Voting with Preference Intensities

Anson Kahng, Mohamad Latifian, Nisarg Shah

AAAI 2023

Voting

- Voting is a way to aggregate agents' preferences
- Political elections
- Movie night
- Choose a representative committee

- Recommender systems

Elicitation

Elicitation

- How to collect the preferences?

Elicitation

- How to collect the preferences?
- Top votes

Elicitation

- How to collect the preferences?
- Top votes
- Show of hands

Elicitation

- How to collect the preferences?
- Top votes
- Show of hands
- Ranked ballots

Elicitation

- How to collect the preferences?
- Top votes
- Show of hands
- Ranked ballots
- Approval ballots

Voting with Ranked Ballots

Voting with Ranked Ballots

We have a surplus of $4000 \$$ in our budget.
What should we do with that?
We can buy a copier, a set of chairs, or go out for lunch for a week? Let's decide.

Voting with Ranked Ballots

We have a surplus of $4000 \$$ in our budget.
What should we do with that?
We can buy a copier, a set of chairs, or go out for lunch for a week? Let's decide.

Voting with Ranked Ballots

We have a surplus of $4000 \$$ in our budget.
What should we do with that?
We can buy a copier, a set of chairs, or go out for lunch for a week? Let's decide.

Voting with Ranked Ballots

We have a surplus of $4000 \$$ in our budget.
What should we do with that?
We can buy a copier, a set of chairs, or go out for lunch for a week? Let's decide.

Voting with Ranked Ballots

Voting with Ranked Ballots

足 $5=1$
8

$$
\mathrm{Ol}>\text { 步 }>
$$

今
？$\quad \overrightarrow{0}$
解田生人童

Voting with Ranked Ballots

Utilitarian View

8

$$
\begin{aligned}
& \text { } 1 \text { On }>\text { 占 }> \\
& \text { A }
\end{aligned}
$$

$\rightarrow>101 \rightarrow 4$

$101>4 \gg$

Utilitarian View

Utilitarian View

- Total utility (social welfare)

Utilitarian View

- Total utility (social welfare)

Utilitarian View

- Total utility (social welfare)

290 $\underset{100}{4}>\mathrm{H}_{0}^{\mathrm{L}} \mathrm{H}$

50
$\mathrm{O}_{50} \rightarrow \underset{40}{\sum_{4}}>\underset{10}{\infty}$

A

150

60

Utilitarian View

- Total utility (social welfare)

Utilitarian View

- Total utility (social welfare)

- Can we make sure that the winner is close to optimal?

Utilitarian Model

Utilitarian Model

- C is the set of m candidates and V is the set of n voters.

Utilitarian Model

- C is the set of m candidates and V is the set of n voters.
- Voter i submits full ranking σ_{i} over the candidates.

Utilitarian Model

- C is the set of m candidates and V is the set of n voters.
- Voter i submits full ranking σ_{i} over the candidates.
- σ_{i} stems from the underlying utility function u_{i} That means u_{i} and σ_{i} should be consistent.

$$
u_{i} \triangleright \sigma_{i}: c \succ_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) .
$$

Utilitarian Model

- C is the set of m candidates and V is the set of n voters.
- Voter i submits full ranking σ_{i} over the candidates.
- σ_{i} stems from the underlying utility function u_{i}. That means u_{i} and σ_{i} should be consistent.

$$
u_{i} \triangleright \sigma_{i}: c \succ_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) .
$$

- Voting rule f gets preference profile $\vec{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and outputs a distribution over the candidates.

Utilitarian Model

- C is the set of m candidates and V is the set of n voters.
- Voter i submits full ranking σ_{i} over the candidates.
- σ_{i} stems from the underlying utility function u_{i} That means u_{i} and σ_{i} should be consistent.

$$
u_{i} \triangleright \sigma_{i}: c>_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) .
$$

- Voting rule f gets preference profile $\vec{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and outputs a distribution over the candidates.
- Unit-sum assumption: $\sum_{c \in C} u_{i}(c)=1$.

