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Differential Privacy
An algorithm 𝐴 is 𝜀-differentially private (𝜀-DP) if for every two neighboring datasets 
𝑋, 𝑋’, and every measurable subset 𝑆 of the range of 𝐴, 𝐴 satisfies

ℙ[𝐴(𝑋) ∈ 𝑆] ≤ 𝑒𝜀ℙ[𝐴(𝑋′) ∈ 𝑆]

Neighboring = different in only 1 data point. 

E.g. {(1,2), (2,3), (3,4)} and {(1,2), (4,5), (3,4)}

We assume 𝜀 is small enough s. t. 𝜀 ≅ 𝑒𝜀 − 1.

Property of DP: Post-processing (doing anything not looking at datapoints) preserves 
DP.



Unbiased Mechanisms
We say a mechanism 𝑀 for answering query 𝑓 is unbiased if for every dataset 𝑋, 𝑀
satisfies

𝔼 𝑀 𝑋 = 𝑓(𝑋)

E.g. adding any noise with mean 0.



Error
The 𝑙2 error of a mechanism 𝑀 for answering query f is 

𝔼 (𝑀 𝑋 − 𝑓(𝑋))2

This is 𝒕𝒓(Σ) for unbiased 𝑀, where Σ is the covariance of 𝑀 𝑋 .



Mean Point Problem

𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑥𝑖 ∈ 𝐾 ⊆ ℝ𝑑 , 𝑓 𝑋 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖

Reason of studying this relatively simple query: for other linear 𝑓, we can shift the 
space and solve mean point problem there, and shifting back is post-processing.

We will assume 𝐾 = 𝑈𝐵𝑑 for some U ≽ 0.



Support function
The support function of non-empty closed convex set 𝐾 ⊆ ℝ𝑑 is defined to be:

ℎ𝐾 𝜃 = sup
𝑥∈𝐾

{𝜃𝑇𝑥}

Where 𝜃 ∈ ℝ𝑑.

We also define width function to be:

𝑤𝐾 𝜃 = ℎ𝐾 𝜃 + ℎ𝐾 −𝜃

When 0 ∈ 𝐾 we have:

𝑤𝐾 𝜃 ≥ ℎ𝐾 𝜃



Reduction to 1-dimension
Idea: For all direction (1 dim), we show the variance on that direction is large.

Formally, for all θ ∈ ℝ𝑑:

𝑉𝑎𝑟(𝜃𝑇𝑀(𝑋)) ≳
𝑤𝐾(𝜃)

𝜀𝑛

We will show this later.

We can also show that

𝑉𝑎𝑟(𝜃𝑇𝑀(𝑋)) = ℎΣ0.5𝐵2𝑑
(𝜃)



Reduction to 1-dimension
We use the following fact (can be proved by Hyperplane Separation Theorem):

𝐴 ⊆ 𝐵 ⇔ ∀𝜃, ℎ𝐴 𝜃 ≤ ℎ𝐵(𝜃)

This gives us 𝐾 ⊆ 𝐶𝜀𝑛Σ0.5𝐵2
𝑑 for some absolute constant 𝐶.

Lower bound on error:

𝒕𝒓(Σ) ≳
𝑚𝑖𝑛 𝒕𝒓 𝐴 : 𝑉≽0 ∧ 𝐾⊆𝑉0.5𝐵2

𝑑

𝜀𝑛



1 dimensional problem
Now we can focus on 1 dimensional setup and show

𝑉𝑎𝑟(𝜃𝑇𝑀(𝑋)) ≳
𝑤𝐾(𝜃)

𝜀𝑛

We use HCR bound to obtain this.



