Voting with Preference Intensities

Anson Kahng, Mohamad Latifian, Nisarg Shah

AAAI 2023

- Voting is a way to aggregate agents' preferences
 - Political elections
 - Movie night
 - Choose a representative committee
 - Recommender systems

Voting

2/20

How to collect the preferences?

How to collect the preferences?

Top votes

- How to collect the preferences?
 - Top votes
 - Show of hands

- How to collect the preferences?
 - Top votes
 - Show of hands
 - Ranked ballots

- How to collect the preferences?
 - Top votes
 - Show of hands
 - Ranked ballots
 - Approval ballots

- We have a surplus of 4000\$ in our budget.
- What should we do with that?
- We can buy a copier, a set of chairs, or go
- out for lunch for a week? Let's decide.

- We have a surplus of 4000\$ in our budget.
- What should we do with that?
- We can buy a copier, a set of chairs, or go
- out for lunch for a week? Let's decide.

- We have a surplus of 4000\$ in our budget.
- What should we do with that?
- We can buy a copier, a set of chairs, or go
- out for lunch for a week? Let's decide.

- We have a surplus of 4000\$ in our budget.
- What should we do with that?
- We can buy a copier, a set of chairs, or go
- out for lunch for a week? Let's decide.

Voting rule

Total utility (social welfare)

Can we make sure that the winner is close to optimal?

• *C* is the set of *m* candidates and *V* is the set of *n* voters.

- *C* is the set of *m* candidates and *V* is the set of *n* voters.
- Voter *i* submits full ranking σ_i over the candidates.

- C is the set of m candidates and V is the set of n voters.
- Voter *i* submits full ranking σ_i over the candidates.
- σ_i stems from the underlying utility function u_i . That means u_i and σ_i should be consistent.

 $u_i \triangleright \sigma_i : c \succ_i c' \Rightarrow u_i(c) \ge u_i(c')$.

- ► *C* is the set of *m* candidates and *V* is the set of *n* voters.
- Voter *i* submits full ranking σ_i over the candidates.
- σ_i stems from the underlying utility function u_i . That means u_i and σ_i should be consistent.
 - $u_i \triangleright \sigma_i : c \succ_i c' \Rightarrow u_i(c) \ge u_i(c').$
- Voting rule *f* gets preference profile $\vec{\sigma} = (\sigma_1, ..., \sigma_n)$ and outputs a distribution over the candidates.

- ► *C* is the set of *m* candidates and *V* is the set of *n* voters.
- Voter *i* submits full ranking σ_i over the candidates.
- σ_i stems from the underlying utility function u_i . That means u_i and σ_i should be consistent.
 - $u_i \triangleright \sigma_i : c \succ_i c' \Rightarrow u_i(c) \ge u_i(c').$
- Voting rule *f* gets preference profile $\vec{\sigma} = (\sigma_1, ..., \sigma_n)$ and outputs a distribution over the candidates.
- Unit-sum assumption: $\sum_{c \in C} u_i(c) = 1$.

Distortion

Distortion

• With respect to a utility profile $\vec{u} = (u_1, u_2, ..., u_n)$ we can define

• With respect to a utility profile $\vec{u} = (u_1, u_2, ..., u_n)$ we can define

• Social welfare:

• With respect to a utility profile $\vec{u} = (u_1, u_2, \dots, u_n)$ we can define

• Social welfare:

• Optimal candidate:

$c \in C$

• With respect to a utility profile $\vec{u} = (u_1, u_2, \dots, u_n)$ we can define

• Social welfare:

• Optimal candidate:

• Approximation ratio:

- With respect to a utility profile $\vec{u} = (u_1, u_2, ..., u_n)$ we can define
 - Social welfare:
 - Optimal candidate:
 - Approximation ratio:
- rule

$$sw(\clubsuit) = \sum_{i \in V} u_i (\bigstar)$$

$$opt = \operatorname{argmax} sw(c)$$

$$c \in C$$

$$Apx(\bigstar) = \frac{sw(opt)}{sw(\bigstar)}$$

Distortion: worst-case approximation ratio of the winner determined by a voting

- With respect to a utility profile $\vec{u} = (u_1, u_2, \dots, u_n)$ we can define
 - Social welfare:
 - Optimal candidate:
 - Approximation ratio:

rule

 $dist(f) = \max_{\vec{u} \, \triangleright \, \vec{\sigma}} \, \operatorname{Apx}(f($

$$sw(\clubsuit) = \sum_{i \in V} u_i (\bigstar)$$

$$opt = \operatorname{argmax} sw(c)$$

$$c \in C$$

$$Apx(\bigstar) = \frac{sw(opt)}{sw(\bigstar)}$$

Distortion: worst-case approximation ratio of the winner determined by a voting

$$(\vec{\sigma})) = \max_{\vec{u} \, \triangleright \, \vec{\sigma}} \mathbb{E}_{c \sim f(\vec{\sigma})}[\mathsf{Apx}(c)]$$

- Caragiannis and Procaccia (2011): Deterministic rules: $\Theta(m^2)$

- Caragiannis and Procaccia (2011): Deterministic rules: $\Theta(m^2)$

Boutilier et. al. (2015): Randomized rules $\Omega\left(\sqrt{m}\right)$, $O\left(\sqrt{m \log m}\right)$

- Caragiannis and Procaccia (2011): Deterministic rules: $\Theta(m^2)$
- Boutilier et. al. (2015): Randomized
- Ebadian et. al. (2022): Stable lottery rule $O\left(\sqrt{m}\right)$

I rules
$$\Omega\left(\sqrt{m}\right)$$
, $O\left(\sqrt{m\log m}\right)$

- Caragiannis and Procaccia (2011): Deterministic rules: $\Theta(m^2)$
- Boutilier et. al. (2015): Randomized

- Ebadian et. al. (2022): Stable lottery
- The assumption is each voter submits a vote in this format $c_1 > c_2 >$

and since we don't know the exact utilities this seems to be all we can do.

I rules
$$\Omega\left(\sqrt{m}\right)$$
, $O\left(\sqrt{m\log m}\right)$

$$v$$
 rule $O\left(\sqrt{m}\right)$

$$c_3 > \ldots > c_m$$

- Caragiannis and Procaccia (2011): Deterministic rules: $\Theta(m^2)$
- Boutilier et. al. (2015): Randomized

- Ebadian et. al. (2022): Stable lottery
- The assumption is each voter submits a vote in this format $c_1 > c_2 >$

and since we don't know the exact utilities this seems to be all we can do.

I rules
$$\Omega\left(\sqrt{m}\right)$$
, $O\left(\sqrt{m\log m}\right)$

$$v$$
 rule $O\left(\sqrt{m}\right)$

$$c_3 > \ldots > c_m$$

I'm taking everyone out for lunch today. Pizza, Chinese, Steak, or Falafel? Let's decide.

I prefer Steak, then Chinese and then Falafel. I don't really like Pizza.

I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.

Thanks Michael! I prefer Steak.

I'm taking everyone out for lunch today. Pizza, Chinese, Steak, or Falafel? Let's decide.

You're not invited Toby!

I prefer Pizza and then Steak. I don't really like the two other options but I prefer Chinese to Falafel.

All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.

The answer is Pizza, and then by far Steak, Chinese and Falafel.

OK. I swallowed all your ideas. I'm going to digest them and see what comes out the other end.

I prefer Steak, then Chinese and then Falafel. I don't really like Pizza.

I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.

I prefer Pizza and then Steak. I don't really like the two other options but I prefer Chinese to Falafel.

All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.

The answer is Pizza, and then by far Steak, Chinese and Falafel.

I prefer Steak, then Chinese and then Falafel. I don't really like Pizza.

I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.