Distortion

Distortion

- With respect to a utility profile $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ we can define

Distortion

- With respect to a utility profile $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ we can define
- Social welfare:

$$
\operatorname{sw}(\underline{y})=\sum_{i \in V} u_{i}(\underline{\text { 卢 }})
$$

Distortion

- With respect to a utility profile $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ we can define
- Social welfare:

$$
\operatorname{sw}(\underline{y})=\sum_{i \in V} u_{i}(\underline{\text { 卢 }})
$$

- Optimal candidate:

$$
\mathrm{opt}=\operatorname{argmax} \operatorname{sw}(c)
$$

$$
c \in C
$$

Distortion

－With respect to a utility profile $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ we can define
－Social welfare：

$$
\operatorname{sw}(\underline{y})=\sum_{i \in V} u_{i}(\underline{\text { 卢 }})
$$

－Optimal candidate：

$$
\mathrm{opt}=\operatorname{argmax} \operatorname{sw}(c)
$$

$$
c \in C
$$

－Approximation ratio：

$$
\operatorname{Apx}(\underline{女})=\frac{\operatorname{sw}(\text { opt })}{\operatorname{sw}(\underline{\text { 呆 }})}
$$

Distortion

- With respect to a utility profile $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ we can define
- Social welfare:

$$
\operatorname{sw}(\underline{\underline{x}})=\sum_{i \in V} u_{i}(\underline{\underline{x}})
$$

- Optimal candidate:

$$
\mathrm{opt}=\underset{c \in C}{\operatorname{argmax}} \operatorname{sw}(c)
$$

- Approximation ratio:

$$
\operatorname{Apx}(\underline{女})=\frac{\operatorname{sw}(\text { opt })}{\operatorname{sw}(\underline{\text { 呆 }})}
$$

- Distortion: worst-case approximation ratio of the winner determined by a voting rule

Distortion

- With respect to a utility profile $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ we can define
- Social welfare:

$$
\operatorname{sw}(\underline{y})=\sum_{i \in V} u_{i}\left(\underline{女_{X}}\right)
$$

- Optimal candidate:

$$
\mathrm{opt}=\operatorname{argmax} \mathrm{sw}(c)
$$

$$
c \in C
$$

- Approximation ratio:

$$
\operatorname{Apx}(\underline{\text { 呆 }})=\frac{\operatorname{sw}(\text { opt })}{\operatorname{sw}\left(\underline{y_{x}}\right)}
$$

- Distortion: worst-case approximation ratio of the winner determined by a voting rule

$$
\operatorname{dist}(f)=\max _{\vec{u} \triangleright \vec{\sigma}} \operatorname{Apx}(f(\vec{\sigma}))=\max _{\vec{u} \triangleright \vec{\sigma}} \mathbb{E}_{c \sim f(\vec{\sigma})}[\operatorname{Apx}(c)]
$$

Previous Works

Previous Works

- Caragiannis and Procaccia (2011): Deterministic rules: $\Theta\left(m^{2}\right)$

Previous Works

- Caragiannis and Procaccia (2011): Deterministic rules: $\Theta\left(m^{2}\right)$
- Boutilier et. al. (2015): Randomized rules $\Omega(\sqrt{m}), O(\sqrt{m \log m})$

Previous Works

- Caragiannis and Procaccia (2011): Deterministic rules: $\Theta\left(m^{2}\right)$
- Boutilier et. al. (2015): Randomized rules $\Omega(\sqrt{m}), O(\sqrt{m \log m})$
. Ebadian et. al. (2022): Stable lottery rule $O(\sqrt{m})$

Previous Works

- Caragiannis and Procaccia (2011): Deterministic rules: $\Theta\left(m^{2}\right)$
- Boutilier et. al. (2015): Randomized rules $\Omega(\sqrt{m}), O(\sqrt{m \log m})$
. Ebadian et. al. (2022): Stable lottery rule $O(\sqrt{m})$
- The assumption is each voter submits a vote in this format

$$
c_{1}>c_{2}>c_{3}>\ldots>c_{m}
$$

and since we don't know the exact utilities this seems to be all we can do.

