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2 Problems

Definition
A k x n star array is a k x n array A whose entries are * or blanks.

EXAMPLE:
x ok *

A= %k *

x ok ok
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2 Problems

Definition
A k x n star array is a k x n array A whose entries are * or blanks.

EXAMPLE:
x % *
A= * % *
* k%

Problem 1: Given a star array A when is it possible to replace
some of the % by non-negative integers (blanks become zero) s.t.
in the resulting integral array, all row sums equal R and all column
sums equal C' for some R, C > 07
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2 Problems (contd.)

Problem 2: Suppose ¢ is a (large) prime, and suppose X,Y C I,
s.t. |Y] =10|X|, and | X| > ¢/1000, is it possible to partition
Y:=YiU---UYx st foreachz € X

> |Y,| = 10,
» For each y € Y,, = + y is a quadratic residue?
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In graph theoretic terms...

Deepanshu Kush NMP in Random & Pseudorandom Graphs



In graph theoretic terms...

Problem 1: If A is a star array, there is an associated bipartite
graph G4 = G(X,Y, E):

> X = Set of Rows of A, Y= Set of Columns of A,

> Forz e X,yeY, (z,y) € Eiff A(z,y) = *.

Problem 2: Consider the bipartite graph G(X,Y, E) where for
reX,yeY, (z,y) € Eiff z +y is a quadratic residue.
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Perfect Matchings in Bipartite Graphs

Suppose k = n. If the associated bipartite graph has a perfect
matching (PM), i.e., a set of pairwise disjoint edges that span all
the vertices then Problem 1 admits an affirmative solution.
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Perfect Matchings in Bipartite Graphs

Suppose k = n. If the associated bipartite graph has a perfect
matching (PM), i.e., a set of pairwise disjoint edges that span all
the vertices then Problem 1 admits an affirmative solution.

The converse also holds: If G4 has no PM then the star array does
not have this property:
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Perfect Matchings in Bipartite Graphs

Suppose k = n. If the associated bipartite graph has a perfect
matching (PM), i.e., a set of pairwise disjoint edges that span all
the vertices then Problem 1 admits an affirmative solution.

The converse also holds: If G4 has no PM then the star array does
not have this property:

Hall's theorem: G(X,Y’) has PM iff V.S C X, |N(S)| > |S|. Here,
N(S) is the set of neighbors of S.
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Hall's Theorem: An illustration

v v
T <
< -t
5> I Y
PN PN

Each S C X satisfies |[N(S)| > |S|. So, G has a perfect matching.

It states that G(X,Y’) has a perfect matching iff
VS C X, IN(S)| > |S|.
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Hall's Theorem: An illustration

v v
T <
< -t
5> I Y
PN PN

Each S C X satisfies |[N(S)| > |S|. So, G has a perfect matching.

It states that G(X,Y’) has a perfect matching iff

VS C X, IN(S)| > |S|.

What is an analogous result in the case when | X| = k and
Y| =n?
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The Normalized Matching Property in Bipartite graphs

Definition
G = G(X,Y) is said to have the Normalized Matching
Property (NMP) if
[N (S|
Y]

18

forall S C X.
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The Normalized Matching Property in Bipartite graphs

Definition
G = G(X,Y) is said to have the Normalized Matching
Property (NMP) if

NGINE

Y| — X
forall S C X.

In particular, if | X| = |Y|, then this is the familiar Hall's condition
for the existence of PM in G.
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The Normalized Matching Property in Bipartite graphs

Definition
G = G(X,Y) is said to have the Normalized Matching
Property (NMP) if
[N (S|
Y]

18

forall S C X.

In particular, if | X| = |Y|, then this is the familiar Hall's condition
for the existence of PM in G.

Notation: For A C X, B C Y, G(A, B) denotes the subgraph
induced by the vertices in AU B. e(4, B) := |[{(A x B)N E(G)}|.
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Equivalent Criteria

NMP in bipartite graphs is rather well-understood due to the
following

Theorem
(Kleitman '74) The following are equivalent:

» (NMP) G with |X|=k,|Y| =n has NMP.

