Normalized Matching Property in Random \& Pseudorandom Bipartite Graphs

Deepanshu Kush

Department of Mathematics
Indian Institute of Technology Bombay (IITB)

(Joint work with Niranjan Balachandran, IITB)
September 19, 2019

2 Problems

Definition

A $k \times n$ star array is a $k \times n$ array \mathcal{A} whose entries are $*$ or blanks.
EXAMPLE:

$$
\mathcal{A}:=\left(\begin{array}{lllll}
* & * & & * & \\
& & * & * & \\
& & & * & * \\
& & & *
\end{array}\right)
$$

2 Problems

Definition

A $k \times n$ star array is a $k \times n$ array \mathcal{A} whose entries are $*$ or blanks.

EXAMPLE:

$$
\mathcal{A}:=\left(\begin{array}{lllll}
* & * & & * & \\
& & * & * & \\
& & & * & * \\
& & & *
\end{array}\right)
$$

Problem 1: Given a star array \mathcal{A} when is it possible to replace some of the $*$ by non-negative integers (blanks become zero) s.t. in the resulting integral array, all row sums equal R and all column sums equal C for some $R, C>0$?

2 Problems (contd.)

Problem 2: Suppose q is a (large) prime, and suppose $X, Y \subset \mathbb{F}_{q}$ s.t. $|Y|=10|X|$, and $|X| \geq q / 1000$, is it possible to partition $Y:=Y_{1} \sqcup \cdots \sqcup Y_{|X|}$ s.t. for each $x \in X$

- $\left|Y_{x}\right|=10$,
- For each $y \in Y_{x}, x+y$ is a quadratic residue?

In graph theoretic terms...

Deepanshu Kush

In graph theoretic terms...

Problem 1: If \mathcal{A} is a star array, there is an associated bipartite $\operatorname{graph} G_{\mathcal{A}}=G(X, Y, E)$:

- $X=$ Set of Rows of $\mathcal{A}, Y=$ Set of Columns of \mathcal{A},
- For $x \in X, y \in Y,(x, y) \in E$ iff $\mathcal{A}(x, y)=*$.

Problem 2: Consider the bipartite graph $G(X, Y, E)$ where for $x \in X, y \in Y,(x, y) \in E$ iff $x+y$ is a quadratic residue.

Perfect Matchings in Bipartite Graphs

Suppose $k=n$. If the associated bipartite graph has a perfect matching (PM), i.e., a set of pairwise disjoint edges that span all the vertices then Problem 1 admits an affirmative solution.

Perfect Matchings in Bipartite Graphs

Suppose $k=n$. If the associated bipartite graph has a perfect matching (PM), i.e., a set of pairwise disjoint edges that span all the vertices then Problem 1 admits an affirmative solution.

The converse also holds: If $G_{\mathcal{A}}$ has no PM then the star array does not have this property:

Perfect Matchings in Bipartite Graphs

Suppose $k=n$. If the associated bipartite graph has a perfect matching (PM), i.e., a set of pairwise disjoint edges that span all the vertices then Problem 1 admits an affirmative solution.

The converse also holds: If $G_{\mathcal{A}}$ has no PM then the star array does not have this property:

Hall's theorem: $G(X, Y)$ has PM iff $\forall S \subseteq X,|N(S)| \geq|S|$. Here, $N(S)$ is the set of neighbors of S.

Hall's Theorem: An illustration

Each $S \subseteq X$ satisfies $|N(S)| \geq|S|$. So, G has a perfect matching.
It states that $G(X, Y)$ has a perfect matching iff $\forall S \subseteq X,|N(S)| \geq|S|$.

Hall's Theorem: An illustration

Each $S \subseteq X$ satisfies $|N(S)| \geq|S|$. So, G has a perfect matching.
It states that $G(X, Y)$ has a perfect matching iff $\forall S \subseteq X,|N(S)| \geq|S|$.
What is an analogous result in the case when $|X|=k$ and $|Y|=n$?

The Normalized Matching Property in Bipartite graphs

Definition

$G=G(X, Y)$ is said to have the Normalized Matching
Property (NMP) if

$$
\frac{|N(S)|}{|Y|} \geq \frac{|S|}{|X|}
$$

for all $S \subseteq X$.

The Normalized Matching Property in Bipartite graphs

Definition

$G=G(X, Y)$ is said to have the Normalized Matching
Property (NMP) if

$$
\frac{|N(S)|}{|Y|} \geq \frac{|S|}{|X|}
$$

for all $S \subseteq X$.
In particular, if $|X|=|Y|$, then this is the familiar Hall's condition for the existence of PM in G.

The Normalized Matching Property in Bipartite graphs

Definition

$G=G(X, Y)$ is said to have the Normalized Matching
Property (NMP) if

$$
\frac{|N(S)|}{|Y|} \geq \frac{|S|}{|X|}
$$

for all $S \subseteq X$.
In particular, if $|X|=|Y|$, then this is the familiar Hall's condition for the existence of PM in G.

Notation: For $A \subseteq X, B \subseteq Y, G(A, B)$ denotes the subgraph induced by the vertices in $A \cup B . e(A, B):=|\{(A \times B) \cap E(G)\}|$.

Equivalent Criteria

NMP in bipartite graphs is rather well-understood due to the following
Theorem
(Kleitman '74) The following are equivalent:

- (NMP) G with $|X|=k,|Y|=n$ has NMP.
- (LYM) For any independent set I in $G, \frac{|I \cap X|}{k}+\frac{|I \cap Y|}{n} \leq 1$.
- (REG) There exists $w: E \rightarrow \mathbb{N} \cup\{0\}$ such that $\sum_{\substack{e \ni x \\ e \in E}} w(e)$
(resp. $\left.\sum_{\substack{e \ni y \\ e \in E}} w(e)\right)$ is equal for all $x \in X$ (resp. for all $y \in Y$).

