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Differential Privacy

An algorithm A is e-differentially private (¢-DP) if for every two neighboring datasets
X, X', and every measurable subset S of the range of A, A satisfies

P[A(X) € S] < ef!P[AX') € 5]

Neighboring = different in only 1 data point.
E.g.{(1,2), (2,3), (3,4)} and {(1,2), (4,5), (3,4)}

We assume € is small enough s.t. € = e® — 1.

Property of DP: Post-processing (doing anything not looking at datapoints) preserves
DP.



Unbiased Mechanisms

We say a mechanism M for answering query f is unbiased if for every dataset X, M
satisfies

E[M(X)] = f(X)

E.g. adding any noise with mean O.



Error

The [, error of a mechanism M for answering query fis

VEIM(X) = £(X))?]

Thisis 4/tr(Z) for unbiased M, where X is the covariance of M(X).



Mean Point Problem

1
X ={x{, %3, ...,x,}, x; EK €S R?, f(X) = - X

Reason of studying this relatively simple query: for other linear f, we can shift the
space and solve mean point problem there, and shifting back is post-processing.

We will assume K = UB% for some U = 0.



Support function

The support function of non-empty closed convex set K € R is defined to be:
hg () = sup{6”x}

XEK

Where 8 € R%.
We also define width function to be:
wi (0) = hg(0) + hy(—0)
When 0 € K we have:
wi () = hg(6)



Reduction to 1-dimension

|dea: For all direction (1 dim), we show the variance on that direction is large.

Formally, for all 6 € R%:

wk(0)
en

JVar(TM (X)) =
We will show this later.

We can also show that

VVar(8TM(X)) = hgosga(6)



Reduction to 1-dimension

We use the following fact (can be proved by Hyperplane Separation Theorem):
AC B &S VO,hy(0) < hg(6)

This gives us K © CenX%>B¢ for some absolute constant C.

Lower bound on error:

\/t—(Z) - min{\/tr(4): V>0 A Kcv*5B¢}
r(Z) =

&n



1 dimensional problem

Now we can focus on 1 dimensional setup and show

JVar(6TM (X)) = 29

&n

We use HCR bound to obtain this.



HCR Bound

Lemma. Hammersley—Chapman-Robbins (HCR) lower bound:
For distributions P and 0,

(Ep[Y]-Eqg[Y])?
Varg(Y)

x*(PIQ) =

The Chi-square divergence is defined to be

2(P1Q) = E[(22 - 1)

q(y)



Selecting P and Q

|dea: Obtain the ¥ divergence from DP and obtain the (]Ep Y] — IEIQ[Y])2 term using
M is unbiased.

Let P and Q be the distribution of 8T M (X,) and 6" M(X,). Let p(y) and g(y) denote
the PDF of P and Q.

WK(9)

We let X, be arbitrary from K™. We select X; s.t. |9T(f(X1) f(Xz))| and

X1 and X, are neighbouring datasets. By this we have

(Enl¥] — Eqlv]) = (2)’

Such X; always exists! (by linearity of f)




x*(PlQ)

_p)

Let T(y) — @

Observations:

1. Ey[r(y) —1] = 0.
2.1r(y) —1 €[e”® —1,e® — 1], by definition of DP.

Lemma. Vx € R, Va € R,
x €Ele® —1,e* —1] A E[x] = 0 = E[x?] < e %(e® — 1)2.

Applying this directly we have
x*(PIQ) = Eq[(r(y) — 1)?] < e™*(e® — 1)?



1 Dimensional Lower Bound

By HCR Bound we have the following lower bound:

Wi (6)
\/VClrQ (Y) = 2ne—0-5¢(gc—1)

Since X, is selected arbitrarily, when € is small this is exactly what we want

JVar(6TM(X)) = 29

&n

This lower bound is asymptotically tight for 1 dimension.



Higher Dimensional Lower Bound

Now we have

\/t—(Z) - min{/tr(4): V>0 A Kcv*5BE}
r(Z) =

&n

By K = UBS, min{\/tr(4): V > 0 A K € V°%B¢} = [tr(UTD)

So we have error of Q(ﬁ Jtr(UTD)).

Unfortunately, this is not tight: Error of the Laplace Mechanism is O (8—\/5 \/tr(UTU)).

There is a better approach (Packing Lower Bound) that yields a tight lower bound.

®), but we can get asymptotically tight lower bound for zCDP!



7CDP

An algorithm A is p-zero-concentrated differentially private (p-zCDP) if for every two
neighboring databases X, X', and every measurable subset S of the range of 4, and
forall @ € (1, ), A satisfies

D, (ACOIAX)) < pa

The a-Rényi divergence is defined to be

Do (PIQ) = ——log ([EyNQ [(%)QD

Setting & = 2 this gives us lower bound on Chi-square divergence.



Lower Bound for zCDP

Plugin @ = 2 we have
x?(PIQ) = Eq[(r(y) — 1)?] = Eg[r(»)?] -1 <e?’ —1=2p

This gives us

\/t—Z - min{,/tr(A): V=0 AKgV0-5B§l}

For K = UBZ, we h O(—/tr(UTV)).
or 5, we have error (\/ﬁn\/ r( )

Matches error of the Gaussian Mechanism O (ﬁ \/tr(UTU)).

If your algorithm is unbiased, you cannot do asymptotically better on zCDP than just
adding a Gaussian noise.



Future Works

1. Lower bounds for ADP(work in progress, we believe this is tight)
2. More general spaces.(general closed convex set)

3. More general queries.(non-linear ones?)



Thank you!



The Laplace Mechanism

[, Global Sensitivity is GS¢ ;. = sup 1 (X)) — F(X)l.

Xq1,Xoneighbours
GSf,ll

&

The Laplace Mechanism adds noise of Z; ~ Lap( ) to each of the d dimensions to

achieve &-DP.

exp(—2)

21

PDF of Laplace distruibution is Lap(A) is hy(y) =

Variance of Laplace distribution is 242,



The Laplace Mechanism

Consider running the Laplace Mechanism when K = Bg. (Same query)

Sensitivity is GSf;, = ?, so adding noise of Z; ~ Lap(%) to each of the d

dimensions.
8d
— I.
E“n

Covariance would be



The Laplace Mechanism

Back to K = UBY We can add noise of UZ; to each of the d dimensions.

Still DP since this is post-processing.

8d_yur.

e2n?

Error of O (8—\/5 \/tr(UTU)).

Covariance would be




The Gaussian Mechanism

[, Global Sensitivity is GSf;, = sup 1 (X1) — F(X)l,.

X1, Xoneighbours

2
(GSfi,)
2p

The Gaussian Mechanism adds noise of Z; ~ NV (0,
dimensions to achieve p-zCDP.

) to each of the d

By similar argument (shifting with U) we can get erroris O (ﬁ \/tr(UTU)).