. , InX| , |Iny
» (LYM) For any independent set I in G, % + % <1
» (REG) There exists w: E — NU {0} such that Z w(e)

esx

eck
(resp. Z w(e)) is equal for all x € X (resp. for ally €Y).
esy
eck
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Equivalent Criteria

NMP in bipartite graphs is rather well-understood due to the
following

Theorem
(Kleitman '74) The following are equivalent:

» (NMP) G with |X|=k,|Y| =n has NMP.

. , InX| , |Iny
» (LYM) For any independent set I in G, % + % <1
» (REG) There exists w: E — NU {0} such that Z w(e)

esx
eck
(resp. Z w(e)) is equal for all x € X (resp. for ally €Y).
esy
eck

By condition REG, it follows that the first problem reduces to
whether or not the corresponding graph has NMP.
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Structural Characterization: An illustration

In the first example, the graph G4 is
Y

X -

o

B,

A

N

Every S C X satisfies |[N(S)| > 2|95]



Structural Characterization: An illustration

In the first example, the graph G4 is
Y Y

X |~ X |

\

N
N, \

Every S C X satisfies |[N(S)| > 2|95] G is spanned by an X 2-thrill

A
/

True in general, i.e. when 7 =g € N.
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Structural Characterization: An illustration

In the first example, the graph G4 is
Y Y

X |~ X |

\

N
N, \

Every S C X satisfies |[N(S)| > 2|95] G is spanned by an X 2-thrill

A
/

True in general, i.e. when 7 = ¢ € N.But what about when
n/k > N7 Is there an appropriate generalisation? We shall return
to this later.
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A structural characterization for NMP when k | n

A copy of K14 in G is called an X g-fan when the star is ‘pointed’
at a vertex in X.
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A structural characterization for NMP when k | n

A copy of K14 in G is called an X g-fan when the star is ‘pointed’
at a vertex in X.

A bunch of vertex disjoint X g-fans together is called an X
g-thrill. In particular, an X 1-thrill is simply a matching.

Deepanshu Kush NMP in Random & Pseudorandom Graphs



A structural characterization for NMP when k | n

A copy of K14 in G is called an X g-fan when the star is ‘pointed’
at a vertex in X.

A bunch of vertex disjoint X g-fans together is called an X
g-thrill. In particular, an X 1-thrill is simply a matching.

Lemma
If n = gk for some q € N. Then G has NMP iff G is spanned by
an X q-thrill.
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A structural characterization for NMP when k | n

A copy of K14 in G is called an X g-fan when the star is ‘pointed’
at a vertex in X.

A bunch of vertex disjoint X g-fans together is called an X
g-thrill. In particular, an X 1-thrill is simply a matching.

Lemma
If n = gk for some q € N. Then G has NMP iff G is spanned by
an X q-thrill.

Proof: Clone ¢ copies of each vertex of X and apply Hall's
theorem.
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A structural characterization for NMP when k | n

A copy of K14 in G is called an X g-fan when the star is ‘pointed’
at a vertex in X.

A bunch of vertex disjoint X g-fans together is called an X
g-thrill. In particular, an X 1-thrill is simply a matching.

Lemma

If n = gk for some q € N. Then G has NMP iff G is spanned by
an X q-thrill.

Proof: Clone ¢ copies of each vertex of X and apply Hall's
theorem.

The second problem also reduces to determining if the
corresponding graph has NMP.
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Complexity of checking for NMP

Checking if a given G(X,Y) with | X| =k, |Y| = n can be done in
Poly(n, k):

» Clone each z € X into x1,..., %y,

» Clone each y € Y into 1, ..., Yk,

» Check if the resulting graph has a PM. To determine if a
graph G(V, E) has a PM can be done in O(|E|\/|V])).
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Complexity of checking for NMP

Checking if a given G(X,Y) with | X| =k, |Y| = n can be done in
Poly(n, k):

» Clone each z € X into x1,..., %y,

» Clone each y € Y into 1, ..., Yk,

» Check if the resulting graph has a PM. To determine if a
graph G(V, E) has a PM can be done in O(|E|\/|V])).

For Problem 2, how do we check if NMP holds in that associated
graph?
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Complexity of checking for NMP

Checking if a given G(X,Y) with | X| =k, |Y| = n can be done in
Poly(n, k):

» Clone each z € X into x1,..., %y,

» Clone each y € Y into 1, ..., Yk,

» Check if the resulting graph has a PM. To determine if a
graph G(V, E) has a PM can be done in O(|E|\/|V])).