Equivalent Criteria

NMP in bipartite graphs is rather well-understood due to the following

Theorem
(Kleitman '74) The following are equivalent:

- (NMP) G with $|X|=k,|Y|=n$ has NMP.
- (LYM) For any independent set I in $G, \frac{|I \cap X|}{k}+\frac{|I \cap Y|}{n} \leq 1$.
- (REG) There exists $w: E \rightarrow \mathbb{N} \cup\{0\}$ such that $\sum_{\substack{e \ni x \\ e \in E}} w(e)$ (resp. $\left.\sum_{\substack{e \ni y \\ e \in E}} w(e)\right)$ is equal for all $x \in X$ (resp. for all $y \in Y$).

By condition REG, it follows that the first problem reduces to whether or not the corresponding graph has NMP.

Structural Characterization: An illustration

In the first example, the graph $G_{\mathcal{A}}$ is

Every $S \subseteq X$ satisfies $|N(S)| \geq 2|S|$

Structural Characterization: An illustration

In the first example, the graph $G_{\mathcal{A}}$ is

Every $S \subseteq X$ satisfies $|N(S)| \geq 2|S|$

G is spanned by an X 2-thrill

True in general, i.e. when $\frac{n}{k}=q \in \mathbb{N}$.

Structural Characterization: An illustration

In the first example, the graph $G_{\mathcal{A}}$ is

Every $S \subseteq X$ satisfies $|N(S)| \geq 2|S|$

G is spanned by an X 2-thrill

True in general, i.e. when $\frac{n}{k}=q \in \mathbb{N}$. But what about when $n / k \ni \mathbb{N}$? Is there an appropriate generalisation? We shall return to this later.

A structural characterization for NMP when $k \mid n$

A copy of $K_{1, q}$ in G is called an $X q$-fan when the star is 'pointed' at a vertex in X.

A structural characterization for NMP when $k \mid n$

A copy of $K_{1, q}$ in G is called an $X q$-fan when the star is 'pointed' at a vertex in X.

A bunch of vertex disjoint $X q$-fans together is called an X q-thrill. In particular, an X 1-thrill is simply a matching.

A structural characterization for NMP when $k \mid n$

A copy of $K_{1, q}$ in G is called an $X q$-fan when the star is 'pointed' at a vertex in X.

A bunch of vertex disjoint $X q$-fans together is called an X q-thrill. In particular, an X 1-thrill is simply a matching.

Lemma
If $n=q k$ for some $q \in \mathbb{N}$. Then G has NMP iff G is spanned by an X q-thrill.

A structural characterization for NMP when $k \mid n$

A copy of $K_{1, q}$ in G is called an $X q$-fan when the star is 'pointed' at a vertex in X.

A bunch of vertex disjoint $X q$-fans together is called an X q-thrill. In particular, an X 1-thrill is simply a matching.

Lemma
If $n=q k$ for some $q \in \mathbb{N}$. Then G has NMP iff G is spanned by an X q-thrill.
Proof: Clone q copies of each vertex of X and apply Hall's theorem.

A structural characterization for NMP when $k \mid n$

A copy of $K_{1, q}$ in G is called an $X q$-fan when the star is 'pointed' at a vertex in X.

A bunch of vertex disjoint $X q$-fans together is called an X q-thrill. In particular, an X 1-thrill is simply a matching.

Lemma
If $n=q k$ for some $q \in \mathbb{N}$. Then G has NMP iff G is spanned by an X q-thrill.
Proof: Clone q copies of each vertex of X and apply Hall's theorem.

The second problem also reduces to determining if the corresponding graph has NMP.

Complexity of checking for NMP

Checking if a given $G(X, Y)$ with $|X|=k,|Y|=n$ can be done in Poly (n, k) :

- Clone each $x \in X$ into x_{1}, \ldots, x_{n},
- Clone each $y \in Y$ into y_{1}, \ldots, y_{k},
- Check if the resulting graph has a PM. To determine if a graph $G(V, E)$ has a PM can be done in $O(|E| \sqrt{|V|})$).

Complexity of checking for NMP

Checking if a given $G(X, Y)$ with $|X|=k,|Y|=n$ can be done in Poly (n, k) :

- Clone each $x \in X$ into x_{1}, \ldots, x_{n},
- Clone each $y \in Y$ into y_{1}, \ldots, y_{k},
- Check if the resulting graph has a PM. To determine if a graph $G(V, E)$ has a PM can be done in $O(|E| \sqrt{|V|})$).

For Problem 2, how do we check if NMP holds in that associated graph?

Complexity of checking for NMP

Checking if a given $G(X, Y)$ with $|X|=k,|Y|=n$ can be done in Poly (n, k) :

- Clone each $x \in X$ into x_{1}, \ldots, x_{n},
- Clone each $y \in Y$ into y_{1}, \ldots, y_{k},
- Check if the resulting graph has a PM. To determine if a graph $G(V, E)$ has a PM can be done in $O(|E| \sqrt{|V|})$).

For Problem 2, how do we check if NMP holds in that associated graph?

Is it even true?! If not, how true is it?

NMP in posets

- NMP in ranked posets is a very important property and a crucial hypothesis in several conjectures.

NMP in posets

- NMP in ranked posets is a very important property and a crucial hypothesis in several conjectures.
- Many interesting posets (Boolean lattice, poset of flats in finite projective space etc) are all NMP posets though their corresponding graphs are relatively very sparse.

NMP in posets

- NMP in ranked posets is a very important property and a crucial hypothesis in several conjectures.
- Many interesting posets (Boolean lattice, poset of flats in finite projective space etc) are all NMP posets though their corresponding graphs are relatively very sparse.

Question: How dense must a 'typical' bipartite graph be for it to have NMP?

