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These notes started their life as a lecture given at the Toronto Student Seminar on February 9,
2012. The material is taken mostly from the classic paper by Coppersmith and Winograd [CW].
Other sources are §15.7 of Algebraic Complexity Theory [ACT], Stothers’s thesis [Sto], V. Williams’s
recent paper [Wil], and the paper by Cohn at al. [CKSU]. Starred sections are the ones we didn’t
have time to cover.

We present three different algorithms, all taken from [CW], in rapid succession. All these
algorithms are based on Strassen’s groundbreaking laser method. Strassen’s original ideas are
described in the appendix.

1 Algorithm 1

The starting point is the identity
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On the left-hand side, we have a sum of three matrix products 〈1, 1, q〉, 〈q, 1, 1〉, 〈1, q, 1〉 sharing
some variables. We can indicate these shared variables using superscripts:

ε3(〈1, 1, q〉0,1,1 + 〈q, 1, 1〉1,0,1 + 〈1, q, 1〉1,1,0) +O(ε4).

The notation 〈n,m, p〉i,j,k indicates a tensor of type 〈n,m, p〉 whose x-variables have superscript i,
whose y-variables have superscript j, and whose z-variables have superscript k. The point is that
different superscripts of x correspond to disjoint sets of variables.

The identity as it stands isn’t very useful, since the three (rather trivial) matrix products
involved all share variables. The idea of the laser method is to compute the Nth tensor power
of the identity, and then somehow separate the variables. The Nth tensor power of the identity
has (q + 2)N terms on the right-hand side. What about the left-hand side? It’s of the form
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ε3NF +O(ε3N+1), where F is now the sum of 3N different matrix product tensors, each of volume
qN (the volume of a tensor 〈n,m, p〉 is nmp).

The plan now is to take a large subset of the variables so that if we zero out all the other
variables, F separates into a disjoint sum. More specifically, we can think of F as a set of triples of
indices. We will single out large sets of indices X,Y, Z such that among the triples F ∩X ×Y ×Z,
no variable repeats. In other words, for each x ∈ X, there is at most one pair (y, z) ∈ Y × Z such
that (x, y, z) ∈ F .

How many triples can we expect to obtain in this way? Let P be the size of the projection
of F into one of the coordinates (they are all the same by symmetry). We definitely cannot
expect to get more than P triples. In our case, P = 2N . However, this bound is a tad naive,
as the following argument from [CKSU] shows. Classify the triples according to their “source
distribution”, that is, how many triples of each type 110, 101, 011 generated them. If there are
a, b, c of those, respectively (a + b + c = N), then the projections on the coordinates have sizes(
N
c

)
,
(
N
b

)
,
(
N
a

)
. Hence the number of triples of type a, b, c is at most the minimum of these, which is

at most
(
N
N/3

)
. There are O(N2) types, hence there can be at most O(N2)

(
N
N/3

)
≈ 2h(1/3)N triples,

where h(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.
What this argument teaches us is that it is enough to consider one type of triples, in this case

N/3, N/3, N/3. Technically, this will manifest itself in the following way. For a subset G of F ,
construct a conflict graph by taking the set G as vertices, and connecting any two vertices which
share a coordinate. The subset G consisting of all sets of triples of type N/3, N/3, N/3 has the
property that all vertices have the same degree. Conversely, the degree in the graph corresponding
to F depends on the source distribution: a triple of type a, b, c has roughly 2N−a + 2N−b + 2N−c

neighbors. To see this, consider for example the first coordinate, which consists of c zeroes and
N − c ones. Each index equal to one could come from either 110 or 101, while each index equal to
zero certainly came from 011.

Surprisingly, this method of reducing F to G by specifying a source distribution is optimal: we
can zero variables so that G separates to a disjoint sum of P 1−o(1) terms, where P is the projection
of G to each of the coordinates. We will state this shortly, but first, a definition.

Definition 1. Let T ⊂ Z3 be a finite collection of triples, and let φ : T → R+ be arbitrary. We
define below the numerical quantity cap(T, φ), the capacity of T with respect to φ.