Previous Works

- Caragiannis and Procaccia (2011): Deterministic rules: $\Theta\left(m^{2}\right)$
- Boutilier et. al. (2015): Randomized rules $\Omega(\sqrt{m}), O(\sqrt{m \log m})$
. Ebadian et. al. (2022): Stable lottery rule $O(\sqrt{m})$
- The assumption is each voter submits a vote in this format

$$
c_{1}>c_{2}>c_{3}>\ldots>c_{m}
$$

and since we don't know the exact utilities this seems to be all we can do.

A Voting Scenario

A Voting Scenario

I prefer Steak, then Chinese and then Falafel. I don't really like Pizza.

I'm a vegetarian, so I don't eat steak.
Among other options I prefer Falafel, Pizza and then Chinese.

Thanks Michael! I prefer Steak.

A Voting Scenario

I prefer Pizza and then Steak. I don't really like the two other options but I prefer Chinese to Falafel.

All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.

The answer is Pizza, and then by far Steak, Chinese and Falafel.

5\gg

Classic Model

```
I prefer Steak, then Chinese and then Falafel.
I don't really like Pizza.
I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.
I prefer Pizza and then Steak. I don't really like the two other options but I prefer Chinese to Falafel.
All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.
The answer is Pizza, and then by far
Steak, Chinese and Falafel.
(?) \(5 \gg 8>6\)
```


Classic Model

I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.

All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.

Classic Model

```
I prefer Steak, then Chinese and then Falafel.
I don't really like Pizza.
I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.
I prefer Pizza and then Steak. I don't really like the two other options but I prefer Falafel to Chinese.
All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.
The answer is Pizza, and then by far
Steak, Chinese and Falafel.
(?) \(5 \gg 8>6\)
```


Classic Model

Our Model

```
I prefer Steak, then Chinese and then Falafel.
I don't really like Pizza.
I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.
I prefer Pizza and then Steak. I don't really like the two other options but I prefer Falafel to Chinese.
All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.
The answer is Pizza, and then by far
Steak, Chinese and Falafel.
```


Our Model

I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.

All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.

Ranking with Intensities

- Voter i submits ranking with intensities $\left(\sigma_{i}, \pi_{i}\right)$ over the candidates.

Ranking with Intensities

- Voter i submits ranking with intensities $\left(\sigma_{i}, \pi_{i}\right)$ over the candidates.

$$
\sigma_{i}:[m] \rightarrow C \quad \pi_{i}:[m-1] \rightarrow\{>, \gg\}
$$

Ranking with Intensities

- Voter i submits ranking with intensities $\left(\sigma_{i}, \pi_{i}\right)$ over the candidates.

$$
\begin{aligned}
& \sigma_{i}:[m] \rightarrow C \\
& \pi_{i}:[m-1] \rightarrow\{>, \gg\} \\
& c_{1} \succ c_{2}>c_{3} \succ \ldots \succ c_{m}
\end{aligned}
$$

Ranking with Intensities

- Voter i submits ranking with intensities $\left(\sigma_{i}, \pi_{i}\right)$ over the candidates.

$$
\begin{aligned}
& \sigma_{i}:[m] \rightarrow C \pi_{i}:[m-1] \rightarrow\{\succ, \gg\} \\
& c_{1} \succ c_{2}>c_{3} \succ \ldots \succ c_{m}
\end{aligned}
$$

- These $\left(\sigma_{i}, \pi_{i}\right)$ should be consistent with the utilities. We say that a voter uses \gg if he has an α gap in his utilities

For $\alpha \in[0,1]$

Ranking with Intensities

- Voter i submits ranking with intensities $\left(\sigma_{i}, \pi_{i}\right)$ over the candidates.

$$
\begin{aligned}
& \sigma_{i}:[m] \rightarrow C \pi_{i}:[m-1] \rightarrow\{\succ, \gg\} \\
& c_{1} \succ c_{2}>c_{3} \succ \ldots>c_{m}
\end{aligned}
$$

- These $\left(\sigma_{i}, \pi_{i}\right)$ should be consistent with the utilities. We say that a voter uses \gg if he has an α gap in his utilities

For $\alpha \in[0,1] u_{i} \triangleright_{\alpha}\left(\sigma_{i}, \pi_{i}\right): c \succ_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right)$,

$$
c \gg_{i} c^{\prime} \Rightarrow \alpha u_{i}(c) \geq u_{i}\left(c^{\prime}\right)
$$

