1 List Coloring in Bipartite Graphs

Let $G=(V, E)$ be a graph. We say that G is k-list-colorable if for every assignment of k colors $S(v)$ to every $v \in V$, there exists a valid coloring χ such that $\chi(v) \in S(v)^{1}$. The list-coloring number (aka correspondence number) of G, denoted $\chi_{\ell}(G)$ is the minimum k for which G is k-list-colorable.

In the following, we explore a collection of list-coloring results pertaining to bipartite graphs.

1.1 Dinitz Conjecture

Conjecture 1. (Dinitz Conjecture.) For every $n \times n$ grid, if every cell (i, j) was assigned n colors $S(i, j)$, does there exists a valid coloring χ such that $\chi(i, j) \in S(i, j)$ with every color appearing at most once in every row or column.

The quite ingenious proof that such a coloring exists is due to Galvin (1995). He made use of two previously known results: (1) a list-colorability result due to Janssen (1992) and (2) the GaleShapely stable-matching algorithm.

First let us translate the statement using the language of list-coloring. Observe that the $n \times n$ grid has associated adjacency matrix $K_{n, n}$. Next the color of each cell, i.e. edge e in $K_{n, n}$, is restricted by those cells in the same row and column, i.e. all edges incident to same endpoints of e. Let L_{G} be the line graph of G. The vertices of L_{G} are the edges of G and there exists an edge between (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ in L_{G} iff $i=i^{\prime}$ or $j=j^{\prime}$. Thus Conjuncture 1 asks: $\chi_{\ell}\left(L_{K_{n, n}}\right) \leq n$? Observe that $\chi_{\ell}\left(L_{K_{n, n}}\right) \geq \chi\left(L_{K_{n, n}}\right)=n$ so in-fact $\chi_{\ell}\left(L_{K_{n, n}}\right)=\chi\left(L_{K_{n, n}}\right)=n$.

First some definitions which will be useful in Lemma 2. For every subset $A \subset V$, let G_{A} be the induced subgraph of A in G. Let \vec{G} be a directed graph whose underlying undirected graph is G. For every vertex v, let $\operatorname{deg}^{+}(v)$ and $\operatorname{deg}^{-}(v)$ be the out- and in-degrees of v in \vec{G} respectively. A kernel of \vec{G} is a subset $K \subset V$ such that (1) K is an independent set and (2) for every vertex $v \in V \backslash K$, there exists a $u \in K$ such that $v u$ is a directed edges.
Lemma 2. (Kernel of Induced Subgraphs and List Colorability.) If every vertex v of \vec{G} is assigned a set of colors $S(v)$ such that $|S(v)| \geq \operatorname{deg}^{+}(v)+1$ and every induced subgraph of \vec{G} has a kernel, then G there exists a list-coloring with color-list $S(v)$ for each v.

Proof. The proof is by induction on the number of vertices in G. There is nothing to show when $|V|=1$. Suppose the lemma is true for all graphs with $|V|=k$. Pick a graph on $k+1$ vertices. Let c be a color in $S(v)$ for some v. Further let $A_{c}=\{v: c \in S(v)\}$ i.e. the set of vertices with color set containing c. By assumption, $G_{A_{c}}$ has a kernel K. Color every vertex of K color c. This is possible since K is an independence set. Note that for all vertices $v \in A_{c} \backslash K, S(v) \backslash c \geq \operatorname{deg}^{+}(v)$.

[^0]Further the number of colors available on every $u \notin A_{c}$ did not change so the condition holds for all vertices not in K. Thus we can remove the vertices of K and apply the induction hypothesis on the remaining vertices.

The road-map for proving Dinitz' Conjecture is clear: find an orientation of $L_{K_{n, n}}$ such that $\operatorname{deg}^{+}(v) \leq n-1$ for all $v \in V$ and every induced subgraph has a kernel.

The orientation $L_{K_{n, n}}$ will be inspired by an $n \times n$ Latin square; these are $n \times n$ matrices such that the numbers 1 through n appears exactly once in every row and column (think Sudoku without the block constraints). Every $n \times n$ matrix has a corresponding Latin square; simply let each row be a cyclic permutation of $(1, \ldots, n)$. Now we extract an orientation as follows. We have directed edge $(i, j) \rightarrow\left(i, j^{\prime}\right)$ if $j<j^{\prime}$ and directed edge $(i, j) \rightarrow\left(i^{\prime}, j\right)$ if $i>i^{\prime}$ (edges are directed from small to large along the rows and large to small along the columns).

First we observe that the out-degree of each vertex is exactly $n-1$. In particular if entry (i, j) of the Latin square is k then the out-degree of (i, j) to the vertices in the same row is exactly $n-k$ and in the same column is exactly $k-1$.