I prefer Pizza and then Steak. I don't really like the two other options but I prefer Chinese to Falafel.

All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.

The answer is Pizza, and then by fastering Steak, Chinese and Falafel.

I prefer Steak, then Chinese and then Falafel. I don't really like Pizza.

I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.

I prefer Pizza and then Steak. I don't really like the two other options but I prefer Falafel to Chinese.

All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.

The answer is Pizza, and then by far Steak, Chinese and Falafel.

I prefer Steak, then Chinese and then Falafel. I don't really like Pizza.

I'm a vegetarian, so options I prefer Fal

I prefer Pizza and then Steak. I don't really like the two other options but I prefer Falafel to Chinese.

All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.

The answer is Pizza, and then by far Steak, Chinese and Falafel.

I prefer Steak, then Chinese and then Falafel. I don't really like Pizza.

I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.

I prefer Pizza and then Steak. I don't really like the two other options but I prefer Falafel to Chinese.

All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.

The answer is Pizza, and then by far Steak, Chinese and Falafel.

I'm a vegetarian, so I don't eat steak. Among other options I prefer Falafel, Pizza and then Chinese.

All options seem good to me. But if I have to vote I say Falafel, Pizza, Chinese and then Steak.

• Voter *i* submits ranking with intensities (σ_i, π_i) over the candidates.

Ranking with Intensities

• Voter *i* submits ranking with intensities (σ_i, π_i) over the candidates.

 $\sigma_i: [m] \to C$

Ranking with Intensities

$$\pi_i: [m-1] \to \{\succ, \succ\}$$

• Voter *i* submits ranking with intensities (σ_i, π_i) over the candidates.

 $\sigma_i: [m] \to C$

Ranking with Intensities

$$\pi_i: [m-1] \to \{ \succ, \succ \}$$

 $c_1 \succ c_2 \implies c_3 \succ \ldots \implies c_m$

• Voter *i* submits ranking with intensities (σ_i, π_i) over the candidates.

$$\sigma_i:[m]\to C$$

• These (σ_i, π_i) s should be consistent with the utilities. We say that a voter uses \rightarrow if he has an α gap in his utilities

For $\alpha \in [0, 1]$

$$\pi_i: [m-1] \to \{ \succ, \succ \}$$

 $c_1 \succ c_2 \implies c_3 \succ \ldots \implies c_m$

• Voter *i* submits ranking with intensities (σ_i, π_i) over the candidates.

$$\sigma_i:[m]\to C$$

- These (σ_i, π_i) s should be consistent with the utilities. We say that a voter uses >> if he has an α gap in his utilities

For $\alpha \in [0, 1]$ $u_i \triangleright_{\alpha} (\sigma_i, \pi_i) : c \succ_i c' \Rightarrow u_i(c) \ge u_i(c')$,

 $c \gg_i c' \Rightarrow \alpha u_i(c) \ge u_i(c')$.

$$\pi_i: [m-1] \to \{ \succ, \succ \}$$

 $c_1 \succ c_2 \implies c_3 \succ \ldots \implies c_m$

• Voter *i* submits ranking with intensities (σ_i, π_i) over the candidates.

$$\sigma_i:[m]\to C$$

• These (σ_i, π_i) s should be consistent with the utilities. We say that a voter uses \rightarrow if he has an α gap in his utilities $\alpha = \frac{1}{2}$

For $\alpha \in [0, 1]$ $\mathcal{U}_i \triangleright_{\alpha} (\sigma_i, \pi_i) : c \succ_i c'$

 $c >>_i c$

$$\pi_i: [m-1] \to \{ \succ, \succ \}$$

$$\Rightarrow u_i(c) \ge u_i(c'),$$

$$c' \Rightarrow \alpha u_i(c) \ge u_i(c').$$

$$(a) = 0.3 \quad (a) = 0.2$$

$$(b) = 0.3 \quad (a) = 0.2$$

0.27

• Voter *i* submits ranking with intensities (σ_i, π_i) over the candidates.