Let N ≥ 1. We extend φ to TN multiplicatively, and to subsets of TN additively. For i ∈
{1, 2, 3}, let αi : T

N → ZN denote the projection to the ith coordinate. Say that subsets Xi ⊆
αi(T

N ) (i ∈ {1, 2, 3}) are good if αi is injective on TN ∩ X1 × X2 × X3 for i ∈ {1, 2, 3}. The
N -capacity capN (T, φ) is the maximum of φ(TN ∩X1×X2×X3) over all good subsets X1, X2, X3.
The capacity cap(T, φ) is defined as

cap(T, φ) = lim sup
N→∞

N
√

capN (T, φ).

For example, in our case T = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, and we can take φ to be constant. In
the next section, we will see an example in which φ has to be non-constant.

We defined the capacity as a limit superior, but a tensor product construction shows that
capN1+N2

(T, φ) ≥ ∩N1(T, φ) ∩N2 (T, φ), and this implies that the limit actually exists.

Lemma 1. Let T, φ be as in Definition 1. Suppose that furthermore, each triple in T sums to a
constant, that T is closed under permutations, and that φ is constant over permutations. Then
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cap(T, φ) satisfies the following inequalities:

log2 cap(T, φ) ≤ max
π

H(π1) +
∑
t∈T

π(t) log2 φ(t),

log2 cap(T, φ) ≥ max
π

H(π)− max
τ : τ1=π1

H(τ) +H(π1) +
∑
t∈T

π(t) log2 φ(t),

where π ranges over all permutation-invariant probability distributions over T , π1 is the distribution
of the first coordinate under π, and H is the entropy function given by H(π) = −

∑
t∈T π(t) log2 π(t).

Note that the maximum exists since the range of π is compact.

In our present case, T is permutation-invariant, and so the lemma shows that

cap(T, 1) = 2H(1/3,2/3) = 2h(1/3).

We are now in position to apply Schönhage’s asymptotic sum inequality. Taking the Nth tensor
power of the identity and zeroing out variables appropriately, we get on the left-hand size a disjoint
sum of roughly 2h(1/3)N terms of volume qN . Hence

2h(1/3)NqτN ≤ (q + 2)N .

Rearranging variables, we deduce

ω ≤ 3 logq
q + 2

2h(1/3)
.

Plugging q = 8, we get ω ≤ 2.404.
The construction in Lemma 1 is randomized. In other words, the final algorithm isn’t explicit.

This makes no difference in our model, since it is non-uniform. The method of conditional expec-
tations can determinize the lemma, in case one really cares about uniformity, though finding the
algorithm, while it takes polynomial time, might take more time than executing it.

Tightness of Lemma 1 When the range of T is small, τ = π. In particular, this is the case
(as can be checked using linear algebra) if all triples in T are non-negative and sum to a constant
which is at most 5. For a sum of 6, we have the following counterexample:

X = S(0, 2, 4), S(1, 2, 3)2, Y = S(0, 3, 3)2, S(1, 1, 4)2, S(2, 2, 2)6.

Here S(a, b, c) is a shorthand for all distinct permutations of (a, b, c). Both X and Y have the same
projections into each of the coordinates, but the constituents are different. We have

H(X) = H( 1
18

[6]
, 1

9

[6]
) ≈ 3.50, H(Y ) = H(1

9

[6]
, 1

3) ≈ 2.64.

Coppersmith and Winograd [CW], followed by Williams [Wil], avoid this issue by restricting them-
selves to distributions π for which τ = π. That is, their distributions are specified only by the
marginals. As we remarked, in the former case, this doesn’t matter. However, in the latter case,
it could matter. Indeed, the Nth power of the algorithm contains all non-negative triples (a, b, c)
with a+ b+ c = 2N . This property follows from the fact that it holds for the basic algorithm.
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1.1 Proof of Lemma 1

Before delving into the proof itself, we need some auxiliary results.

Lemma 2. Let π be a partition of n ≥ 2 into k parts. Then there is a constant Ck such that

n−Ck ≤
(
n
π

)
2H(π/n)n

≤ nCk .

Proof. Without loss of generality, all parts in π are non-empty. According to Wikipedia, there exist
constants K1,K2 such that
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n!
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≤ K2.
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2
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π
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1

,
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≤
√
n.
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2

n(1−k)/2 ≤
(
n
π

)
2H(π/n)n

≤ K2

Kk
1

n1/2.

