Sublinear Edge Sampling and Bernoulli Factories

University of Toronto Theory Student Seminar (February 2023)

Morgan Shirley

Edge Sampling

Given $G=(V, E)$, sample an edge uniformly at random using a sublinear number of queries
$|V|=n,|E|=m$

$$
\left[\underset{\downarrow}{V_{1}}, \ldots, V_{n}\right]
$$

Allowed queries:

$$
\left[v_{2}, v_{7} \ldots\right]
$$

- degree of i th vertex
- j th neighbor of i th vertex
- Know approx \#edges m

Edge Sampling: Results

What is the expected number of queries to sample an ϵ-approximately-uniform edge?

- Eden and Rosenbaum (2018): $\bigcirc\left(\frac{n}{\sqrt{\varepsilon m}}\right)$
- Tětek and Thorup (2022): $O\left(\frac{n \log \left(\frac{1}{\varepsilon}\right)}{\sqrt{m}}\right)$
- Lower bound: $\Omega\left(\frac{n}{\sqrt{m}}\right) \quad \therefore \sigma^{\sqrt{m} \text { vertices }}$
- Eden, Narayanan, and Tětek (2023):

Eden and Rosenbaum: Setup

Split edges into two directed edges

Degree threshold: $\theta_{\sqrt{\frac{m}{c}}}$

$\operatorname{deg}(v) \leq \theta: v$ is light $\operatorname{deg}(v)>\theta$: v is heavy

Rejection Sampling

How do I simulate a 5 -sided die if I only have a 6 -sided die?

Eden and Rosenbaum: Light Edges

Sampling a light edge exactly uniformly

- Sample random v and reject if heavy
- Sample random edge incident to v
- Return edge with probability $\operatorname{deg}(v) / \theta$

For a given light edge, the probability we sampled it:

$$
\frac{1}{n} \cdot \frac{1}{\operatorname{deg}(v)} \cdot \frac{\operatorname{deg}(v)}{\theta}=\frac{1}{n \theta}
$$

Probability we return an edge:

$$
\sum_{l i g h t v} \frac{1}{n} \frac{\operatorname{deg}(v)}{\theta}=\frac{\# \text { light edges }}{n \theta}
$$

Eden and Rosenbaum: Heavy Edges
Sampling a heavy edge approximately uniformly

- Sample a uniform random light edge $u \rightarrow v$
- If v is light, reject
- Otherwise return a random edge incident to v

For a given heavy edge, the probability we sampled

$$
\frac{1}{n \theta} \cdot\left[\operatorname{deg}_{e}(v)^{\text {it }} \cdot \frac{1}{\operatorname{deg}(v)}\right]
$$

Probability we return an edge: $\operatorname{deg}(v) \quad \operatorname{deg}(v) \leq$ Weary us 1 ices

$$
=\frac{m}{\sqrt{\frac{m}{\varepsilon}}}=\sqrt{\varepsilon m}
$$

$\sum_{\text {heouye }} \operatorname{Pr}_{r}[e$ returned $]>\frac{(1-\varepsilon)}{n \theta}$ a heovivedges $\ll \sqrt{\varepsilon m}<\varepsilon \cdot \operatorname{deg}(v)$

$$
\in[(1-\varepsilon), 1] \operatorname{sodeg}_{e}(v)>(1-\varepsilon) \operatorname{deg}(v)
$$

Eden and Rosenbaum: Final algorithm

Sampling an edge approximately uniformly

- Flip a fair coin
- If heads, sample a light edge
- If tails, sample a heavy edge
- Repeat until the above step returns an edge

Probability we return an edge on a given iteration:
$>\frac{1}{2} \frac{\text { \# light edges }}{n \theta}+\frac{1}{2} \frac{(1-\varepsilon) \# \text { heavy edges }}{n \theta}>\frac{(1-\varepsilon) m}{n \theta}$
$\approx\left(\frac{n}{\sqrt{\varepsilon m}}\right)$

How do we get rid of ϵ ?