$$\sigma_i:[m]\to C$$

• These (σ_i, π_i) s should be consistent with the utilities. We say that a voter uses \rightarrow if he has an α gap in his utilities $\alpha = \frac{1}{2}$

For $\alpha \in [0, 1]$ $\mathcal{U}_i \triangleright_{\alpha} (\sigma_i, \pi_i) : c \succ_i c'$

 $c >>_i c$

$$\pi_i: [m-1] \to \{ \succ, \succ \}$$

0.27

• Voter *i* submits ranking with intensities (σ_i, π_i) over the candidates.

$$\sigma_i:[m]\to C$$

• These (σ_i, π_i) s should be consistent with the has an α gap in his utilities

For $\alpha \in [0, 1]$ $\mathcal{U}_i \triangleright_{\alpha} (\sigma_i, \pi_i) : c \succ_i c'$ $c \succ_i c'$

• Extreme cases: $\alpha \simeq 1$, $\alpha = 0$

$$\pi_i: [m-1] \to \{ \succ, \succ \}$$

- These (σ_i, π_i) s should be consistent with the utilities. We say that a voter uses \rightarrow if he

 $\alpha = \frac{1}{\alpha}$

0.27

Deterministic

Ramdomized

Special Cases

Special Cases

What do we loose (in terms of distortion) if we ignore intensities?

- What do we loose (in terms of distortion) if we ignore intensities?
- Intensity aware optimal:

- What do we loose (in terms of distortion) if we ignore intensities?
- Intensity aware optimal:

 $\operatorname{opt}_{\alpha}^{\operatorname{aw}}\left(\left(\vec{\sigma},\vec{\pi}\right)\right) = \operatorname{argmin}\operatorname{dist}_{\alpha}\left(x,\left(\vec{\sigma},\vec{\pi}\right)\right)$ $x \in \Delta(C)$

- What do we loose (in terms of distortion) if we ignore intensities?
- Intensity aware optimal:
 - $\operatorname{opt}_{\alpha}^{\operatorname{aw}}\left((\vec{\sigma},\vec{\pi})\right) = \operatorname{argmin} \operatorname{dist}_{\alpha}\left(x,(\vec{\sigma},\vec{\pi})\right)$ $x \in \Delta(C)$
- Price of Ignoring Intensities (POII):

- What do we loose (in terms of distortion) if we ignore intensities?
- Intensity aware optimal:
 - $\operatorname{opt}_{\alpha}^{\operatorname{aw}}\left((\vec{\sigma},\vec{\pi})\right) = \operatorname{argmin} \operatorname{dist}_{\alpha}\left(x,(\vec{\sigma},\vec{\pi})\right)$ $x \in \Delta(C)$
- Price of Ignoring Intensities (POII)

 $\mathsf{POII}((\vec{\sigma}, \vec{\pi}), \alpha) = \min_{x \in \Lambda(C)}$ $x \in \Delta(C)$

$$\operatorname{dist}_{\alpha}\left(x,\left(\vec{\sigma},\vec{\pi}\right)\right)$$
$$\operatorname{dist}_{\alpha}\left(\operatorname{opt}_{\alpha}^{\operatorname{aw}}\left(\left(\vec{\sigma},\vec{\pi}\right)\right),\left(\vec{\sigma},\vec{\pi}\right)\right)$$

- What do we loose (in terms of distortion) if we ignore intensities?
- Intensity aware optimal:
 - $\operatorname{opt}_{\alpha}^{\operatorname{aw}}\left((\vec{\sigma},\vec{\pi})\right) = \operatorname{argmin} \operatorname{dist}_{\alpha}\left(x,(\vec{\sigma},\vec{\pi})\right)$ $x \in \Delta(C)$
- Price of Ignoring Intensities (POII)

 $POII((\vec{\sigma}, \vec{\pi}), \alpha) = \min$ $x \in \Delta(C)$

> $POII(\alpha) = \max POII((\vec{\sigma}, \vec{\pi}), \alpha)$ $(\vec{\sigma},\vec{\pi})$

$$dist_{\alpha} \left(x, (\vec{\sigma}, \vec{\pi}) \right)$$
$$dist_{\alpha} \left(opt_{\alpha}^{aw} \left((\vec{\sigma}, \vec{\pi}) \right), (\vec{\sigma}, \vec{\pi}) \right)$$

• Let voters use \rightarrow if they want to express intensive preference. Distortion bounds from the classic setting holds here.