For Problem 2, how do we check if NMP holds in that associated
graph?

Is it even true?! If not, how true is it?
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» NMP in ranked posets is a very important property and a
crucial hypothesis in several conjectures.
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» NMP in ranked posets is a very important property and a
crucial hypothesis in several conjectures.

» Many interesting posets (Boolean lattice, poset of flats in
finite projective space etc) are all NMP posets though their
corresponding graphs are relatively very sparse.
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» NMP in ranked posets is a very important property and a
crucial hypothesis in several conjectures.

» Many interesting posets (Boolean lattice, poset of flats in
finite projective space etc) are all NMP posets though their
corresponding graphs are relatively very sparse.

Question: How dense must a ‘typical’ bipartite graph be for it to
have NMP?
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Enter Randomness: G(k, n, p)

G(n,p): The Erdés-Rényi random graph: Each pair (u,v) is an
edge independently with probability p.
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Enter Randomness: G(k, n, p)

G(n,p): The Erdés-Rényi random graph: Each pair (u,v) is an
edge independently with probability p.

G(k,n,p): Random bipartite graph with the vertex partition

(X,Y) with | X| =k, |Y| =n: Each (z,y) € X XY is an edge
independently with probability p.
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Enter Randomness: G(k, n, p)

G(n,p): The Erdés-Rényi random graph: Each pair (u,v) is an
edge independently with probability p.

G(k,n,p): Random bipartite graph with the vertex partition
(X,Y) with | X| =k, |Y| =n: Each (z,y) € X XY is an edge
independently with probability p.

A Graph Property is a subset of all graphs closed under graph
isomorphism. A graph property P is monotone if the collection is
closed w.r.t. taking supergraphs, i.e., if G € P and G C H then
HeP.
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Threshold for graph property

po = po(n) is a threshold for a property P if Vp(n),

0, ifp/po—0

Pr[G(n,p) has P|] — _
1, ifp/po — o0
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Threshold for graph property

po = po(n) is a threshold for a property P if Vp(n),

0, ifp/po—0

Pr[G(n,p) has P|] — _
1, ifp/po — o0

Theorem (Bollobas, Thomason, 85)
Every monotone graph property has a threshold.
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Threshold for Perfect matchings in G(n,n, p)

Theorem (Erdés-Rényi, 66')
Fore >0, and n > 0,
> Ifp< (1_6%, then whp G(n,n,p) does not have PM.

> Ifp> (HE)%, then G(n,n,p) has PM. whp.
Here whp (with high probability) means
P(G(n,n,p) has PM) — 1 as n — oc.

10% is a sharp threshold for the existence of perfect matchings in

G(n,n,p).
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Threshold for NMP?

(1—¢)logn
n

Suppose p < . Let N = the number of isolated vertices

inY.

» E(N)=n(1—p)" and by standard concentration bounds
(Chernoff), N > 0 whp.
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Threshold for NMP?

(1—¢)logn
n

Suppose p < . Let N = the number of isolated vertices

inY.

» E(N)=n(1—p)" and by standard concentration bounds
(Chernoff), N > 0 whp.

» Same argument for G(k,n,p) to give: If p <
G(k,n,p) does not have NMP whp.

(1— )logn
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Threshold for NMP?

(1—¢)logn
n

Suppose p < . Let N = the number of isolated vertices

inY.

» E(N)=n(1—p)" and by standard concentration bounds
(Chernoff), N > 0 whp.

» Same argument for G(k,n,p) to give: If p < (1_5)%,
G(k,n,p) does not have NMP whp.

A Heuristic:

» Clone each vertex of X n/k times to get a new graph
G'(X")Y).
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Threshold for NMP?

(1—¢)logn
n

Suppose p < . Let N = the number of isolated vertices

inY.

» E(N)=n(1—p)" and by standard concentration bounds
(Chernoff), N > 0 whp.

» Same argument for G(k,n,p) to give: If p <
G(k,n,p) does not have NMP whp.

(1— )logn

A Heuristic:
» Clone each vertex of X n/k times to get a new graph
G'(X")Y).
> By Kleitman’s theorem, G has NMP if and only if the new
graph has a perfect matching.
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Threshold for NMP?