Sampling a light edge exactly uniformly

- Sample random v and reject if heavy
- Sample random edge incident to v
- Return edge with probability $\operatorname{deg}(v) / \theta$
Edge probability: $\frac{1}{n \theta}$

Sampling a heavy edge approximately uniformly

- Sample a uniform random light edge $u \rightarrow v$
- If v is light, reject
- Otherwise return a random edge
incident to $v \quad$ Edge probability: $\frac{\operatorname{deg}_{\ell}(v)}{\operatorname{deg}(v)} \frac{1}{n \theta}$
$p \frac{1}{n \theta} \frac{1}{p}=\frac{1}{n \theta}$

Problem: $\frac{\operatorname{deg}_{\ell}(v)}{\operatorname{deg}(v)}=p$ varies.

Idea: Use rejection sampling with probability $\frac{1}{p}$.

$$
\text { Fix: }_{\text {reject }}^{w / p} 1 / 2 \rightarrow \frac{1}{2 p}
$$

Bernoulli Factories

Given: Coin with unknown probability p

Goal: Simulate a coin with probability $f(p)$
Exactly and with low expected coin flips

Easy examples

$$
\begin{aligned}
& f(p)=\frac{1}{2} \quad \operatorname{Pr}\left[f l_{p} \text { dor them } n \text { times }\right] \\
& \text { Flip twice } \\
& \leq\left(p^{2}+(1-p)^{2}\right)^{[2 / 2]}
\end{aligned}
$$

$\mathrm{DO} \rightarrow$ reroll
013
$\left.\begin{array}{l}01 \\ 10\end{array}\right\}$ equal prob
$\mid 1 \rightarrow$ recoil \mid

Easy examples

$$
f(p)=\frac{3}{4}
$$

Easy examples

$$
f(p)=\frac{a}{2^{k}}
$$

-

000000

Easy examples

$$
f(p)=c \text { for any } c \in[0,1]
$$

(1/

Easy examples

$$
f(p)=p^{2}
$$

Flip p twice

$$
\sum_{i=0}^{n}\binom{n}{i} p^{i}(1-p)^{n-i} a\left[\begin{array}{l}
\downarrow \\
\downarrow \\
\operatorname{coff}
\end{array} 0 \leq a[i) \leq 1\right.
$$

Our desired factory

$$
f(p)=\frac{1}{2 p}\left(\text { promised to have } p>\frac{1}{2}+c\right)
$$

Existential results: This is possible and can be done efficiently

Possibility results

Keane and O'Brien (1994): The following are necessary and sufficient to simulate $f(p)$ on domain $\mathcal{P} \subseteq[0,1]:$

1. f is continuous on \mathcal{P}
2. Either f is constant on \mathcal{P} or $\exists t \in \mathbb{N}, \forall p \in \mathcal{P}$

$$
\min \{f(p), 1-f(p)\} \geq \min \left\{p^{t},(1-p)^{t}\right\}
$$

Efficiency results

Nacu and Peres (2005): If f is real analytic on \mathcal{P}, f has an efficient simulation on \mathcal{P}.

A function f is real-analytic if f matches its Taylor series at all points

Step 1: Reduce to $2 p$
2014 Huber
$f(p)=\frac{1}{2 p}$ (promised to have $p>\frac{1}{2}+c$)
$\frac{1}{z_{p}}=\frac{1}{\omega_{p_{1}}^{1+\underbrace{(2 p-1)}_{p_{2}}}}$
Bernoulli Race
Flip a fair coin
Heads: output heats w/p p_{1}
Tails: pulpit tails wop ($2 p-1$)

$$
\begin{aligned}
& \operatorname{Pr}[\text { heads }]=\frac{1}{2} \sum_{k=0}^{\infty}\left(1-\left(\frac{1}{2}+\frac{1}{2}(2 p-1)\right)\right)^{k}=\frac{1}{2} \sum_{k=0}^{\infty}(1-p)^{k}=\frac{1}{2 p} \\
& (2 p-1) \leftarrow 1-(2 p-1)=2-2 p=2(1-p)_{F}=2 p
\end{aligned}
$$

Step 2: Factory for $2 p$

Step 2: Factory for $2 p$

$$
\begin{gathered}
2 p \leq 0.99 \\
(2 p)^{100}<1 / 2
\end{gathered}
$$

$$
\begin{aligned}
& \text { 2(2p) } \\
& \left.=\left(2^{101}\right)^{100}\right)^{1 / 200}
\end{aligned}
$$