Enter Randomness: $\mathbb{G}(k, n, p)$

$\mathbb{G}(n, p)$: The Erdős-Rényi random graph: Each pair (u, v) is an edge independently with probability p.

Enter Randomness: $\mathbb{G}(k, n, p)$

$\mathbb{G}(n, p)$: The Erdős-Rényi random graph: Each pair (u, v) is an edge independently with probability p.
$\mathbb{G}(k, n, p)$: Random bipartite graph with the vertex partition (X, Y) with $|X|=k,|Y|=n$: Each $(x, y) \in X \times Y$ is an edge independently with probability p.

Enter Randomness: $\mathbb{G}(k, n, p)$

$\mathbb{G}(n, p)$: The Erdős-Rényi random graph: Each pair (u, v) is an edge independently with probability p.
$\mathbb{G}(k, n, p)$: Random bipartite graph with the vertex partition (X, Y) with $|X|=k,|Y|=n$: Each $(x, y) \in X \times Y$ is an edge independently with probability p.

A Graph Property is a subset of all graphs closed under graph isomorphism. A graph property \mathcal{P} is monotone if the collection is closed w.r.t. taking supergraphs, i.e., if $G \in \mathcal{P}$ and $G \subset H$ then $H \in \mathcal{P}$.

Threshold for graph property

$p_{0}=p_{0}(n)$ is a threshold for a property \mathcal{P} if $\forall p(n)$,

$$
\operatorname{Pr}[\mathbb{G}(n, p) \text { has } \mathcal{P}] \rightarrow \begin{cases}0, & \text { if } p / p_{0} \rightarrow 0 \\ 1, & \text { if } p / p_{0} \rightarrow \infty\end{cases}
$$

Threshold for graph property

$p_{0}=p_{0}(n)$ is a threshold for a property \mathcal{P} if $\forall p(n)$,

$$
\operatorname{Pr}[\mathbb{G}(n, p) \text { has } \mathcal{P}] \rightarrow \begin{cases}0, & \text { if } p / p_{0} \rightarrow 0 \\ 1, & \text { if } p / p_{0} \rightarrow \infty\end{cases}
$$

Theorem (Bollobás, Thomason, 85)
Every monotone graph property has a threshold.

Threshold for Perfect matchings in $\mathbb{G}(n, n, p)$

Theorem (Erdős-Rényi, 66')
For $\varepsilon>0$, and $n \gg 0$,

- If $p<\frac{(1-\varepsilon) \log n}{n}$, then whp $\mathbb{G}(n, n, p)$ does not have PM.
- If $p>\frac{(1+\varepsilon) \log n}{n}$, then $\mathbb{G}(n, n, p)$ has PM. whp.

Here whp (with high probability) means

$$
\mathbb{P}(\mathbb{G}(n, n, p) \text { has } \mathrm{PM}) \rightarrow 1 \text { as } n \rightarrow \infty
$$

$\frac{\log n}{n}$ is a sharp threshold for the existence of perfect matchings in $\mathbb{G}(n, n, p)$.

Threshold for NMP?

Suppose $p<\frac{(1-\varepsilon) \log n}{n}$. Let $N=$ the number of isolated vertices in Y.

- $\mathbb{E}(N)=n(1-p)^{n}$ and by standard concentration bounds (Chernoff), $N>0$ whp.

Threshold for NMP?

Suppose $p<\frac{(1-\varepsilon) \log n}{n}$. Let $N=$ the number of isolated vertices in Y.

- $\mathbb{E}(N)=n(1-p)^{n}$ and by standard concentration bounds (Chernoff), $N>0$ whp.
- Same argument for $\mathbb{G}(k, n, p)$ to give: If $p<\frac{(1-\varepsilon) \log n}{k}$, $\mathbb{G}(k, n, p)$ does not have NMP whp.

Threshold for NMP?

Suppose $p<\frac{(1-\varepsilon) \log n}{n}$. Let $N=$ the number of isolated vertices in Y.

- $\mathbb{E}(N)=n(1-p)^{n}$ and by standard concentration bounds (Chernoff), $N>0$ whp.
- Same argument for $\mathbb{G}(k, n, p)$ to give: If $p<\frac{(1-\varepsilon) \log n}{k}$, $\mathbb{G}(k, n, p)$ does not have NMP whp.

A Heuristic:

- Clone each vertex of $X n / k$ times to get a new graph $\mathbb{G}^{\prime}\left(X^{\prime}, Y\right)$.

Threshold for NMP?

Suppose $p<\frac{(1-\varepsilon) \log n}{n}$. Let $N=$ the number of isolated vertices in Y.

- $\mathbb{E}(N)=n(1-p)^{n}$ and by standard concentration bounds (Chernoff), $N>0$ whp.
- Same argument for $\mathbb{G}(k, n, p)$ to give: If $p<\frac{(1-\varepsilon) \log n}{k}$, $\mathbb{G}(k, n, p)$ does not have NMP whp.

A Heuristic:

- Clone each vertex of $X n / k$ times to get a new graph $\mathbb{G}^{\prime}\left(X^{\prime}, Y\right)$.
- By Kleitman's theorem, G has NMP if and only if the new graph has a perfect matching.

Threshold for NMP?

Suppose $p<\frac{(1-\varepsilon) \log n}{n}$. Let $N=$ the number of isolated vertices in Y.

- $\mathbb{E}(N)=n(1-p)^{n}$ and by standard concentration bounds (Chernoff), $N>0$ whp.
- Same argument for $\mathbb{G}(k, n, p)$ to give: If $p<\frac{(1-\varepsilon) \log n}{k}$, $\mathbb{G}(k, n, p)$ does not have NMP whp.