HCR Bound
Lemma. Hammersley−Chapman−Robbins (HCR) lower bound:

For distributions 𝑃 and 𝑄,

𝜒2(𝑃ǁ𝑄) ≥
𝔼𝑃 𝑌 −𝔼𝑄[𝑌]

2

𝑉𝑎𝑟𝑄(𝑌)

The Chi-square divergence is defined to be

𝜒2 𝑃ǁ𝑄 = 𝔼𝑞[
𝑝(𝑦)

𝑞(𝑦)
− 1

2

]



Selecting P and Q

Idea: Obtain the 𝜒2 divergence from DP and obtain the 𝔼𝑃 𝑌 − 𝔼𝑄[𝑌]
2

term using 
M is unbiased.

Let 𝑃 and 𝑄 be the distribution of 𝜃𝑇𝑀 𝑋1 and 𝜃𝑇𝑀 𝑋2 . Let 𝑝 𝑦 and 𝑞 𝑦 denote 
the PDF of 𝑃 and 𝑄.

We let 𝑋2 be arbitrary from 𝐾𝑛. We select 𝑋1 𝑠. 𝑡. 𝜃
𝑇 𝑓 𝑋1 − 𝑓 𝑋2 ≥

𝑤𝐾 𝜃

2𝑛
and 

𝑋1 and 𝑋2 are neighbouring datasets. By this we have

𝔼𝑃 𝑌 − 𝔼𝑄[𝑌]
2
≥

𝑤𝐾 𝜃

2𝑛

2

Such 𝑋1 always exists! (by linearity of 𝑓)



𝜒2(𝑃ǁ𝑄)

Let 𝑟 𝑦 =
𝑝(𝑦)

𝑞(𝑦)
. 

Observations:

1. 𝔼𝑞[𝑟 𝑦 − 1] = 0.

2. 𝑟 𝑦 − 1 ∈ [𝑒−𝜀 − 1, 𝑒𝜀 − 1], by definition of DP.

Lemma. ∀𝑥 ∈ ℝ, ∀𝛼 ∈ ℝ+,

𝑥 ∈ 𝑒−𝛼 − 1, 𝑒𝛼 − 1 ∧ 𝔼 𝑥 = 0 ⟹ 𝔼 𝑥2 ≤ 𝑒−𝛼 𝑒𝛼 − 1 2.

Applying this directly we have

𝜒2 𝑃ǁ𝑄 = 𝔼𝑞 𝑟 𝑦 − 1 2 ≤ 𝑒−𝜀 𝑒𝜀 − 1 2



1 Dimensional Lower Bound

By HCR Bound we have the following lower bound:

𝑉𝑎𝑟𝑄(𝑌) ≥
𝑤𝐾 𝜃

2𝑛𝑒−0.5𝜀 𝑒𝜀−1

Since 𝑋2 is selected arbitrarily, when 𝜀 is small this is exactly what we want

𝑉𝑎𝑟(𝜃𝑇𝑀(𝑋)) ≳
𝑤𝐾(𝜃)

𝜀𝑛

This lower bound is asymptotically tight for 1 dimension.



Higher Dimensional Lower Bound
Now we have

𝒕𝒓(Σ) ≳
𝑚𝑖𝑛 𝒕𝒓 𝐴 : 𝑉≽0 ∧ 𝐾⊆𝑉0.5𝐵2

𝑑

𝜀𝑛

By 𝐾 = U𝐵2
𝑑, 𝑚𝑖𝑛 𝒕𝒓 𝐴 : 𝑉 ≽ 0 ∧ 𝐾 ⊆ 𝑉0.5𝐵2

𝑑 = 𝒕𝒓(𝑈𝑇𝑈)

So we have error of Ω(
1

𝜀𝑛
𝒕𝒓 𝑈𝑇𝑈 ).

Unfortunately, this is not tight: Error of the Laplace Mechanism is O
𝑑

𝜀𝑛
𝒕𝒓 𝑈𝑇𝑈 .

There is a better approach (Packing Lower Bound) that yields a tight lower bound.