Thus it remains to show that every induced subgraph of this orientation of $L_{K_{n, n}}$ has a kernel. For this, recall that every bipartite graph has a stable matching by the Gale-Shapely algorithm. That is a matching M such that for every $u v \notin M$, either $M(u)>v$ or $M(v)>u$ in the preference list of u and v respectively. Consider an induced subgraph in our orientation of $L_{K_{n, n}}$. We claim that a stable matching in the underlying undirected graph is a kernel in the induced subgraph. We define the preference list for each vertex in the natural way: in every row (resp. column) the larger (resp. smaller) numbers in the corresponding entries of the Latin Square is more preferable. To see that the stable matching is indeed a kernel, note that (1) the edges in a matching have distinct endpoints and (2) for every $u v$ not in the matching, it must be the case that there exists an edge $u^{\prime} v$ or $u v^{\prime}$ where u^{\prime} and v^{\prime} are endpoints of edges in the matching.

This proof can be extended to show that the line graph of any bipartite graph G satisfies $\chi_{\ell}\left(L_{G}\right)=$ $\chi_{\ell}\left(L_{G}\right)$. A well know open problem asks if this is true for general graphs G.

1.2 Lowerbound on List Coloring Number as a Function of Degree

This does not really pertain only to bipartite graphs, but it is suspected to be tight for bipartite graphs since it is known that $\chi_{\ell}\left(K_{d, d}\right)=(1+o(1)) \log d$.

Theorem 3. (Lowerbound on List Coloring Base on Degree.) For graph G with minimum degree at least d, the list-coloring number satisfies $\chi_{\ell}(G)>s$ if

$$
\begin{equation*}
d>s^{6} 2^{2 s} \tag{1}
\end{equation*}
$$

Corollary 4. For a simple graph G with minimum degree $d, \chi_{\ell}(G) \geq(1 / 2+o(1)) \log _{2} d$ with constant of multiplicity off by at most 2.

Proof of Theorem 3. We are going to assign color-lists of size s to each vertices in G from among $S=\left\{1, \ldots, s^{2}\right\}$ different colors. We will pay particular attention to two sets of vertices A and B. Each vertex of G will be added to B with probability $1 / \sqrt{d}$. For every vertex $b \in B$, we will assign it a color-list $S(b)$ from among the $\binom{s^{2}}{s}$ sets of size s from S uniformly at random. A vertex $v \in A$ if: (1) $v \notin B$ and (2) for every subset $T \subset S$ of size $\left\lceil s^{2} / 2\right\rceil$ there exists some neighbour $b \in B$ of v such that $S(b) \subset T$.

Probability that $v \notin A$: Condition on whether or not $v \in B$. If $v \in B$, then $v \notin A$. This occurs with probability $1 / \sqrt{d}$. Conversely, if $v \notin B$, then $v \notin A$ if for every one of the $\binom{s^{2} s^{2}}{\left.s^{2} / 2\right\rceil}$ sets T, it must be the case that $u \in N(a)$ is either not in B or in B and has set $S(u) \not \subset T$. Thus we have

$$
\mathbb{P}[v \notin A]=\frac{1}{\sqrt{d}}+\left(1-\frac{1}{\sqrt{d}}\right)\binom{s^{2}}{\left\lceil s^{2} / 2\right\rceil}\left(1-\frac{1}{\sqrt{d}} \frac{\left\lceil s^{2} / 2\right\rceil \cdot\left(\left\lceil s^{2} / 2\right\rceil-1\right) \cdots\left(\left\lceil s^{2} / 2\right\rceil-s+1\right)}{s^{2} \cdot\left(s^{2}-1\right) \cdots\left(s^{2}-s+1\right)}\right)^{d} .
$$

By Stirling's approximation, we have

$$
\binom{s^{2}}{\left\lceil s^{2} / 2\right\rceil} \leq \frac{2^{s^{2}}}{\sqrt{\left\lceil s^{2} / 2\right\rceil}} \leq \frac{2^{s^{2}}}{4}
$$

We can bound the probability that $S(b) \subset T$ by

$$
\begin{aligned}
\mathbb{P}[S(b) \subset T] & =\frac{\left\lceil s^{2} / 2\right\rceil \cdot\left(\left\lceil s^{2} / 2\right\rceil-1\right) \cdots\left(\left\lceil s^{2} / 2\right\rceil-s+1\right)}{s^{2} \cdot\left(s^{2}-1\right) \cdots\left(s^{2}-s+1\right)} \\
& \geq \frac{1}{2^{s}} \prod_{i=0}^{s-1} \frac{s^{2}-2 i}{s^{2}-i} \\
& =\frac{1}{2^{s}} \prod_{i=0}^{s-1}\left(1-\frac{i}{s^{2}-i}\right) \\
& \geq \frac{1}{2^{s}}\left(1-\frac{\sum_{i=0}^{s-1}}{s^{2}-s}\right) \\
& \geq \frac{1}{2^{s+1}}
\end{aligned}
$$