Ranking with Intensities

- Voter i submits ranking with intensities $\left(\sigma_{i}, \pi_{i}\right)$ over the candidates.

$$
\begin{aligned}
& \sigma_{i}:[m] \rightarrow C \pi_{i}:[m-1] \rightarrow\{\succ, \gg\} \\
& c_{1} \succ c_{2}>c_{3} \succ \ldots \succ c_{m}
\end{aligned}
$$

- These $\left(\sigma_{i}, \pi_{i}\right)$ should be consistent with the utilities. We say that a voter uses \gg if he has an α gap in his utilities

$$
\text { For } \begin{aligned}
\alpha \in[0,1] u_{i} \triangleright_{\alpha}\left(\sigma_{i}, \pi_{i}\right): c & >_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \\
& c>_{i} c^{\prime} \Rightarrow \alpha u_{i}(c) \geq u_{i}\left(c^{\prime}\right) .
\end{aligned}
$$

Ranking with Intensities

- Voter i submits ranking with intensities $\left(\sigma_{i}, \pi_{i}\right)$ over the candidates.

$$
\begin{aligned}
& \sigma_{i}:[m] \rightarrow C \\
& \pi_{i}:[m-1] \rightarrow\{>, \gg\} \\
& c_{1} \succ c_{2}>c_{3} \succ \ldots \succ c_{m}
\end{aligned}
$$

- These $\left(\sigma_{i}, \pi_{i}\right)$ should be consistent with the utilities. We say that a voter uses \gg if he has an α gap in his utilities

$$
\text { For } \begin{aligned}
\alpha \in[0,1] u_{i} \triangleright_{\alpha}\left(\sigma_{i}, \pi_{i}\right): c & >_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \\
& c>_{i} c^{\prime} \Rightarrow \alpha u_{i}(c) \geq u_{i}\left(c^{\prime}\right)
\end{aligned}
$$

$$
\alpha=\frac{1}{2}
$$

Ranking with Intensities

- Voter i submits ranking with intensities $\left(\sigma_{i}, \pi_{i}\right)$ over the candidates.

$$
\begin{aligned}
& \sigma_{i}:[m] \rightarrow C \\
& \pi_{i}:[m-1] \rightarrow\{>, \gg\} \\
& c_{1} \succ c_{2}>c_{3} \succ \ldots \succ c_{m}
\end{aligned}
$$

- These $\left(\sigma_{i}, \pi_{i}\right)$ should be consistent with the utilities. We say that a voter uses \gg if he has an α gap in his utilities

$$
\text { For } \begin{aligned}
\alpha \in[0,1] u_{i} \triangleright_{\alpha}\left(\sigma_{i}, \pi_{i}\right): c & \succ_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \\
& c>_{i} c^{\prime} \Rightarrow \alpha u_{i}(c) \geq u_{i}\left(c^{\prime}\right)
\end{aligned}
$$

a

- Extreme cases: $\alpha \simeq 1, \alpha=0$

Special Cases

Special Cases

	No Intensities $\pi_{i}=(\succ, \succ, \ldots, \succ)$
Deterministic	
Plurality Winner	

Special Cases

	No Intensities $\pi_{i}=(>, \succ, \ldots,>)$	Top Decisive $\pi_{i}=(\gg,>, \ldots,>)$
Deterministic	$\Theta\left(m^{2}\right)$	$\Theta\left(\alpha^{2} m^{2}+1\right)$
	Plurality Winner	Plurality Winner
Ramdomized	$\Theta(\sqrt{m})$	$\Theta\left(\frac{\alpha m+1}{\alpha \sqrt{m}+1}\right)$
	Stable lottery rule	Decisive SLR

Special Cases

	No Intensities $\pi_{i}=(\succ, \succ, \ldots, \succ)$	Top Decisive $\pi_{i}=(\gg,>, \ldots,>)$	Uniform Decisive $\pi_{i}=(\gg, \gg, \ldots, \gg)$
Deterministic	$\Theta\left(m^{2}\right)$ Plurality Winner	$\Theta\left(\alpha^{2} m^{2}+1\right)$ Plurality Winner	$\Theta\left(\frac{(\alpha m+1)\left(1-\alpha^{m}\right)}{1-\alpha}\right)$
Ramdomized	$\Theta(\sqrt{m})$ Stable lottery rule	$\Theta\left(\frac{\alpha m+1}{\alpha \sqrt{m}+1}\right)$ Decisive SLR	$\Omega\left(\min \left(\sqrt{m}, \frac{1-\alpha^{m}}{1-\alpha}\right)\right)$

Price of Ignorance

Price of Ignorance

-What do we loose (in terms of distortion) if we ignore intensities?