(1—¢)logn
n

Suppose p < . Let N = the number of isolated vertices

inY.

» E(N)=n(1—p)" and by standard concentration bounds
(Chernoff), N > 0 whp.

» Same argument for G(k,n,p) to give: If p < ()ﬂ,

G(k,n,p) does not have NMP whp.
A Heuristic:
» Clone each vertex of X n/k times to get a new graph
G'(X")Y).
> By Kleitman’s theorem, G has NMP if and only if the new
graph has a perfect matching.
> If G’ ~ G(n,n,p) (?!1) we need p/ > 187
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Threshold for NMP?

(1—¢)logn
Suppose p < ~—/——

inY.

» E(N)=n(1—p)" and by standard concentration bounds
(Chernoff), N > 0 whp.

. Let N = the number of isolated vertices

» Same argument for G(k,n,p) to give: If p < ()ﬂ,

G(k,n,p) does not have NMP whp.
A Heuristic:

» Clone each vertex of X n/k times to get a new graph
G'(X")Y).

> By Kleitman’s theorem, G has NMP if and only if the new
graph has a perfect matching.

> If G/ ~ G(n,n,p) (1) we need p/ > &1

» Each vertex of X = union of n/k vertices of X', so threshold
for NMP s 2 . logn — logn,
n
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Our Results: A sharp threshold for NMP

Theorem
Suppose £ > 0,k >. 0, and k < n < exp(k). Then

> Ifp< (1_5)%, then whp G(k, n,p) does not have NMP.
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Our Results: A sharp threshold for NMP

Theorem
Suppose £ > 0,k >. 0, and k < n < exp(k). Then

> Ifp< (1_5)%, then whp G(k, n,p) does not have NMP.

> Ifp> (HE)%, then G(k,n,p) has NMP whp.
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Our Results: A sharp threshold for NMP

Theorem
Suppose £ > 0,k >. 0, and k < n < exp(k). Then

> Ifp< (1_5)%, then whp G(k, n,p) does not have NMP.

> Ifp> (HE)%, then G(k,n,p) has NMP whp.

987 s 3 sharp threshold for NMP in G(k, n,p).
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Pseudorandom Graphs: Brief Introduction

What does it mean to say that a graph behaves ‘random-like’?
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Pseudorandom Graphs: Brief Introduction

What does it mean to say that a graph behaves ‘random-like’?

Theorem (Erdés, Goldberg, Pach & Spencer '88)

Let p = p(n) < 0.99. Then asymptotically almost surely, in the
binomial random graph G(n,p), for any two subsets X, Y C V(QG),

e(X,Y) = plX|[Y]] < O(v/pn| X[]Y]).
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Pseudorandom Graphs: Brief Introduction

What does it mean to say that a graph behaves ‘random-like’?

Theorem (Erdés, Goldberg, Pach & Spencer '88)

Let p = p(n) < 0.99. Then asymptotically almost surely, in the
binomial random graph G(n,p), for any two subsets X, Y C V(QG),

e(X,Y) = plX|[Y]] < O(v/pn| X[]Y]).

Here is one way to capture ‘random-like’ behavior. Write p = )

()

» (CUT SIZES) If U, W are subsets of V(G,,), then

e(U,W) =~ plU||W].
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Pseudorandom graphs: An introduction

Definition
(Thomason) A graph G on vertex set V is (p, 3)-jumbled if, for all
vertex subsets X, Y C V(G),

e(X,Y) = plX|[Y]] < BV X][]Y]
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Pseudorandom graphs: An introduction

Definition
(Thomason) A graph G on vertex set V is (p, 3)-jumbled if, for all
vertex subsets X, Y C V(G),

e(X,Y) = plX|[Y]] < BV X][]Y]

In the context of bipartite graphs:
Definition (Following Thomason '89)
Suppose 0 < p < 1and 0 <e < 1. A bipartite graph G(X,Y)
with | X| =k <n = |Y| is called T-pseudorandom with parameters
(p,e)if
» For each z € X, d(z) > pn,
> Forx #2',x,2' € X, I[N(x) N N(2')| < p*n(l +¢).
Any two distinct vertices of X have at most p?n(1 + ¢)
common neighbours.
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Main theorem of Thomason