A Heuristic:

- Clone each vertex of $X n / k$ times to get a new graph $\mathbb{G}^{\prime}\left(X^{\prime}, Y\right)$.
- By Kleitman's theorem, G has NMP if and only if the new graph has a perfect matching.
- If $\mathbb{G}^{\prime} \sim \mathbb{G}\left(n, n, p^{\prime}\right)($?!! $)$ we need $p^{\prime} \gtrsim \frac{\log n}{n}$.

Threshold for NMP?

Suppose $p<\frac{(1-\varepsilon) \log n}{n}$. Let $N=$ the number of isolated vertices in Y.

- $\mathbb{E}(N)=n(1-p)^{n}$ and by standard concentration bounds (Chernoff), $N>0$ whp.
- Same argument for $\mathbb{G}(k, n, p)$ to give: If $p<\frac{(1-\varepsilon) \log n}{k}$, $\mathbb{G}(k, n, p)$ does not have NMP whp.

A Heuristic:

- Clone each vertex of $X n / k$ times to get a new graph $\mathbb{G}^{\prime}\left(X^{\prime}, Y\right)$.
- By Kleitman's theorem, G has NMP if and only if the new graph has a perfect matching.
- If $\mathbb{G}^{\prime} \sim \mathbb{G}\left(n, n, p^{\prime}\right)$ (?!!) we need $p^{\prime} \gtrsim \frac{\log n}{n}$.
- Each vertex of $X=$ union of n / k vertices of X^{\prime}, so threshold for NMP is $\frac{n}{k} \cdot \frac{\log n}{n}=\frac{\log n}{k}$.

Our Results: A sharp threshold for NMP

Theorem
Suppose $\varepsilon>0, k \gg_{\varepsilon} 0$, and $k \leq n<\exp (k)$. Then

- If $p<\frac{(1-\varepsilon) \log n}{k}$, then whp $\mathbb{G}(k, n, p)$ does not have NMP.

Our Results: A sharp threshold for NMP

Theorem
Suppose $\varepsilon>0, k \gg_{\varepsilon} 0$, and $k \leq n<\exp (k)$. Then

- If $p<\frac{(1-\varepsilon) \log n}{k}$, then whp $\mathbb{G}(k, n, p)$ does not have NMP.
- If $p>\frac{(1+\varepsilon) \log n}{k}$, then $\mathbb{G}(k, n, p)$ has NMP whp.

Our Results: A sharp threshold for NMP

Theorem

Suppose $\varepsilon>0, k \gg_{\varepsilon} 0$, and $k \leq n<\exp (k)$. Then

- If $p<\frac{(1-\varepsilon) \log n}{k}$, then whp $\mathbb{G}(k, n, p)$ does not have NMP.
- If $p>\frac{(1+\varepsilon) \log n}{k}$, then $\mathbb{G}(k, n, p)$ has NMP whp.
$\frac{\log n}{k}$ is a sharp threshold for NMP in $\mathbb{G}(k, n, p)$.

Pseudorandom Graphs: Brief Introduction

What does it mean to say that a graph behaves 'random-like'?

Pseudorandom Graphs: Brief Introduction

What does it mean to say that a graph behaves 'random-like'?
Theorem (Erdős, Goldberg, Pach \& Spencer '88)
Let $p=p(n) \leq 0.99$. Then asymptotically almost surely, in the binomial random graph $\mathbb{G}(n, p)$, for any two subsets $X, Y \subseteq V(G)$,

$$
|e(X, Y)-p| X||Y|| \leq O(\sqrt{p n|X||Y|})
$$

Pseudorandom Graphs: Brief Introduction

What does it mean to say that a graph behaves 'random-like'?
Theorem (Erdős, Goldberg, Pach \& Spencer '88)
Let $p=p(n) \leq 0.99$. Then asymptotically almost surely, in the binomial random graph $\mathbb{G}(n, p)$, for any two subsets $X, Y \subseteq V(G)$,

$$
|e(X, Y)-p| X||Y|| \leq O(\sqrt{p n|X||Y|})
$$

Here is one way to capture 'random-like' behavior. Write $p=\frac{e(G)}{\binom{n}{2}}$.

- (CUT SIZES) If U, W are subsets of $V\left(G_{n}\right)$, then

$$
e(U, W) \approx p|U||W|
$$

Pseudorandom graphs: An introduction

Definition

(Thomason) A graph G on vertex set V is (p, β)-jumbled if, for all vertex subsets $X, Y \subseteq V(G)$,

$$
|e(X, Y)-p| X||Y|| \leq \beta \sqrt{|X \| Y|}
$$

Pseudorandom graphs: An introduction

Definition

(Thomason) A graph G on vertex set V is (p, β)-jumbled if, for all vertex subsets $X, Y \subseteq V(G)$,

$$
|e(X, Y)-p| X||Y|| \leq \beta \sqrt{|X||Y|}
$$

In the context of bipartite graphs:
Definition (Following Thomason '89)
Suppose $0<p<1$ and $0 \leq \varepsilon<1$. A bipartite graph $G(X, Y)$ with $|X|=k \leq n=|Y|$ is called T-pseudorandom with parameters (p, ε) if

- For each $x \in X, d(x) \geq p n$,
- For $x \neq x^{\prime}, x, x^{\prime} \in X,\left|N(x) \cap N\left(x^{\prime}\right)\right| \leq p^{2} n(1+\varepsilon)$.

Any two distinct vertices of X have at most $p^{2} n(1+\varepsilon)$ common neighbours.