Lemma 3. Let π be a finite probability distribution. There exists a constant C such that for all
n, there is a finite probability distribution σ such that nσ is integral, |σ(t) − π(t)| ≤ 1/n and
|H(π)−H(σ)| ≤ C/n.

Proof. Let S be the support of π. Consider σL and σH defined by σL(t) = bnπ(t)c/n and σH(t) =
dnπ(t)e/n. Clearly

∑
σL ≤ 1 while

∑
σH ≥ 1. It is not hard to conclude that there is a probability

distribution σ such that nσ is integral and |σ(t)−π(t)| ≤ 1/n. Now ∂H(π)/∂π(t) = − log e(π(t)+1).
In particular, ‖∇H(π)‖1 = C is constant. It follows that |H(π)−H(σ)| ≤ C/n.

We divide the proof into two parts: upper bound and lower bound.
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Upper bound Fix N ≥ 1, let X1, X2, X3 be good subsets of TN , and let F = TN ∩X1×X2×X3.
Let D denote the set of all source distributions, that is the set of all functions d : T → N that sum
to N . Note |D| = poly(N). For each d ∈ D, let Fd ⊂ F consist of those elements conforming to
the distribution d. Also, let di denote the projection distribution on the ith component. Since the
projections are injective on F , using Lemma 2 we get

|Fd| ≤
3

min
i=1

(
N

di

)
≤

3
min
i=1

2H(di/N)N poly(N).

Therefore

φ(F ) =
∑
d∈D

∏
t∈T

φ(t)d(t)|Fd|

≤ poly(N) max
d∈D

∏
t∈T

φ(t)d(t) min
i∈{1,2,3}

2H(di/N)N .

Now let ∆ be the set of all probability distributions on T . For any d ∈ D, d/N ∈ ∆, and so

capN (T, φ) ≤ poly(N) max
π∈∆

∏
t∈T

φ(t)π(t)N min
i∈{1,2,3}

2H(pi)N .

Taking Nth roots, we deduce that

cap(T, φ) ≤ max
π∈∆

∏
t∈T

φ(t)π(t) min
i∈{1,2,3}

2H(πi)N .

Given a distribution π ∈ ∆, let S(π) denote its symmetrization. Note that S(π)i = (π1 +π2 +π3)/3.
Since the entropy function is concave,

H(S(π)1) ≥ H(π1) +H(π2) +H(π3)

3
≥ min(H(π1), H(π2), H(π3)).

On the other hand, since φ is permutation-invariant,∏
t∈T

φ(t)π(t) =
∏
t∈T

φ(t)S(π)(t).

Therefore the maximum is obtained at some symmetric distribution.

Lower bound This is the difficult part of the proof. We will use Salem-Spencer sets, which
are subsets of the integers without three-term arithmetic progressions. Salem and Spencer [SS]
showed constructively that for all M , there exist such subsets of {1, . . . ,M} of size M1−o(1). Their
construction was improved by Behrend [Beh], Moser [Mos] and Elkin [Elk]. Behrend and Elkin’s
proofs are randomized, while Moser’s proof is constructive. For us, the original construction suffices.

In fact, we will employ Salem-Spencer sets over the group ZM , for M odd. We can construct
such sets by taking Salem-Spencer subsets of {0, . . . , (M − 1)/2}. Such sets still have size M1−o(1).

Without loss of generality, assume that all triples in T sum to zero. Let π be any distribution
on T . Fix N ≥ 1, and let F be the subset of TN corresponding to source distribution Nσ, where
σ is given by Lemma 3.
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Let M be an odd prime to be determined later. Let h : ZnM → ZM be a random linear function,
and choose x1, x2, x3 ∈ ZM randomly under the constraint x1 + x2 + x3 = 0. Finally, for x ∈ TN
define hi(x) = h(αi(x)) + xi. Our construction guarantees that if αi(x) 6= αi(y) and i 6= j then
(hi(x), hi(y), hj(x)) is a uniformly random element in Z3

p (since M is prime). Finally, define h′1(x) =
2h1(x), h′2(x) = 2h2(x) and h′3(x) = −h3(x); the reason behind this weird definition will become
apparent later on. Since M is odd, (h′i(x), h′i(y), h′j(x)) is also a uniformly random element.