These graphs are rightfully called pseudorandom because

Theorem

Let G(X,Y) be a bipartite graph with |X| =k <n = |Y|, which
is T-pseudorandom with parameters (p,e). Then for every subset
A C X with 1/p < |A| and every subset B CY,

le(A, B) — p|A||B|| < /pn|A||B|(1 + ep|A)).
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Examples of T-pseudorandom graphs

Let X be the points in projective d-space over [F,, Y be the
‘hyperplanes’, then the corresponding incidence bipartite graph has
vertex parts of sizes | X| = |Y|=n:=14q¢+---+¢% !, and is
T-pseudorandom with parameters

p=n""*1+o0(1), =0.
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Examples of T-pseudorandom graphs

Let X be the points in projective d-space over [F,, Y be the
‘hyperplanes’, then the corresponding incidence bipartite graph has
vertex parts of sizes | X| = |Y|=n:=14q¢+---+¢% !, and is
T-pseudorandom with parameters

p=n""*1+o0(1), =0.

The point-block incidence graphs for symmetric designs are also
T-pseudorandom.
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A robust model for pseudorandomness

T-pseudorandomness is algorithmically easily verifiable as it is
combinatorial in definition. It also has a certain sense of
robustness:
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A robust model for pseudorandomness

T-pseudorandomness is algorithmically easily verifiable as it is
combinatorial in definition. It also has a certain sense of
robustness:

Lemma (N.B., D. Kush, 2019+)

Let 0 < e < % and suppose G(X,Y) is a T-pseudorandom
bipartite graph with parameters (po,e¢) with | X| =k < |Y| = n,
and suppose py > ﬁ Then, for any integer £3n/2 < D < &3n,
there exist subsets C'x C X and Cy C Y such that

» |Cy| =D and |Cx| < nk, where n = exp(—g) for some fixed
constant C,

» G(X \Cx,Y \Cy) is T-pseudorandom with parameters
(p1,€1) where p1 = po(1 —¢) and e1 < 5(gg + 3¢).

Allows for efficient randomized algorithmic constructions of several
T-pseudorandom bipartite graphs.
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‘Almost’ NMP in Bipartite Graphs: NMP-Approximability

Informally: If one can remove a small proportion of vertices from
both parts s.t. the resulting graph has NMP, then it is
‘NMP-approximable’.
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‘Almost’ NMP in Bipartite Graphs: NMP-Approximability

Informally: If one can remove a small proportion of vertices from
both parts s.t. the resulting graph has NMP, then it is
‘NMP-approximable’.

Formally,

Definition (NMP-Approximability)
Suppose € > 0. For functions f,g : R™ — R such that
f(z),g(x) — 0 as z — 0, a bipartite graph G(X,Y") is said to be
(f,9,2)-NMP approximable if there are subsets X C X and
Y CY such that:
X
> < 1), B <)
> G(X\X,Y\Y) has NMP.
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NMP-Approximability in T-pseudorandom graphs

Henceforth | X| =k, |Y| =n, and k < n.
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NMP-Approximability in T-pseudorandom graphs

Henceforth | X| =k, |Y| =n, and k < n.

Theorem (N.B., D. Kush, 2019+)

Suppose 0 < e < 1, and let w : N — R™ be a non-negative valued
function that satisfies w(k) — oo as k — oo. There exists an
integer ko = ko(e,w) such that the following holds.

Suppose p > @ and suppose G = G(X,Y) is T-pseudorandom

with parameters (p,e). Then G is (f, g,€)-NMP-approximable with

f(x),g(x) =0 <$1/4 log(l/m)).

Moreover, the deletion sets can be determined in polynomial time.
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Something about the proofs: Threshold for NMP

Start with the LYM characterization for NMP: Let p > (HE)%

and G = G(k,n,p) not have NMP.
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Something about the proofs: Threshold for NMP

Start with the LYM characterization for NMP: Let p > (HE)%
and G = G(k,n,p) not have NMP.

Kleitman's theorem = there exists I = Ix U Iy in G with |Ix| =/
and [Iy| > [n (1 - %)] for some ¢ > 0.
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Something about the proofs: Threshold for NMP

Start with the LYM characterization for NMP: Let p > (HE)%

and G = G(k,n,p) not have NMP.

