r for all
x ∈ X and d(y) ≥ r for all y ∈ Y whp.
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Proof of NMP-approximability

G(X,Y ) is T-pseudorandom with parameters (p, ε) with p ≥ ω(k)
k .

Suppose n
k = L

ℓ with gcd(ℓ, L) = 1 and ℓ, L = O(1).

Main difficulties:
I Unlike in the case when k | n there is no canonical structure

that certifies NMP.
I When n/k (mod 1) is ‘large’ then a cloning argument fails

spectacularly.
New Idea: A decomposition type theorem, i.e., want a spanning
subgraph of G which certifies NMP (Especially when n/k ∋ N).
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New structure: Euclidean trees Tℓ,L

Suppose ℓ < L. Consider the Euclidean algorithm on the pair
(ℓ, L) as follows.

L = qmℓ+ rm−1, 0 < rm−1 < rm = ℓ,

ℓ = qm−1rm−1 + rm−2, 0 < rm−2 < rm−1,

· · · = · · ·
r3 = q2r2 + r1, 0 < r1 < r2,

r2 = q1r1, r1 = 1.

If we set rm+1 = L, rm = ℓ, r0 = 0, then we may write

ri+1 = qiri + ri−1 for 1 ≤ i ≤ m.

Construct a family of trees called Euclidean trees in m steps: In
step i (if even) add an X qi-thrill from the ‘first’ left ri vertices
{x1, . . . , xri} into {yr(i−1)+1, . . . , yr(i+1)

}.
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Illustrative example: T3,7

7 = 2 · 3 + 1

3 = 3 · 1.
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x1

x2

x3

y1

y2

y3

y4

y5

y6

y7

⇒ ⇒

X

Y

X X

Y Y

3 = 3× 1 + 0 7 = 2× 3 + 1
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3 = 3 · 1.
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Another Example: T5,8

The Euclidean algorithm gives m = 4, (r2, r3, r4, r5) = (2, 3, 5, 8),
(q1, q2, q3, q4) = (2, 1, 1, 1).
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Figure: The Euclidean (5, 8)-tree process. T5,8 evolves as
T2,1 ⇒ T2,3 ⇒ T5,3 ⇒ T5,8.
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Another Example: T5,8

The Euclidean algorithm gives m = 4, (r2, r3, r4, r5) = (2, 3, 5, 8),
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Another Example: T5,8

The Euclidean algorithm gives m = 4, (r2, r3, r4, r5) = (2, 3, 5, 8),
(q1, q2, q3, q4) = (2, 1, 1, 1).

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

X

Y

X

Y

X

Y

X

Y

X

Y

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

y8

⇒ ⇒ ⇒ ⇒

T2,1 T2,3 T5,3 T5,8

Figure: The Euclidean (5, 8)-tree process. T5,8 evolves as
T2,1 ⇒ T2,3 ⇒ T5,3 ⇒ T5,8.

Deepanshu Kush NMP in Random & Pseudorandom Graphs



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Another Example: T5,8

The Euclidean algorithm gives m = 4, (r2, r3, r4, r5) = (2, 3, 5, 8),
(q1, q2, q3, q4) = (2, 1, 1, 1).
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Another Example: T5,8
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Proof Outline of NMP-Approximability

Lemma
Euclidean Trees have NMP.

Write n
k = L

ℓ with (ℓ, L) = 1.
Partition X = X1 ⊔ · · · ⊔Xℓ and Y = Y1 ⊔ · · · ⊔ YL. Replicate the
Euclidean (ℓ, L)-process, with the vertices xi, yj replaced by the
blocks Xi, Yj . The following lemma is key:
Lemma (Informal)
Suppose q ∈ N and U ⊆ X and V ⊆ Y both are large enough
subsets such that |V | = q|U |. Then there exist ‘small’ subsets
A ⊆ U,B ⊆ V such that G(U \A, V \B) is spanned by an X
q-thrill.
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Proof of NMP-Approximability: Our main structural
theorem

Theorem
Suppose G(X,Y ) is T-pseudorandom with parameters (p, ε) with
p ≥ ω(k)

k , and suppose k ≫ 0. Suppose n
k = L

ℓ with (ℓ, L) = 1 and
ℓ, L = O(1). Then there exist sets X ⊂ X,Y ⊂ Y s.t.
|X | ≤ O(ε)k, |Y| ≤ O(ε)n s.t. G(X \ X , Y \ Y) is spanned by
vertex disjoint copies of Tℓ,L.

In general tweak (n, k) to a ‘close-enough’ (n′, k′) such that
n′

k′ =
L
ℓ with ℓ, L = Oε(1).
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An approx. version of problem 2

The proof of NMP-approximability works in more general
pseudorandom paradigms as well.

Theorem (N.Balachandran, D. K., 2019)
Suppose X,Y ⊂ Fq, |Y | = 10|X| ≥ q/100. Then for any
multiplicative subgroup H ⊂ F∗

q of size at least q1/2+ε, one can
delete at most O(q1−ε) elements from both X,Y s.t. in the
remaining sets, problem 2 has an affirmative answer for H as well
(in place of quadratic residues).

Fact
The corresponding bipartite graph Γq(H) is
(q, |H|,√q)-pseudorandom.
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THANK YOU!
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Induction Step Outline
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Figure: Induction step
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