where the first inequality follows by removing the ceilings, and the second inequality on (line 4) can be seen by consider the coefficient of x in $\prod_{i=0}^{s-1}\left(1-\frac{i x}{s^{2}-i}\right)$. Thus $\mathbb{P}[v \notin A]$ can be bounded as

$$
\mathbb{P}[v \in A] \leq \frac{1}{\sqrt{d}}+\frac{2^{s^{2}}}{4}\left(1-\frac{1}{\sqrt{d} 2^{s+1}}\right)^{d} \leq \frac{1}{\sqrt{d}}+\frac{2^{s^{2}}}{4}\left(\exp \sqrt{d} / 2^{s+1}\right)<\frac{1}{2}
$$

by our choice of s in 1 .
Finding a Set of Color-List Which has no Proper Coloring. Let X_{A} and X_{B} be the random variables counting the number of vertices in A and B respectively. Since the $\mathbb{P}[v \notin A] \leq 1 / 4$, $\mathbb{E}\left[n-\left|X_{A}\right|\right]<n / 4$. By Markov inequality,

$$
\mathbb{P}\left[n-\left|X_{A}\right|>n / 2\right]<\frac{1}{2} \text { and thus } \mathbb{P}\left[\left|X_{A}\right|>n / 2\right]>1 / 2
$$

Similarly, $\mathbb{E}\left[\left|X_{B}\right|\right]=n / \sqrt{d}$ so

$$
\mathbb{P}\left[\left|X_{B}\right|>2 n / \sqrt{d}\right]<\frac{1}{2} \text { and thus } \mathbb{P}\left[\left|X_{B}\right| \leq 2 n / \sqrt{d}\right]>\frac{1}{2} .
$$

Together, there exists some random choice of B and list-colors $S(b)$ for $b \in B$ such that simultaneously $\left|X_{A}\right|>n / 2$ and $\left|X_{B}\right| \leq 2 n / \sqrt{d}$. In the following, fix such a set B and list-colors $S(b)$.

We randomly assign color-lists $S(a)$ to vertices in A and show that there exists a random assignment such that vertices in $A \cup B$ cannot be properly list-colored. Consider any coloring $c(b)$ for the vertices in B. There are $s^{\mid} B \mid$ such colorings. For an $a \in A$, let $T_{a}=\cup_{b \in N(a), b \in B} c(b)$ be the set of colors on the neighbours of a in B. If $S(a) \subset T_{a}$ then a cannot be properly colored. In order for this to happen, we will show that T_{a} is large. Remember that $a \in A$ since for every $T \subset S$ of size $\left\lceil s^{2} / 2\right\rceil$ there exists some $b \in N(a) \cap B$ such that $S(b) \subset T$. Since $S(b) \subset T, c(b) \in T$. Thus there cannot be a set T of $\left\lceil s^{2} / 2\right\rceil$ colors such that no $c(b) \in T$. This also means that $\left|T_{a}\right| \geq\left\lceil s^{2} / 2\right\rceil$.

Finally let us calculate the probability $a \in A$ can be properly colored. Note that

$$
\mathbb{P}\left[S(a) \subset T_{a}\right]=\frac{\left\lceil s^{2} / 2\right\rceil \cdot\left(\left\lceil s^{2} / 2\right\rceil-1\right) \cdots\left(\left\lceil s^{2} / 2\right\rceil-s+1\right)}{s^{2} \cdot\left(s^{2}-1\right) \cdots\left(s^{2}-s+1\right)} \geq \frac{1}{2^{s+1}}
$$

as above. Since there are at least $n / 2$ vertices in A and they are all independent, the expected number colorings which results in a valid coloring for all $a \in A\left(\right.$ denoted $\left.Y_{A}\right)$ is

$$
\mathbb{E}\left[Y_{A}\right] \leq e^{|B|}\left(1-\frac{1}{2^{s+1}}\right)^{n / 2} \leq e^{\frac{2 n}{\sqrt{d}}-\frac{n}{2^{s+1}}}<1
$$

by our choice of s from s in 1 . Thus there exists some random choice of B and the color-lists $S(b)$ such that there exists some $a \in A$ such that $S(b) \subset T_{a}$ for every coloring $c(b)$ with $c(b) \in S(b)$.

[^0]: ${ }^{1}$ You might wonder why we do not specify the total number of colors C available. This is because C is implicitly taken to be arbitrarily large. Note however that there should be a valid coloring for every assignment of $S(v)$, thus $|C|$ can be taken small enough so that the k-list-coloring is realized.