Kleitman's theorem = there exists I = Ix U Iy in G with |Ix| =/
and [Iy| > [n (1 - %)] for some £ > 0. From the union bound,

k
P(G does not have NMP) < Z P,
(=1

where for 1 < ¢ < k,

O e

P = n-(1-pk<
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The LYM approach

After some calculations (!) one can show >, Py = o(1) if n>> k

orif p> 101°g"

To get the sharp threshold we need other ideas, more ‘structure’.
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The proof of Erdés-Rényi for PM

Recall the Erd8s-Rényi theorem: Sharp threshold for PM is 187

n
Suppose p > (HE)% and G(n,n,p) does not admit PM, then
there exists S C X s.t. [N(S)| < |S|.
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The proof of Erdés-Rényi for PM

logn

Recall the Erdés-Rényi theorem: Sharp threshold for PM is =2=.
Suppose p > (HE)% and G(n,n,p) does not admit PM, then
there exists S C X s.t. [N(S)| < |S|.

Let S be a minimal such set. Then one has

> SI<%
> [N(S)| = S| -1
» Every vertex in N(.S) is adjacent to at least 2 vertices of S.
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The proof of Erdés-Rényi for PM

logn
g

Recall the Erdés-Rényi theorem: Sharp threshold for PM is
Suppose p > (HE)% and G(n,n,p) does not admit PM, then
there exists S C X s.t. [N(S)| < |S|.

Let S be a minimal such set. Then one has

> SI<%
> [N(S)| = S| -1
» Every vertex in N(.S) is adjacent to at least 2 vertices of S.

A Union bound gives the following bound on the ‘error’ probability:

n/2

(Rt o () )

IS]=1
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The proof of Erdés-Rényi for PM

Recall the Erd8s-Rényi theorem: Sharp threshold for PM is 187

n
Suppose p > (HE)% and G(n,n,p) does not admit PM, then
there exists S C X s.t. [N(S)| < |S|.

Let S be a minimal such set. Then one has
> SI<%
> IN(S)[=15] -1
» Every vertex in N(.S) is adjacent to at least 2 vertices of S.

A Union bound gives the following bound on the ‘error’ probability:

n/2

(Rt o () )

IS]=1

The large amount of ‘structure’ revealed by considering the
minimal violating set was critical!
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Completing the Proof: Extra ‘structure’

Fact
If G(X,Y) has NMP, then G(Y, X) also has NMP, i.e., for any
T CY,|Nx(T)| > &|T|.
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Completing the Proof: Extra ‘structure’

Fact
If G(X,Y) has NMP, then G(Y, X) also has NMP, i.e., for any
T CY,|Nx(T)| > &|T|.

Lemma
Suppose G(X,Y) with | X| =k <n = |Y| does not have NMP.
Then either there exists

» S C X that violates NMP for G(X,Y) with |S| < g or
» T CY that violates NMP for G(Y, X) with |T| < 5 + 7.

Deepanshu Kush NMP in Random & Pseudorandom Graphs



Completing the Proof: Extra ‘structure’

Fact
IfG(X,Y) has NMP then G(Y, X) also has NMP, i.e., for any
TCY,|Nx(T)| > %

Lemma
Suppose G(X,Y) with | X| =k <n = |Y| does not have NMP.
Then either there exists

> S C X that violates NMP for G(X,Y) with |S| < &, or
» T CY that violates NMP for G(Y, X) with |T| < 5 + 7.

Fact
Suppose p > m For any fixed r € N, d(x) > r for all
x € X and d(y )27‘ for ally € Y whp.
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Proof of NMP-approximability

. . . (k)
G(X,Y) is T-pseudorandom with parameters (p,¢) with p > <=

Suppose % = £ with ged(¢,L) = 1 and ¢, L = O(1).
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Proof of NMP-approximability

G(X,Y) is T-pseudorandom with parameters (p, &) with p > %

Suppose © = L with ged(¢, L) = 1 and £, L = O(1).
2

Main difficulties:
» Unlike in the case when k | n there is no canonical structure
that certifies NMP.
» When n/k (mod 1) is ‘large’ then a cloning argument fails
spectacularly.
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Proof of NMP-approximability

. . . (k)
G(X,Y) is T-pseudorandom with parameters (p,¢) with p > <=

Suppose % = £ with ged(¢,L) = 1 and ¢, L = O(1).
Main difficulties:

» Unlike in the case when k | n there is no canonical structure
that certifies NMP.