, but we can get asymptotically tight lower bound for zCDP!



zCDP
An algorithm 𝐴 is 𝜌-zero-concentrated differentially private (𝜌-zCDP) if for every two 
neighboring databases 𝑋, 𝑋’, and every measurable subset 𝑆 of the range of 𝐴, and 
for all 𝛼 ∈ (1,∞), 𝐴 satisfies

𝐷𝛼 𝐴 𝑋 ǁ𝐴(𝑋′) ≤ 𝜌𝛼

The 𝛼-Rényi divergence is defined to be

𝐷𝛼 𝑃ǁ𝑄 =
1

𝛼−1
log 𝔼𝑦~𝑄

𝑃 𝑦

𝑄 𝑦

𝛼

Setting 𝛼 = 2 this gives us lower bound on Chi-square divergence.



Lower Bound for zCDP
Plug in 𝛼 = 2 we have

𝜒2 𝑃ǁ𝑄 = 𝔼𝑞[ 𝑟 𝑦 − 1 2] = 𝔼𝑞 𝑟 𝑦 2 − 1 ≤ 𝑒2𝜌 − 1 ≅ 2𝜌

This gives us

𝒕𝒓(Σ) ≳
𝑚𝑖𝑛 𝒕𝒓 𝐴 : 𝑉≽0 ∧ 𝐾⊆𝑉0.5𝐵2

𝑑

𝜌𝑛

For 𝐾 = U𝐵2
𝑑, we have error Ω(

1

𝜌𝑛
𝒕𝒓 𝑈𝑇𝑈 ).

Matches error of the Gaussian Mechanism O
1

𝜌𝑛
𝒕𝒓 𝑈𝑇𝑈 .

If your algorithm is unbiased, you cannot do asymptotically better on zCDP than just 
adding a Gaussian noise.



Future Works
1. Lower bounds for ADP(work in progress, we believe this is tight)

2. More general spaces.(general closed convex set)

3. More general queries.(non-linear ones?)



Thank you!



The Laplace Mechanism
𝑙1 Global Sensitivity is 𝐺𝑆𝑓,𝑙1 = sup

𝑋1,𝑋2𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠
ǁ𝑓 𝑋1 − 𝑓(𝑋2)ǁ1.

The Laplace Mechanism adds noise of Z𝑖 ~ 𝐿𝑎𝑝(
𝐺𝑆𝑓,𝑙1
𝜀

) to each of the 𝑑 dimensions to 
achieve 𝜀-DP.

PDF of Laplace distruibution is 𝐿𝑎𝑝 𝜆 is ℎ𝜆 𝑦 =
exp(−

𝑦

𝜆
)

2𝜆
.

Variance of Laplace distribution is 2𝜆2.



The Laplace Mechanism
Consider running the Laplace Mechanism when 𝐾 = 𝐵2

𝑑. (Same query)

Sensitivity is 𝐺𝑆𝑓,𝑙1 =
2 𝑑

𝑛
, so adding noise of Z𝑖 ~ 𝐿𝑎𝑝(

2 𝑑

𝜀𝑛
) to each of the 𝑑

dimensions.

Covariance would be 
8𝑑

𝜀2𝑛2
𝐼. 



The Laplace Mechanism
Back to 𝐾 = 𝑈𝐵2

𝑑 .We can add noise of UZ𝑖 to each of the 𝑑 dimensions. 

Still DP since this is post-processing.

Covariance would be 
8𝑑

𝜀2𝑛2
𝑈𝑈𝑇.

Error of O
𝑑

𝜀𝑛
𝒕𝒓 𝑈𝑇𝑈 .



The Gaussian Mechanism
𝑙2 Global Sensitivity is 𝐺𝑆𝑓,𝑙2 = sup

𝑋1,𝑋2𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠
ǁ𝑓 𝑋1 − 𝑓(𝑋2)ǁ2.

The Gaussian Mechanism adds noise of Z𝑖 ~𝒩(0,
𝐺𝑆𝑓,𝑙2

2

2𝜌
) to each of the 𝑑

dimensions to achieve 𝜌-zCDP.

By similar argument (shifting with 𝑈) we can get error is O
1

𝜌𝑛
𝒕𝒓 𝑈𝑇𝑈 .