Let A be some Salem-Spencer set for ZM of size M1−o(1). Define sets Y1, Y2, Y3 as follows:

Yi = {x ∈ αi(F ) : h′i(x) ∈ A}.

By construction, for every x ∈ TN ,

h1(x) + h2(x) + h3(x) = h(α1(x) + α2(x) + α3(x)) = 0.

Therefore h′1(x)+h′2(x) = 2h′3(x). Since A is a Salem-Spencer set, we deduce that h′1(x) = h′2(x) =
h′3(x). Conversely, if h′1(x) = h′2(x) then 2h′1(x) = 2h′3(x) and so h′1(x) = h′3(x). This is a property
satisfied by every element of Tn ∩ Y1 × Y2 × Y3. This set therefore partitions into sets (Va)|a∈A,
where Va contains those members such that h′1(x) = h′2(x) = h′3(x) = a.

We construct the sets Xi out of the set Yi separately for each a. Given a ∈ A, form a graph
whose vertex set is Va, and two vertices are connected by an edge if they conflict, that is, they share
one of the three coordinates. Denoting the set of edges by Ua, there are at least |Va|−|Ua| connected
components. Choose a representative from each connected component. The set Xi contains all ith
coordinates of representatives. The graph was constructed to guarantee that X1, X2, X3 is good,
and the number of triples is

∑
a |Va| − |Ua|.

This construction works for simple examples, in which F = TN ∩ α1(F ) × α2(F ) × α3(F );
however, this is not always the case. To refine this construction, let V ′a = Va ∩ F , and let U ′a ⊆ Ua
consist of those conflicts touching V ′a. When choosing representatives, choose a representative from
F is possible. There are at least |V ′a| − |U ′a| connected components containing triple from F (proof:
first add the edges in Ua\U ′a), and so the resulting number of triples from F is at least

∑
a |V ′a|−|U ′a|.

Let us estimate now the sizes of the sets V ′a and U ′a. We need to define a set G related to F :

G = {(x1, x2, x3) : xi ∈ αi(F )}.

We also define P = |α1(F )|. Each element in x ∈ F belongs to V ′a with probability 1/M2, since
h′1(x), h′2(x) is uniform over Z2

M , and h′1(x) = h′2(x) implies h′1(x) = h′2(x) = h′3(x). Next,
we count the number of potential conflicts involving F . For each xi ∈ αi(F ), there are |G|/P
triples having xi as their ith coordinate. Hence the number of conflicts involving F is bounded
by 3|F ||G|/P . Each conflict (x, y) belongs to U ′a with probability 1/M3, since (assuming it is
a 1-conflict) h′1(x), h′2(x), h′2(y) is uniform over Z3

M (since α1(x) = α1(y) and x 6= y implies
α2(x) 6= α2(y)), and so h′1(x) = h′2(x) = h′2(y) = a happens with probability 1/M3. Hence
the expected value of |V ′a| − |U ′a| is

|F |
M2
− 3|F ||G|

PM3
.

Choosing M to be a prime of size roughly 6|G|/P , the resulting number of triples is at least

M1−o(1) |F |
2M2

= M−o(1) |F |
2|G|

P.
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Using Lemma 2 and arguments similar to Lemma 3, we estimate P ≈ 2H(σ1)N ≈ 2H(π1)N . Similarly,
|F | ≈ 2H(π)N and |G| ≈ 2H(τ)N , where τ maximizes H(τ) under the constraint τi = πi for i ∈
{1, 2, 3}; the optimum is permutation-invariant by the concavity of H. Note we estimate |G| by
the largest contribution to it since there are only polynomially many source distributions. Putting
everything together, we get the statement of the lemma.

Remark An alternative construction, using Strassen’s original approach and avoiding Salem-
Spencer sets, appears in §15.7 of [ACT]. We did take Strassen’s connected components argument,
which replaces a less elegant one due to Coppersmith and Winograd.

Open problem Which bound is correct, the lower bound or the upper bound?