Main theorem of Thomason

These graphs are rightfully called pseudorandom because
Theorem
Let $G(X, Y)$ be a bipartite graph with $|X|=k \leq n=|Y|$, which is T-pseudorandom with parameters (p, ε). Then for every subset $A \subseteq X$ with $1 / p \leq|A|$ and every subset $B \subseteq Y$,

$$
|e(A, B)-p| A||B|| \leq \sqrt{p n|A||B|(1+\varepsilon p|A|)}
$$

Examples of T-pseudorandom graphs

Let X be the points in projective d-space over \mathbb{F}_{q}, Y be the 'hyperplanes', then the corresponding incidence bipartite graph has vertex parts of sizes $|X|=|Y|=n:=1+q+\cdots+q^{d-1}$, and is T-pseudorandom with parameters

$$
p=n^{-1 / 2}(1+o(1)), \quad \varepsilon=0
$$

Examples of T-pseudorandom graphs

Let X be the points in projective d-space over \mathbb{F}_{q}, Y be the 'hyperplanes', then the corresponding incidence bipartite graph has vertex parts of sizes $|X|=|Y|=n:=1+q+\cdots+q^{d-1}$, and is T-pseudorandom with parameters

$$
p=n^{-1 / 2}(1+o(1)), \quad \varepsilon=0
$$

The point-block incidence graphs for symmetric designs are also T-pseudorandom.

A robust model for pseudorandomness

T-pseudorandomness is algorithmically easily verifiable as it is combinatorial in definition. It also has a certain sense of robustness:

A robust model for pseudorandomness

T-pseudorandomness is algorithmically easily verifiable as it is combinatorial in definition. It also has a certain sense of robustness:

Lemma (N.B., D. Kush, 2019+)
Let $0<\varepsilon<\frac{1}{2}$ and suppose $G(X, Y)$ is a T-pseudorandom bipartite graph with parameters $\left(p_{0}, \varepsilon_{0}\right)$ with $|X|=k \leq|Y|=n$, and suppose $p_{0} \geq \frac{1}{\sqrt{k}}$. Then, for any integer $\varepsilon^{3} n / 2 \leq D \leq \varepsilon^{3} n$, there exist subsets $C_{X} \subseteq X$ and $C_{Y} \subseteq Y$ such that

- $\left|C_{Y}\right|=D$ and $\left|C_{X}\right| \leq \eta k$, where $\eta=\exp \left(-\frac{C}{\varepsilon}\right)$ for some fixed constant C,
- $G\left(X \backslash C_{X}, Y \backslash C_{Y}\right)$ is T-pseudorandom with parameters (p_{1}, ε_{1}) where $p_{1}=p_{0}(1-\varepsilon)$ and $\varepsilon_{1} \leq 5\left(\varepsilon_{0}+3 \varepsilon\right)$.

Allows for efficient randomized algorithmic constructions of several T-pseudorandom bipartite graphs.

'Almost' NMP in Bipartite Graphs: NMP-Approximability

Informally: If one can remove a small proportion of vertices from both parts s.t. the resulting graph has NMP, then it is 'NMP-approximable'.

'Almost' NMP in Bipartite Graphs: NMP-Approximability

Informally: If one can remove a small proportion of vertices from both parts s.t. the resulting graph has NMP, then it is 'NMP-approximable'.
Formally,

Definition (NMP-Approximability)

Suppose $\varepsilon>0$. For functions $f, g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f(x), g(x) \rightarrow 0$ as $x \rightarrow 0$, a bipartite graph $G(X, Y)$ is said to be (f, g, ε)-NMP approximable if there are subsets $\mathcal{X} \subseteq X$ and $\mathcal{Y} \subseteq Y$ such that:

- $\frac{|\mathcal{X}|}{|X|} \leq f(\varepsilon), \frac{|\mathcal{Y}|}{|Y|} \leq g(\varepsilon)$
- $G(X \backslash \mathcal{X}, Y \backslash \mathcal{Y})$ has NMP.

NMP-Approximability in T-pseudorandom graphs

Henceforth $|X|=k,|Y|=n$, and $k \leq n$.

NMP-Approximability in T-pseudorandom graphs

Henceforth $|X|=k,|Y|=n$, and $k \leq n$.
Theorem (N.B., D. Kush, 2019+)
Suppose $0 \leq \varepsilon<1$, and let $\omega: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a non-negative valued function that satisfies $\omega(k) \rightarrow \infty$ as $k \rightarrow \infty$. There exists an integer $k_{0}=k_{0}(\varepsilon, \omega)$ such that the following holds.
Suppose $p \geq \frac{\omega(k)}{k}$ and suppose $G=G(X, Y)$ is T-pseudorandom with parameters (p, ε). Then G is (f, g, ε)-NMP-approximable with

$$
f(x), g(x)=O\left(x^{1 / 4} \log (1 / x)\right)
$$

Moreover, the deletion sets can be determined in polynomial time.

Something about the proofs: Threshold for NMP

Start with the LYM characterization for NMP: Let $p>\frac{(1+\varepsilon) \log n}{k}$ and $\mathbb{G}=\mathbb{G}(k, n, p)$ not have NMP.

Something about the proofs: Threshold for NMP

Start with the LYM characterization for NMP: Let $p>\frac{(1+\varepsilon) \log n}{k}$ and $\mathbb{G}=\mathbb{G}(k, n, p)$ not have NMP.
Kleitman's theorem \Rightarrow there exists $I=I_{X} \cup I_{Y}$ in \mathbb{G} with $\left|I_{X}\right|=\ell$ and $\left|I_{Y}\right| \geq\left\lceil n\left(1-\frac{\ell}{k}\right)\right\rceil$ for some $\ell>0$.