Let voters use >>> if they want to express intensive preference. Distortion bounds from the classic setting holds here.

► POII:

 $POII(\alpha) \in \Omega$

$$\left(\frac{\sqrt{m}(1-\alpha)}{1-\alpha^m}+1\right)$$

• Let voters use \rightarrow if they want to express intensive preference. Distortion bounds from the classic setting holds here.

► POII:

 $POII(\alpha) \in \Omega$

Deterministic:

 $POII(\alpha) \in \Omega$

$$\left(\frac{\sqrt{m}(1-\alpha)}{1-\alpha^m}+1\right)$$

$$2\left(\frac{m(1-\alpha)}{1-\alpha^m}+1\right)$$

Mandatory Reporting

- $c \succ_i c' \Rightarrow u_i(c) \ge u_i(c') \ge \alpha u_i(c)$.

- $c \succ_i c' \Rightarrow u_i(c) \ge u_i(c') \ge \alpha u_i(c)$.
- Distortion:

- $c \succ_i c' \Rightarrow u_i(c) \ge u_i(c') \ge \alpha u_i(c)$.
- Distortion:

- $c \succ_i c' \Rightarrow u_i(c) \ge u_i(c') \ge \alpha u_i(c)$.
- Distortion:

Mandatory Reporting

- $c \succ_i c' \Rightarrow u_i(c) \ge u_i(c') \ge \alpha u_i(c)$.

- $c \succ_i c' \Rightarrow u_i(c) \ge u_i(c') \ge \alpha u_i(c)$.
- Deterministic POII:

- $c \succ_i c' \Rightarrow u_i(c) \ge u_i(c') \ge \alpha u_i(c)$.
- Deterministic POII:

- $c \succ_i c' \Rightarrow u_i(c) \ge u_i(c') \ge \alpha u_i(c)$.
- Deterministic POII:

 $\text{POII}(\alpha) \in \Omega\left(\frac{m(1-\alpha)}{1-\alpha^m}+1\right)$

- Randomized rule for uniform decisiveness: $\pi_i = (\rightarrow, \rightarrow, \rightarrow, \dots, \rightarrow)$

- Randomized rule for uniform decisiveness: $\pi_i = (\rightarrow, \rightarrow, \rightarrow, \dots, \rightarrow)$
- POI[X]: Price of ignorance could be defined for any information

- Randomized rule for uniform decisiveness: $\pi_i = (\rightarrow, \rightarrow, \rightarrow, \dots, \rightarrow)$
- POI[X]: Price of ignorance could be defined for any information
 - Abstention

- Randomized rule for uniform decisiveness: $\pi_i = (\rightarrow, \rightarrow, \rightarrow, \dots, \rightarrow)$
- POI[X]: Price of ignorance could be defined for any information
 - Abstention
 - Strategic voting

- Randomized rule for uniform decisiveness: $\pi_i = (\rightarrow, \rightarrow, \rightarrow, \dots, \rightarrow)$
- POI[X]: Price of ignorance could be defined for any information
 - Abstention
 - Strategic voting
 - Voter's distributions

- Randomized rule for uniform decisiveness: $\pi_i = (\rightarrow, \rightarrow, \rightarrow, \dots, \rightarrow)$
- POI[X]: Price of ignorance could be defined for any information
 - Abstention
 - Strategic voting
 - Voter's distributions
- Decisive preferences in other settings