2 Algorithm 2

The identity we started from can be slightly tweaked to yield even more:
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The new identity has three more variables x
[2]
q+1, y

[2]
q+1, z

[2]
q+1 and three more terms in the left-hand

side 〈1, 1, 1〉0,0,2 + 〈1, 1, 1〉0,2,0 + 〈1, 1, 1〉2,0,0. All this at the cost of no new terms in the right-hand
side!

We follow the analysis of Algorithm 1, only now we have one more degree of freedom. Suppose p
gives weight α/3 to each of the terms of volume q, and weight β/3 to each of the terms of volume 1
(so α+β = 1). The projection r gives probabilities (α+2β)/3, 2α/3, β/3 to 0, 1, 2, correspondingly.
Following our earlier reasoning, Lemma 1 together with the asymptotic sum inequality yield

ω ≤ 3 logqα
q + 2

2H((α+2β)/3,2α/3,β/3)
.

This time the optimization is more difficult, but can be done numerically (or with Lagrange mul-
tipliers), giving q = 6, α ≈ 0.952, β ≈ 0.048 and ω ≤ 2.388.

Remark The transition from Algorithm 1 to Algorithm 2 involves adding three new variables. In

exactly the same way, we could add even more variables, adding for example the term x
[0]
0 y

[0]
0 z

[3]
q+2.

However, this does not increase the capacity. Indeed, suppose the set X1 contained two members
a, b differing only in zq+1 vs. zq+2. Every triple in X1 ×X2 ×X3 in which the first coordinate is a
has a doppelgänger in which the first coordinate is b, so X1, X2, X3 isn’t good.
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3 Algorithm 3

Algorithm 3 uses exactly the same identity as Algorithm 2, only squared. There is an added
complication, since not all terms are matrix product tensors. We will see how to handle this soon,
but first let’s see how the identity squared looks like. If we follow the recipe given so far, the indices
will be vectors of length 2. Instead, we will take the sum of the two components (Coppersmith and
Winograd call this coupling). This ensures that the x-, y- and z-indices have a constant sum.

3.1 Squared identity

1. The identity squared has (q + 2)2 terms on the right-hand side, and 15 terms on the left-hand
side, which break up as follows:

(a) 3 terms similar to 〈1, 1, 1〉0,0,4, coming from

〈1, 1, 1〉0,0,2 ⊗ 〈1, 1, 1〉0,0,2.

(b) 6 terms similar to 〈1, 1, 2q〉0,1,3, coming from

〈1, 1, q〉0,1,1 ⊗ 〈1, 1, 1〉0,0,2 ⊕ 〈1, 1, 1〉0,0,2 ⊗ 〈1, 1, q〉0,1,1.

(c) 3 terms similar to 〈1, 1, q2 + 2〉0,2,2, coming from

〈1, 1, 1〉0,2,0 ⊗ 〈1, 1, 1〉0,0,2 ⊕ 〈1, 1, 1〉0,0,2 ⊗ 〈1, 1, 1〉0,2,0 ⊕ 〈1, 1, q〉0,1,1 ⊗ 〈1, 1, q〉0,1,1.

(d) 3 terms similar to T 1,1,2
4 , coming from

〈1, q, 1〉1,1,0⊗〈1, 1, 1〉0,0,2+〈1, 1, 1〉0,0,2⊗〈1, q, 1〉1,1,0+〈q, 1, 1〉1,0,1⊗〈1, 1, q〉0,1,1+〈1, 1, q〉0,1,1⊗〈q, 1, 1〉1,0,1.

The fourth tensor, T4, is unfortunately not a matrix product tensor in itself, but it can be used to
produce matrix product tensors, in some sense that we will make precise. We will have to generalize
the asymptotic sum inequality from∑

s

(nsmsps)
τ ≥ R

(⊕
s

〈ns,ms, ps〉
)
−→ ω ≤ 3τ (1)

to a more general form ∑
s

Vτ (Ts) ≥ R
(⊕

s

Ts
)
−→ ω ≤ 3τ. (2)

3.2 The value of a tensor

We first present the definition of Vτ , and then give some intuition. The proof of (2) is given in the
subsection below.