» When n/k (mod 1) is ‘large’ then a cloning argument fails
spectacularly.

New Idea: A decomposition type theorem, i.e., want a spanning
subgraph of G which certifies NMP (Especially when n/k > N).
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New structure: Euclidean trees 77 1,

Suppose ¢ < L. Consider the Euclidean algorithm on the pair
(¢, L) as follows.
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New structure: Euclidean trees 77 1,

Suppose ¢ < L. Consider the Euclidean algorithm on the pair
(¢, L) as follows.

L = gnl+rm_, 0<rmo1 <rm=4~,
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New structure: Euclidean trees 77 1,

Suppose ¢ < L. Consider the Euclidean algorithm on the pair
(¢, L) as follows.

L = gnl+rm-, 0<rmm1<rm=4{
L = qm—1"m—1 + Tm—2, 0<rm_o <rm-1,

r3 = qar2 +ri, 0<r <o,

Ty = qr1, ry = 1.
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New structure: Euclidean trees 77 1,

Suppose ¢ < L. Consider the Euclidean algorithm on the pair
(¢, L) as follows.

L = gnl+rm-, 0<rmm1<rm=4{
L = qm—1"m—1 + Tm—2, 0<rm_o <rm-1,

r3 = qar2 +ri, 0<r <o,

Ty = qr1, ry = 1.

If we set i1 = Lyrp = £,79 = 0, then we may write

Tig1 = ¢ +1i—1 for 1 <@ <m.
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New structure: Euclidean trees 77 1,

Suppose ¢ < L. Consider the Euclidean algorithm on the pair
(¢, L) as follows.

L = gnl+rm-, 0<rmm1<rm=4{
L = qm—1"m—1 + Tm—2, 0<rm_o <rm-1,

r3 = qar2 +ri, 0<r <o,

Ty = qr1, ry = 1.

If we set i1 = Lyrp = £,79 = 0, then we may write
Tig1 = ¢ +1i—1 for 1 <@ <m.

Construct a family of trees called Euclidean trees in m steps: In
step 4 (if even) add an X g;-thrill from the ‘first’ left r; vertices

{1'1, s 71'1"1'} into {yr(i_l)Jrl’ s ’yT(H—l)}'
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lllustrative example: 757

= 2-3+41
= 3 -1
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lllustrative example: 757

= 2-3+1

= 3-1.
Y
Y1l ] o |
. L4 ®

X .Uo X . X °

Ys|
. o o
Y4
° = . = .
Y3
. ° ®
Y2
. ° ®
41
° L4 ®




lllustrative example: 757

7T = 2-3+1
= 3-1
Y
J o] o]
.yo X ° X .
.?/5




lllustrative example: 757

= 2-3+41
= 3-1.
Y
_ %
J o ]
X &9 X . X

Y3

. o\ .
Y2

. .
41 \

.

3=3x1+0

MR

N

T=2x3

§
+1
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Another Example: 753

The Euclidean algorithm gives m = 4, (rq,73,74,75) = (2,3,5,8),
(91,92, 93,4) = (2,1,1,1).
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Another Example: 753

The Euclidean algorithm gives m = 4, (rq,73,74,75) = (2,3,5,8),
(91,92, 93,4) = (2,1,1,1).
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Another Example: 753

The Euclidean algorithm gives m = 4, (rq,73,74,75) = (2,3,5,8),
(91,92, 93,4) = (2,1,1,1).

Y Y Y Y Y
o 8 ° ° ° °
X X X X X
PR S ° — ° — ° — [
(] [ ] [ ] [ ] [ ]
T5 PR ° ° [ L]
. ) . ° ° .
T4 P ° ° (] (]
° = | = |e = |e = |e
T3 o Y4 ° ° ° o
[ ]
T PRRE \ ° \ ° \ ° \ [ ]
[ ]
Ty 0 ¥ _\ ° _\ ° —\ ° —\ [
P \ \ \ \




Another Example: 753

The Euclidean algorithm gives m = 4, (rq,73,74,75) = (2,3,5,8),
(91,92, 93,4) = (2,1,1,1).