Price of Ignorance

-What do we loose (in terms of distortion) if we ignore intensities?

- Intensity aware optimal:

Price of Ignorance

-What do we loose (in terms of distortion) if we ignore intensities?

- Intensity aware optimal:

$$
\mathrm{opt}_{\alpha}^{\mathrm{aw}}((\vec{\sigma}, \vec{\pi}))=\underset{x \in \Delta(C)}{\operatorname{argmin}} \operatorname{dist}_{\alpha}(x,(\vec{\sigma}, \vec{\pi}))
$$

Price of Ignorance

-What do we loose (in terms of distortion) if we ignore intensities?

- Intensity aware optimal:

$$
\operatorname{opt}_{\alpha}^{\mathrm{aw}}((\vec{\sigma}, \vec{\pi}))=\underset{x \in \Delta(C)}{\operatorname{argmin}} \operatorname{dist}_{\alpha}(x,(\vec{\sigma}, \vec{\pi}))
$$

- Price of Ignoring Intensities (POII):

Price of Ignorance

-What do we loose (in terms of distortion) if we ignore intensities?

- Intensity aware optimal:

$$
\operatorname{opt}_{\alpha}^{\mathrm{aw}}((\vec{\sigma}, \vec{\pi}))=\underset{x \in \Delta(C)}{\operatorname{argmin}} \operatorname{dist}_{\alpha}(x,(\vec{\sigma}, \vec{\pi}))
$$

- Price of Ignoring Intensities (POII):

$$
\operatorname{POII}((\vec{\sigma}, \vec{\pi}), \alpha)=\min _{x \in \Delta(C)} \frac{\operatorname{dist}_{\alpha}(x,(\vec{\sigma}, \vec{\pi}))}{\operatorname{dist}_{\alpha}\left(\operatorname{opt}_{\alpha}^{\mathrm{aw}}((\vec{\sigma}, \vec{\pi})),(\vec{\sigma}, \vec{\pi})\right)}
$$

Price of Ignorance

-What do we loose (in terms of distortion) if we ignore intensities?

- Intensity aware optimal:

$$
\operatorname{opt}_{\alpha}^{\mathrm{aw}}((\vec{\sigma}, \vec{\pi}))=\underset{x \in \Delta(C)}{\operatorname{argmin}} \operatorname{dist}_{\alpha}(x,(\vec{\sigma}, \vec{\pi}))
$$

- Price of Ignoring Intensities (POII):

$$
\begin{gathered}
\operatorname{POII}((\vec{\sigma}, \vec{\pi}), \alpha)=\min _{x \in \Delta(C)} \frac{\operatorname{dist}_{\alpha}(x,(\vec{\sigma}, \vec{\pi}))}{\operatorname{dist}_{\alpha}\left(\operatorname{opt}_{\alpha}^{\operatorname{taw}}((\vec{\sigma}, \vec{\pi})),(\vec{\sigma}, \vec{\pi})\right)} \\
\operatorname{POII}(\alpha)=\max _{(\vec{\sigma}, \vec{\pi})} \operatorname{POII}((\vec{\sigma}, \vec{\pi}), \alpha)
\end{gathered}
$$

Voluntary Reporting

Voluntary Reporting

- Let voters use \gg if they want to express intensive preference. Distortion bounds from the classic setting holds here.