The operator ρ operates on tensors by rotating the variables x, y, z to y, z, x. For example, if

T = 〈n,m, p〉 =

n∑
i=1

m∑
j=1

p∑
k=1

xijyjkzik
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then ρ(T ), which is obtained by replacing x 7→ y, y 7→ z, z 7→ x, is

ρ(T ) =
n∑
i=1

m∑
j=1

p∑
k=1

xikyijzjk =

p∑
k=1

n∑
i=1

m∑
j=1

x′kiyijz
′
kj = 〈p, n,m〉.

Here x′ki = xik and z′kj = zjk denote transposition. Next, we define symmetrization:

S(T ) = T ⊗ ρ(T )⊗ ρ2(T ).

So S(〈n,m, p〉) = 〈nmp, nmp, nmp〉. Symmetrization is what allowed us to prove ω ≤ 3 lognmpR(〈n,m, p〉).
The Nth tensor power of a tensor T is T⊗N = T ⊗ · · · ⊗ T (N factors). We say that a tensor

T breaks up into T ′ =
⊕

s〈ns,ms, ps〉 if we can zero some variables to get T ′. This is the same
process we used in Algorithms 1 and 2. We define

Vτ,N (T ) = max

{∑
s

(nsmsps)
τ : T breaks up into

⊕
s

〈ns,ms, ps〉

}
.

For example, Vτ,N (〈n,m, p〉) = (nmp)nτ . Finally,

Vτ (T ) = sup
N
Vτ,N (T )1/3N .

So Vτ (〈n,m, p〉) = (nmp)τ .
The idea behind this definition is that it immediately implies that

Vτ (T ) = R(T ) −→ ω ≤ 3τ. (3)

Indeed, suppose that Vτ,N (T )1/3N ≈ R(T ). So for some ns,ms, ps,

Vτ,N (T ) =
∑
s

(nsmsps)
τ ,

and S(T )⊗N reduces to T ′ =
⊕

s〈ns,ms, ps〉. The latter implies that

R(T ′) ≤ R(S(T )⊗N ) ≤ R(T )3N .

The asymptotic sum inequality (1) states that∑
s

(nsmsps)
τ ≥ R(T ′) −→ ω ≤ 3τ.

Since Vτ,N (T ) ≈ R(T )3N ≥ R(T ′), the condition roughly holds, hence ω ≤ 3τ .

4 Calculating the value

It’s time for us to take a closer look at T4. With the original indices, it looks like this:

T4 = 〈1, q, 1〉10,10,02 + 〈1, q, 1〉01,01,20 + 〈q, 1, q〉10,01,11 + 〈q, 1, q〉01,10,11.

9



Let’s rename the indices to make things clearer:

T4 = 〈1, q, 1〉3,3,3 + 〈1, q, 1〉4,4,4 + 〈q, 1, q〉3,4,5 + 〈q, 1, q〉4,3,5.

The tensor T4 is not symmetric. Before symmetrizing it, we take the Nth power, and only consider
terms with (α/2)N, (α/2)N, (β/2)N, (β/2)N factors of each of the basic types, where α + β = 1.
Each such term has volume q(α+2β)N . The projection into the x-index or the y-index has N/2
coordinates equal to 3 and N/2 coordinates equal to 4. The projection into the z-index has (α/2)N
coordinates equal to 3, (α/2)N coordinates equal to 4, and βN coordinates equal to 5. If we now
symmetrize, the volume of each basic term is q3(α+2β)N , and the projection into each coordinate
has size (

N

N/2

)2( N
α
2N,

α
2N, βN

)
.

Using Lemma 1, we get that the value is at least roughly the 3Nth root of(
N

N/2

)2( N
α
2N,

α
2N, βN

)
q3(α+2β)Nτ ≈ 22N2H(α/2,α/2,β)Nq3(α+2β)Nτ .

Taking the Nth root, we get

Vτ (T4)3 ≥ 4 · 2H(α/2,α/2,β)q(3α+6β)τ

= 4(α/2)−αβ−βq(3+3β)τ .

We can find the optimal value of β by substituting α = 1 − β, differentiating the right-hand side
with respect to β, and equating to zero. We find that the optimal values of α, β are

α =
2

q3τ + 2
, β =

q3τ

q3τ + 2
.