Y Y Y Y Y
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Another Example: 753

The Euclidean algorithm gives m = 4, (rq,73,74,75) = (2,3,5,8),
(91,92, 93,4) = (2,1,1,1).
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Another Example: 753

The Euclidean algorithm gives m = 4, (rq,73,74,75) = (2,3,5,8),

(q1,92,93,q4) = (2,1,1,1).

Y
o 8
X
PR
°
5 PR
o
T4 P
.
3 P!
°
T2 PRRE
)
ol 0 ¥
P

2NN

o

S

=

~

lp r o o o .

%

g r_»_»_»|.

733 v o v o -

Tys

L
& e

H

Tss

Figure: The Euclidean (5, 8)-tree process. T5 g evolves as
T271 = T273 = T573 = T5,8.
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Proof Outline of NMP-Approximability

Lemma
Euclidean Trees have NMP.
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Proof Outline of NMP-Approximability

Lemma
Euclidean Trees have NMP.

Write % = £ with (¢,L) = 1.

Partition X = X U---UXyand Y =Y; U ---UY7. Replicate the
Euclidean (¢, L)-process, with the vertices z;,y; replaced by the
blocks X;,Y;. The following lemma is key:
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Proof Outline of NMP-Approximability

Lemma
Euclidean Trees have NMP.

Write % = £ with (¢,L) = 1.

Partition X = X U---UXyand Y =Y; U ---UY7. Replicate the
Euclidean (¢, L)-process, with the vertices z;,y; replaced by the
blocks X;,Y;. The following lemma is key:

Lemma (Informal)

Suppose q e N and U C X and V CY both are large enough
subsets such that |V| = q|U|. Then there exist ‘small’ subsets
A CU,BCV such that G{U \ A,V \ B) is spanned by an X
q-thrill.
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Proof of NMP-Approximability: Our main structural

theorem

Theorem
Suppose G(X,Y) is T-pseudorandom with parameters (p,e) with
D> wgf), and suppose k > 0. Suppose 7 = % with (¢,L) =1 and

e,E = O(1). Then there exist sets X C X,Y CY s.t.
|X] < O(e)k,|Y| < O(e)n s.t. GIX\ X, Y\ D) is spanned by
vertex disjoint copies of Ty r,.
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Proof of NMP-Approximability: Our main structural

theorem

Theorem

Suppose G(X,Y) is T-pseudorandom with parameters (p,e) with
D> % and suppose k > 0. Suppose 7 = % with (¢,L) =1 and
¢,L = O(1). Then there exist sets X C X,y C Y s.t.

|X| < O(e)k, Y| < O(e)n s.t. G(X \ X,Y \Y) is spanned by
vertex disjoint copies of Ty r,.

In general tweak (n, k) to a ‘close-enough’ (n', k') such that

w = Lowith ¢, L = 0-(1).
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An approx. version of problem 2

The proof of NMP-approximability works in more general
pseudorandom paradigms as well.
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An approx. version of problem 2

The proof of NMP-approximability works in more general
pseudorandom paradigms as well.

Theorem (N.Balachandran, D. K., 2019)

Suppose X,Y C I, |Y| = 10|X| > ¢/100. Then for any
multiplicative subgroup H C F; of size at least q'/2+¢ one can
delete at most O(q'~¢) elements from both X,Y s.t. in the
remaining sets, problem 2 has an affirmative answer for H as well
(in place of quadratic residues).
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An approx. version of problem 2

The proof of NMP-approximability works in more general
pseudorandom paradigms as well.

Theorem (N.Balachandran, D. K., 2019)

Suppose X,Y C I, |Y| = 10|X| > ¢/100. Then for any
multiplicative subgroup H C F; of size at least q'/2+¢ one can
delete at most O(q'~¢) elements from both X,Y s.t. in the

remaining sets, problem 2 has an affirmative answer for H as well
(in place of quadratic residues).

Fact
The corresponding bipartite graph I'y(H) is
(¢, |H|, /q)-pseudorandom.
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THANK YOQOU!
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Induction Step Outline

X gi-thrill

CORRUPTY
-1 A
Tia induction step i
DY, DY,
E—=
D, -l‘d

Figure: Induction step

Y@ \y(l*l)

CORRUPT}

yli=1)

Y
Dy
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