Something about the proofs: Threshold for NMP

Start with the LYM characterization for NMP: Let $p>\frac{(1+\varepsilon) \log n}{k}$ and $\mathbb{G}=\mathbb{G}(k, n, p)$ not have NMP.
Kleitman's theorem \Rightarrow there exists $I=I_{X} \cup I_{Y}$ in \mathbb{G} with $\left|I_{X}\right|=\ell$ and $\left|I_{Y}\right| \geq\left\lceil n\left(1-\frac{\ell}{k}\right)\right\rceil$ for some $\ell>0$. From the union bound,

$$
\mathbb{P}(\mathbb{G} \text { does not have NMP }) \leq \sum_{\ell=1}^{k} P_{\ell}
$$

where for $1 \leq \ell \leq k$,

$$
\begin{aligned}
P_{\ell} & =\binom{k}{\ell}\binom{n}{\left\lceil n\left(1-\frac{\ell}{k}\right)\right\rceil}(1-p)^{\ell\left[n\left(1-\frac{\ell}{k}\right)\right\rceil} \text { for } \ell<k \\
P_{k} & =n \cdot(1-p)^{k} \leq \frac{1}{n^{\varepsilon}}
\end{aligned}
$$

The LYM approach

After some calculations (!) one can show $\sum_{\ell} P_{\ell}=o(1)$ if $n \gg k$ or if $p>\frac{10 \log n}{k}$.

To get the sharp threshold we need other ideas, more 'structure'.

The proof of Erdős-Rényi for PM

Recall the Erdős-Rényi theorem: Sharp threshold for PM is $\frac{\log n}{n}$. Suppose $p>\frac{(1+\varepsilon) \log n}{n}$ and $\mathbb{G}(n, n, p)$ does not admit PM, then there exists $S \subseteq X$ s.t. $|N(S)|<|S|$.

The proof of Erdős-Rényi for PM

Recall the Erdős-Rényi theorem: Sharp threshold for PM is $\frac{\log n}{n}$. Suppose $p>\frac{(1+\varepsilon) \log n}{n}$ and $\mathbb{G}(n, n, p)$ does not admit PM, then there exists $S \subseteq X$ s.t. $|N(S)|<|S|$.

Let S be a minimal such set. Then one has

- $|S| \leq \frac{n}{2}$
- $|N(S)|=|S|-1$
- Every vertex in $N(S)$ is adjacent to at least 2 vertices of S.

The proof of Erdős-Rényi for PM

Recall the Erdős-Rényi theorem: Sharp threshold for PM is $\frac{\log n}{n}$. Suppose $p>\frac{(1+\varepsilon) \log n}{n}$ and $\mathbb{G}(n, n, p)$ does not admit PM, then there exists $S \subseteq X$ s.t. $|N(S)|<|S|$.
Let S be a minimal such set. Then one has

- $|S| \leq \frac{n}{2}$
- $|N(S)|=|S|-1$
- Every vertex in $N(S)$ is adjacent to at least 2 vertices of S.

A Union bound gives the following bound on the 'error' probability:

$$
\sum_{|S|=1}^{n / 2}\binom{n}{|S|}\binom{n}{|S|-1}(1-p)^{|S| \cdot(n-|S|+1)}\left(\binom{|S|}{2} \cdot p^{2}\right)^{|S|-1}
$$

The proof of Erdős-Rényi for PM

Recall the Erdős-Rényi theorem: Sharp threshold for PM is $\frac{\log n}{n}$. Suppose $p>\frac{(1+\varepsilon) \log n}{n}$ and $\mathbb{G}(n, n, p)$ does not admit PM, then there exists $S \subseteq X$ s.t. $|N(S)|<|S|$.
Let S be a minimal such set. Then one has

- $|S| \leq \frac{n}{2}$
- $|N(S)|=|S|-1$
- Every vertex in $N(S)$ is adjacent to at least 2 vertices of S.

A Union bound gives the following bound on the 'error' probability:

$$
\sum_{|S|=1}^{n / 2}\binom{n}{|S|}\binom{n}{|S|-1}(1-p)^{|S| \cdot(n-|S|+1)}\left(\binom{|S|}{2} \cdot p^{2}\right)^{|S|-1}
$$

The large amount of 'structure' revealed by considering the minimal violating set was critical!

Completing the Proof: Extra 'structure'

Fact
If $G(X, Y)$ has NMP, then $G(Y, X)$ also has NMP, i.e., for any $T \subseteq Y,\left|N_{X}(T)\right| \geq \frac{k}{n}|T|$.

Completing the Proof: Extra 'structure'

Fact
If $G(X, Y)$ has NMP, then $G(Y, X)$ also has NMP, i.e., for any $T \subseteq Y,\left|N_{X}(T)\right| \geq \frac{k}{n}|T|$.

Lemma
Suppose $G(X, Y)$ with $|X|=k \leq n=|Y|$ does not have NMP. Then either there exists

- $S \subset X$ that violates NMP for $G(X, Y)$ with $|S| \leq \frac{k}{2}$, or
- $T \subset Y$ that violates NMP for $G(Y, X)$ with $|T|<\frac{n}{2}+\frac{n}{k}$.

Completing the Proof: Extra 'structure'

Fact
If $G(X, Y)$ has NMP, then $G(Y, X)$ also has NMP, i.e., for any $T \subseteq Y,\left|N_{X}(T)\right| \geq \frac{k}{n}|T|$.

Lemma

Suppose $G(X, Y)$ with $|X|=k \leq n=|Y|$ does not have NMP.
Then either there exists

- $S \subset X$ that violates NMP for $G(X, Y)$ with $|S| \leq \frac{k}{2}$, or
- $T \subset Y$ that violates NMP for $G(Y, X)$ with $|T|<\frac{n}{2}+\frac{n}{k}$.

Fact

Suppose $p>\frac{(1+\varepsilon) \log n}{k}$. For any fixed $r \in \mathbb{N}, d(x) \geq r$ for all $x \in X$ and $d(y) \geq r$ for all $y \in Y$ whp.

Proof of NMP-approximability

$G(X, Y)$ is T-pseudorandom with parameters (p, ε) with $p \geq \frac{\omega(k)}{k}$.
Suppose $\frac{n}{k}=\frac{L}{\ell}$ with $\operatorname{gcd}(\ell, L)=1$ and $\ell, L=O(1)$.