Substituting this back, we get
Vτ (T4) ≥ 41/3qτ (2 + q3τ )1/3.

4.1 Analyzing the algorithm

Having calculated the value of T4, it’s time to go back to the main plan. Previously we have
optimized the exact fraction to take of each of the basic terms. However we have 15 of these. In
the end, we’re only really interested in the size of the projection into each coordinate (assuming the
projection has the same size for all coordinates). Since there are only 5 values of each coordinate,
this reduces the number of degrees of freedom to 4. In fact, since in the identity, the three indices
always sum to 4, the average of all components of the x-index should be 4/3. This takes away one
more degree of freedom.

Suppose α + β + γ + δ = 1. Take terms in which each term of the first kind appears (α/3)N
times, each term of the second type appears (β/6)N times, each term of the third type appears
(γ/3)N times, and each term of the fourth type appears (δ/3)N times. The normalized histogram
of each coordinate will be

2α+ β + γ

3
:
β + 2δ

3
:

2γ + δ

3
:
β

3
:
α

3
.
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The asymptotic sum inequality equates (q+ 2)2 with the entropy of this distribution multiplied by
the value, which is

Vτ (T1)αVτ (T2)βVτ (T3)γVτ (T4)δ.

We don’t need to explicitly compute the values of T1, T2, T3 since they are matrix product tensors.
If we optimize over q, α, β, γ, δ, we get that ω ≤ 2.376.

4.2 Proof*

The generalized form of the asymptotic sum inequality (2) is implicitly used in Coppersmith and
Winograd’s original paper [CW]. It is stated explicitly in Williams’s work [Wil], but not proved
there. The treatment below is taken from Stothers’s thesis [Sto], who explicitly proves it (we slightly
modify his notation).

Lemma 4. For every two tensors T1, T2,

Vτ,N (T1 ⊗ T2) ≥ Vτ,N (T1)Vτ,N (T2).

As a consequence, for every tensor T ,

Vτ,cN (T ) ≥ Vτ,N (T )c.

Proof. Exercise.

Lemma 5. For every tensor T ,

Vτ (T ) = lim
N→∞

Vτ,N (T )1/3N .

Proof. We defined Vτ (T ) as the supremum of Vτ,N (T )1/3N . Pick any ε > 0. For some N ,

Vτ,N (T )1/3N ≥ Vτ (T )− ε.

Let M = cN + r, where c ≥ 1 and 0 ≤ r < N . Since

c

3M
=

1

3N
− r

3MN
>

1

3N
− 1

3M
,

Lemma 4 shows that

Vτ,M (T )1/3M ≥ Vτ,cN (T )1/3M ≥ Vτ,N (T )c/3M ≥ (Vτ (T )− ε)Vτ (T )−1/3M .

If M is large enough,
Vτ,M (T )1/3M ≥ Vτ (T )− 2ε.

Corollary 6. For every two tensors T1, T2,

Vτ (T1 ⊗ T2) ≥ Vτ (T1)Vτ (T2).

Lemma 7. For every two tensors T1, T2,

Vτ (T1 ⊕ T2) ≥ Vτ (T1) + Vτ (T2).

11



Proof. Lemma 5 implies that for large N ,

Vτ,N (T1) ≈ Vτ (T1)3N , Vτ,N (T2) ≈ Vτ (T2)3N .

The Nth tensor power S(T1 ⊕ T2)⊗N is a disjoint sum of various terms, including

S(T1)N1 ⊗ S(T2)N2

for all N1, N2 satisfying N1 +N2 = N . Hence the definition of value implies that

Vτ,N (T1 ⊕ T2) ≥ Vτ,N1(T1)Vτ,N2(T2).

If N1 and N2 are both large, then

Vτ,N1(T1)Vτ,N2(T2) ≈ Vτ (T1)3N1Vτ (T2)3N2 .

The right-hand side is maximized when N1/N2 ≈ Vτ (T1)/Vτ (T2), in which case

Vτ (T1)N1Vτ (T2)N2 &
(Vτ (T1) + Vτ (T2))3N

N + 1
.

When N is large, both of N1, N2 are large, and so

V
1/3N
τ,N (T1 ⊕ T2) & Vτ (T1) + Vτ (T2).