Voluntary Reporting

- Let voters use \gg if they want to express intensive preference. Distortion bounds from the classic setting holds here.
- POII:

$$
\operatorname{POII}(\alpha) \in \Omega\left(\frac{\sqrt{m}(1-\alpha)}{1-\alpha^{m}}+1\right)
$$

Voluntary Reporting

- Let voters use \gg if they want to express intensive preference. Distortion bounds from the classic setting holds here.
- POII:

$$
\operatorname{POII}(\alpha) \in \Omega\left(\frac{\sqrt{m}(1-\alpha)}{1-\alpha^{m}}+1\right)
$$

- Deterministic:

$$
\operatorname{POII}(\alpha) \in \Omega\left(\frac{m(1-\alpha)}{1-\alpha^{m}}+1\right)
$$

Mandatory Reporting

Mandatory Reporting

- Specify a value for α, and mandate the voters to use \gg if they have a gap in their utilities.

Mandatory Reporting

- Specify a value for α, and mandate the voters to use \gg if they have a gap in their utilities.
. $c>_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \geq \alpha u_{i}(c)$.

Mandatory Reporting

- Specify a value for α, and mandate the voters to use \gg if they have a gap in their utilities.
. $c>_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \geq \alpha u_{i}(c)$.
- Distortion:

Mandatory Reporting

- Specify a value for α, and mandate the voters to use \gg if they have a gap in their utilities.
. $c>_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \geq \alpha u_{i}(c)$.
- Distortion:

Mandatory Reporting

- Specify a value for α, and mandate the voters to use \gg if they have a gap in their utilities.
. $c>_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \geq \alpha u_{i}(c)$.
- Distortion:

Mandatory Reporting

Mandatory Reporting

- Specify a value for α, and mandate the voters to use \gg if they have a gap in their utilities.

Mandatory Reporting

- Specify a value for α, and mandate the voters to use \gg if they have a gap in their utilities.
. $c>_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \geq \alpha u_{i}(c)$.

Mandatory Reporting

- Specify a value for α, and mandate the voters to use \gg if they have a gap in their utilities.
. $c>_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \geq \alpha u_{i}(c)$.
- Deterministic POII:

Mandatory Reporting

- Specify a value for α, and mandate the voters to use \gg if they have a gap in their utilities.
. $c>_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \geq \alpha u_{i}(c)$.
- Deterministic POII:

$$
\operatorname{POII}(\alpha) \in \Omega\left(\frac{m(1-\alpha)}{1-\alpha^{m}}+1\right)
$$

Mandatory Reporting

- Specify a value for α, and mandate the voters to use \gg if they have a gap in their utilities.
. $c>_{i} c^{\prime} \Rightarrow u_{i}(c) \geq u_{i}\left(c^{\prime}\right) \geq \alpha u_{i}(c)$.
- Deterministic POII:

$$
\operatorname{POII}(\alpha) \in \Omega\left(\frac{m(1-\alpha)}{1-\alpha^{m}}+1\right)
$$

$$
\operatorname{POII}(\alpha) \in \Omega\left(\frac{m\left(1-\alpha^{m}\right)}{1-\alpha}+1\right)
$$

Future Directions

Future Directions

-Randomized rule for uniform decisiveness: $\pi_{i}=(\gg, \gg, \ldots, \gg)$

Future Directions

- Randomized rule for uniform decisiveness: $\pi_{i}=(\gg, \gg, \ldots, \gg)$
- POI[X]: Price of ignorance could be defined for any information

Future Directions

- Randomized rule for uniform decisiveness: $\pi_{i}=(\gg, \gg, \ldots, \gg)$
- POI[X]: Price of ignorance could be defined for any information
- Abstention

Future Directions

- Randomized rule for uniform decisiveness: $\pi_{i}=(\gg, \gg, \ldots, \gg)$
- POI[X]: Price of ignorance could be defined for any information
- Abstention
- Strategic voting

Future Directions

- Randomized rule for uniform decisiveness: $\pi_{i}=(\gg, \gg, \ldots, \gg)$
- POI[X]: Price of ignorance could be defined for any information
- Abstention
- Strategic voting
- Voter's distributions

Future Directions

- Randomized rule for uniform decisiveness: $\pi_{i}=(\gg, \gg, \ldots, \gg)$
- POI[X]: Price of ignorance could be defined for any information
- Abstention
- Strategic voting
- Voter's distributions
- Decisive preferences in other settings