Proof of NMP-approximability

$G(X, Y)$ is T-pseudorandom with parameters (p, ε) with $p \geq \frac{\omega(k)}{k}$.
Suppose $\frac{n}{k}=\frac{L}{\ell}$ with $\operatorname{gcd}(\ell, L)=1$ and $\ell, L=O(1)$.
Main difficulties:

- Unlike in the case when $k \mid n$ there is no canonical structure that certifies NMP.
- When $n / k(\bmod 1)$ is 'large' then a cloning argument fails spectacularly.

Proof of NMP-approximability

$G(X, Y)$ is T-pseudorandom with parameters (p, ε) with $p \geq \frac{\omega(k)}{k}$.
Suppose $\frac{n}{k}=\frac{L}{\ell}$ with $\operatorname{gcd}(\ell, L)=1$ and $\ell, L=O(1)$.
Main difficulties:

- Unlike in the case when $k \mid n$ there is no canonical structure that certifies NMP.
- When $n / k(\bmod 1)$ is 'large' then a cloning argument fails spectacularly.
New Idea: A decomposition type theorem, i.e., want a spanning subgraph of G which certifies NMP (Especially when $n / k \ni \mathbb{N}$).

New structure: Euclidean trees $T_{\ell, L}$

Suppose $\ell<L$. Consider the Euclidean algorithm on the pair

 (ℓ, L) as follows.
New structure: Euclidean trees $T_{\ell, L}$

Suppose $\ell<L$. Consider the Euclidean algorithm on the pair (ℓ, L) as follows.

$$
L=q_{m} \ell+r_{m-1}, \quad 0<r_{m-1}<r_{m}=\ell
$$

New structure: Euclidean trees $T_{\ell, L}$

Suppose $\ell<L$. Consider the Euclidean algorithm on the pair (ℓ, L) as follows.

$$
\begin{aligned}
L & =q_{m} \ell+r_{m-1}, & & 0<r_{m-1}<r_{m}=\ell \\
\ell & =q_{m-1} r_{m-1}+r_{m-2}, & & 0<r_{m-2}<r_{m-1} \\
\cdots & =\cdots & & \\
r_{3} & =q_{2} r_{2}+r_{1}, & & 0<r_{1}<r_{2}, \\
r_{2} & =q_{1} r_{1}, & & r_{1}=1 .
\end{aligned}
$$

New structure: Euclidean trees $T_{\ell, L}$

Suppose $\ell<L$. Consider the Euclidean algorithm on the pair (ℓ, L) as follows.

$$
\begin{aligned}
L & =q_{m} \ell+r_{m-1}, & & 0<r_{m-1}<r_{m}=\ell \\
\ell & =q_{m-1} r_{m-1}+r_{m-2}, & & 0<r_{m-2}<r_{m-1} \\
\cdots & =\cdots & & \\
r_{3} & =q_{2} r_{2}+r_{1}, & & 0<r_{1}<r_{2}, \\
r_{2} & =q_{1} r_{1}, & & r_{1}=1 .
\end{aligned}
$$

If we set $r_{m+1}=L, r_{m}=\ell, r_{0}=0$, then we may write

$$
r_{i+1}=q_{i} r_{i}+r_{i-1} \text { for } 1 \leq i \leq m .
$$

New structure: Euclidean trees $T_{\ell, L}$

Suppose $\ell<L$. Consider the Euclidean algorithm on the pair (ℓ, L) as follows.

$$
\begin{aligned}
L & =q_{m} \ell+r_{m-1}, & & 0<r_{m-1}<r_{m}=\ell \\
\ell & =q_{m-1} r_{m-1}+r_{m-2}, & & 0<r_{m-2}<r_{m-1} \\
\cdots & =\cdots & & \\
r_{3} & =q_{2} r_{2}+r_{1}, & & 0<r_{1}<r_{2}, \\
r_{2} & =q_{1} r_{1}, & & r_{1}=1 .
\end{aligned}
$$

If we set $r_{m+1}=L, r_{m}=\ell, r_{0}=0$, then we may write

$$
r_{i+1}=q_{i} r_{i}+r_{i-1} \text { for } 1 \leq i \leq m .
$$

Construct a family of trees called Euclidean trees in m steps: In step i (if even) add an $X q_{i}$-thrill from the 'first' left r_{i} vertices $\left\{x_{1}, \ldots, x_{r_{i}}\right\}$ into $\left\{y_{r_{(i-1)}+1}, \ldots, y_{r_{(i+1)}}\right\}$.

Illustrative example: $T_{3,7}$

$$
\begin{aligned}
7 & =2 \cdot 3+1 \\
3 & =3 \cdot 1
\end{aligned}
$$

Illustrative example: $T_{3,7}$

$$
\begin{aligned}
& 7=2 \cdot 3+1 \\
& 3=3 \cdot 1
\end{aligned}
$$

Illustrative example: $T_{3,7}$

$$
\begin{aligned}
& 7=2 \cdot 3+1 \\
& 3=3 \cdot 1
\end{aligned}
$$

$$
3=3 \times 1+0
$$

Illustrative example: $T_{3,7}$

$$
\begin{aligned}
& 7=2 \cdot 3+1 \\
& 3=3 \cdot 1 .
\end{aligned}
$$

Another Example: $T_{5,8}$

The Euclidean algorithm gives $m=4,\left(r_{2}, r_{3}, r_{4}, r_{5}\right)=(2,3,5,8)$, $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=(2,1,1,1)$.

Another Example: $T_{5,8}$

The Euclidean algorithm gives $m=4,\left(r_{2}, r_{3}, r_{4}, r_{5}\right)=(2,3,5,8)$, $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=(2,1,1,1)$.