Corollary 8. The generalized asymptotic sum inequality (2) holds.

5 General formulation*

The estimate of ω obtained using Algorithm 3 is a two-tiered process. The first step is to calculate
several values, and the second step is to combine these values and get an estimate of ω. Each step
requires combining Lemma 1 with the asymptotic sum inequality. We can phrase the method in
the following lemma.

Lemma 9. Let T be a tensor which is a sum of tensors {Ti : i ∈ I}, where Ti has indices i. Given
a probability distribution p on I, let r1, r2, r3 be the resulting projections on the three coordinates.
Then

log2 Vτ (T ) ≥ H(r1) +H(r2) +H(r3)

3
+ Ei∼p[log2 Vτ (Ti)].

Proof sketch. Suppose first that the tensors Ti are matrix multiplication tensors. Using the method
of proof of Lemma 1, we can demonstrate the existence of subsets TN ⊂ S(S)⊗N of size very roughly

1

3N
log2 |TN | −→

H(r1) +H(r2) +H(r3)

3
.

Each subset TN corresponds to a disjoint sum of matrix multiplication tensors 〈n,m, p〉 such that

(nmp)τ =
∏
i

Vτ (Ti)
3p(i)N .
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The estimate of Vτ (T ) now follows from the formula for Vτ,N (T ).
For the general case, the reader can show that the definition of Vτ remains valid if we replace

the original definition of Vτ,N with

Vτ,N (T ) = max

{∑
S

Vτ (Ts) : T breaks up into
⊕
s

Ts

}
.

In order to apply the lemma, we need to use the base case stating that Vτ (〈n,m, p〉) = (nmp)τ .
In order to use the lemma to obtain a bound on ω, we use the asymptotic sum inequality V3ω(T ) ≥
R(T ).

As an example, consider the tensor T4 encountered in Algorithm 3. The index set and known
values are given by

Vτ (T3,3,3) = Vτ (T4,4,4) = qτ , Vτ (T3,4,5) = Vτ (T4,3,5) = q2τ .

Convexity implies that in order to maximize the entropy, we need the probability p to depend
only on the value (in this case, only on the volume of the corresponding matrix multiplication
tensor), hence we give each of the first two triples probability α/2, and each of the latter two triples
probability β/2 (where α+ β = 1). We have

H(r1) = H(r2) = H(1/2, 1/2) = 1, H(r3) = H(α/2, α/2, β).

Regarding volumes, we have

Ei∼p[log2 Vτ (Ti)] = τ(α+ 2β) log2 q.

The lemma now implies

log2 Vτ (T4) ≥ 2 +H(α/2, α/2, β)

3
+ τ(α+ 2β) log2 q.

6 Strassen’s version*

Strassen starts with the identity

ε

q∑
i=1

(x
[1]
i y

[0]
0 z

[1]
i + x

[0]
0 y

[1]
i z

[1]
i ) +O(ε2) =

q∑
i=1

(x
[0]
0 + εx

[1]
i )(y

[0]
0 + εy

[1]
i )zi − x[0]

0 y
[0]
0

q∑
i=1

zi.

On the left, we have T = 〈q, 1, 1〉1,0,1 + 〈1, 1, q〉0,1,1. Strassen in effect calculates Vτ (T ). Raise
the identity to the Nth power. The projections have sizes 2N , 2N , 1, so after symmetrizing all the
projections have size 4N . All the individual terms have volume q3N . Lemma 1 (which Strassen
proves with an explicit construction) shows that

Vτ (T ) ≥ 41/3qτ .
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Therefore, the asymptotic sum inequality shows that ω ≤ 3τ where

41/3qτ = q + 1.

For q = 5, this gives ω ≤ 2.48.
One difference between Strassen’s account and the later one is the technique used to separate

a tensor into disjoint components. Coppersmith and Winograd do this by zeroing out some of
the variables. Strassen gives a different ε-weight to each input variable, and then obtains an
approximate equation (an equation of the type used to define border rank). His method obviates
the need for Salem-Spencer sets.

Question: The Coppersmith-Winograd construction can be easily emulated using a Strassen
construction. Is the other direction also true?
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