Another Example: $T_{5,8}$

The Euclidean algorithm gives $m=4,\left(r_{2}, r_{3}, r_{4}, r_{5}\right)=(2,3,5,8)$, $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=(2,1,1,1)$.

Another Example: $T_{5,8}$

The Euclidean algorithm gives $m=4,\left(r_{2}, r_{3}, r_{4}, r_{5}\right)=(2,3,5,8)$, $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=(2,1,1,1)$.

Another Example: $T_{5,8}$

The Euclidean algorithm gives $m=4,\left(r_{2}, r_{3}, r_{4}, r_{5}\right)=(2,3,5,8)$, $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=(2,1,1,1)$.

Another Example: $T_{5,8}$

The Euclidean algorithm gives $m=4,\left(r_{2}, r_{3}, r_{4}, r_{5}\right)=(2,3,5,8)$, $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=(2,1,1,1)$.

Figure: The Euclidean (5,8)-tree process. $T_{5,8}$ evolves as $T_{2,1} \Rightarrow T_{2,3} \Rightarrow T_{5,3} \Rightarrow T_{5,8}$.

Proof Outline of NMP-Approximability

Lemma

Euclidean Trees have NMP.

Proof Outline of NMP-Approximability

Lemma

Euclidean Trees have NMP.
Write $\frac{n}{k}=\frac{L}{\ell}$ with $(\ell, L)=1$.
Partition $X=X_{1} \sqcup \cdots \sqcup X_{\ell}$ and $Y=Y_{1} \sqcup \cdots \sqcup Y_{L}$. Replicate the Euclidean (ℓ, L)-process, with the vertices x_{i}, y_{j} replaced by the blocks X_{i}, Y_{j}. The following lemma is key:

Proof Outline of NMP-Approximability

Lemma

Euclidean Trees have NMP.
Write $\frac{n}{k}=\frac{L}{\ell}$ with $(\ell, L)=1$.
Partition $X=X_{1} \sqcup \cdots \sqcup X_{\ell}$ and $Y=Y_{1} \sqcup \cdots \sqcup Y_{L}$. Replicate the Euclidean (ℓ, L)-process, with the vertices x_{i}, y_{j} replaced by the blocks X_{i}, Y_{j}. The following lemma is key:
Lemma (Informal)
Suppose $q \in \mathbb{N}$ and $U \subseteq X$ and $V \subseteq Y$ both are large enough subsets such that $|V|=q|U|$. Then there exist 'small' subsets $A \subseteq U, B \subseteq V$ such that $G(U \backslash A, V \backslash B)$ is spanned by an X q-thrill.

Proof of NMP-Approximability: Our main structural theorem

Theorem
Suppose $G(X, Y)$ is T-pseudorandom with parameters (p, ε) with $p \geq \frac{\omega(k)}{k}$, and suppose $k \gg 0$. Suppose $\frac{n}{k}=\frac{L}{\ell}$ with $(\ell, L)=1$ and $\ell, L=O(1)$. Then there exist sets $\mathcal{X} \subset X, \mathcal{Y} \subset Y$ s.t. $|\mathcal{X}| \leq O(\varepsilon) k,|\mathcal{Y}| \leq O(\varepsilon) n$ s.t. $G(X \backslash \mathcal{X}, Y \backslash \mathcal{Y})$ is spanned by vertex disjoint copies of $T_{\ell, L}$.

Proof of NMP-Approximability: Our main structural theorem

Theorem
Suppose $G(X, Y)$ is T-pseudorandom with parameters (p, ε) with $p \geq \frac{\omega(k)}{k}$, and suppose $k \gg 0$. Suppose $\frac{n}{k}=\frac{L}{\ell}$ with $(\ell, L)=1$ and $\ell, L=O(1)$. Then there exist sets $\mathcal{X} \subset X, \mathcal{Y} \subset Y$ s.t. $|\mathcal{X}| \leq O(\varepsilon) k,|\mathcal{Y}| \leq O(\varepsilon) n$ s.t. $G(X \backslash \mathcal{X}, Y \backslash \mathcal{Y})$ is spanned by vertex disjoint copies of $T_{\ell, L}$.
In general tweak (n, k) to a 'close-enough' $\left(n^{\prime}, k^{\prime}\right)$ such that $\frac{n^{\prime}}{k^{\prime}}=\frac{L}{\ell}$ with $\ell, L=O_{\varepsilon}(1)$.

An approx. version of problem 2

The proof of NMP-approximability works in more general pseudorandom paradigms as well.

An approx. version of problem 2

The proof of NMP-approximability works in more general pseudorandom paradigms as well.
Theorem (N.Balachandran, D. K., 2019)
Suppose $X, Y \subset \mathbb{F}_{q},|Y|=10|X| \geq q / 100$. Then for any multiplicative subgroup $H \subset \mathbb{F}_{q}^{*}$ of size at least $q^{1 / 2+\varepsilon}$, one can delete at most $O\left(q^{1-\varepsilon}\right)$ elements from both X, Y s.t. in the remaining sets, problem 2 has an affirmative answer for H as well (in place of quadratic residues).

An approx. version of problem 2

The proof of NMP-approximability works in more general pseudorandom paradigms as well.
Theorem (N.Balachandran, D. K., 2019)
Suppose $X, Y \subset \mathbb{F}_{q},|Y|=10|X| \geq q / 100$. Then for any multiplicative subgroup $H \subset \mathbb{F}_{q}^{*}$ of size at least $q^{1 / 2+\varepsilon}$, one can delete at most $O\left(q^{1-\varepsilon}\right)$ elements from both X, Y s.t. in the remaining sets, problem 2 has an affirmative answer for H as well (in place of quadratic residues).

Fact
The corresponding bipartite graph $\Gamma_{q}(H)$ is ($q,|H|, \sqrt{q})$-pseudorandom.

THANK YOU!

Induction Step Outline

Figure: Induction step

