
Abstract

In this talk, I will present random graphs, highlighting a classic
result of Erdős and Rényi known as the giant component
threshold. The result says that if a graph is sampled by
including each edge independently with probability c/n, if
c > 1, a.a.s. there is a giant component of size Θ(n), and if
c < 1, a.a.s. largest component is of size O(log n)

I will also talk about random graphs with fixed degree
sequences, how to sample such graphs, some of their
properties, and outline a giant component threshold in this
model, which Molloy and Reed found in 1995.
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Erdős-Rényi Models

• Gn,m a uniform pick from all graph on n vertices and m edges

• Gn,p each edge is included independently with probability p.

In Gn,p the expected number of edges is
(n

2

)
p. Intuitively, the two

models should be similar when m =
(n

2

)
p.
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Generating Random Regular Graphs

Random regular graphs are nice and useful! For example, a
random regular graph is a good expander (w.h.p), and expanders
are useful for many things like derandomization and coding theory.

Theorem ([Fri03])

Let ϵ > 0, and be integers with d ≥ 2, then with probability
1− o(1) a random d-regular graph on n vertices has all eigenvalues
at most 2

√
d − 1 + ϵ (except for the largest one which is always d).

Notes:

• This is close to optimal, the lower bound is 2
√
d − 1 − o(1)

[Alo86].

• There are explicit construction that meet 2
√
d − 1 but as far

as I know, they require d to be a prime power - 1. [LPS88]
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Configuration Model

To generate a random d-regular graph on n vertices.

• For each vertex v , create d half-edges, v1, ..., vd .

• Take a random matching of all the half-edges

• Each edge {ui , vj} in the matching corresponds to the edge
{u, v}.

Random Graphs Models Random Graphs, Giant Components, and Fixed Degree Sequences 7 / 45



Configuration Model

To generate a random d-regular graph on n vertices.

• For each vertex v , create d half-edges, v1, ..., vd .

• Take a random matching of all the half-edges

• Each edge {ui , vj} in the matching corresponds to the edge
{u, v}.

Random Graphs Models Random Graphs, Giant Components, and Fixed Degree Sequences 7 / 45



Example
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Problem

• What if {ui , uj} appears in the matching?

• What if {ui , vj}, {uk , vℓ} both appear in the matching?

There’s some probability that you get a non-simple graph in this
model.
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Solutions

Theorem
Let G be any (simple) d-regular graph. Then

Pr[Configuration model yields G ] =
(d!)n

(nd − 1)!!
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Solutions

Theorem

Pr[Configuration model yields a simple graph] ∼ e
1−d2

4

Thus for fixed d , and any property P, Pr[P(Gn,d)] =
Pr[P(Cn,d )]

const .
So if something holds for a random configuration with probability
o(1), it also holds for the the uniform model with probability o(1).

Same thing for 1 − o(1).

Random Graphs Models Random Graphs, Giant Components, and Fixed Degree Sequences 11 / 45



A good reference for this kind of stuff: Introduction to Random
Graphs by Frieze and Karoński [FK15] Chapter 11.
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Gn,d

Everything in the previous couple of slides can be generalized to
arbitrary degree sequences (instead of every vertex having degree
d). A degree sequences looks like this

d = (d1, ..., dn),

where di is the degree of vertex i .
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Random Graphs Models
Gn,m, and Gn,p

Gn,d

Gn,p Phase Transition

Gn,d Phase Transition
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Phase Transitions (Diagram)
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Phase Transitions

Fun fact: It turns out, physicists are really interested in random
graphs since they model physical phenomena very closely.
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Phase Transition in Gn,p

n = 400, p = 0.5/n. Largest component: 6, second largest component: 5

Gn,p Phase Transition Random Graphs, Giant Components, and Fixed Degree Sequences 17 / 45



Phase Transition in Gn,p

n = 400, p = 1/n. Largest component: 24, second largest component: 12
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Phase Transition in Gn,p

n = 400, p = 1.5/n. Largest component: 223, second largest component: 9
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Phase Transition in Gn,p

Let p = c/n

• Subcritical Phase c < 1: The largest component has size
Θ(log n).

• Supercritical Phase c > 1: The largest component has size
Θ(n), and all other components have size O(log n)

• Critical Phase c = 1: The largest component has size n2/3.

This was originally studied by Erdős and Rényi in 1960 [ER60].

p = 1/n is called the ‘giant component threshold’.

The proof (of the first two bullet points) I will present follows
[J LR00] Chapter 5, and [AS16] Chapter 11.
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Chernoff Bound

If X is the sum of independent 0/1 with mean µ, the probability
that X deviates from µ by at least a multiplicative factor1 is at
most

e−const·µ

1Pr[X ≥ cµ] or Pr[X ≤ cµ], note c ̸= 1.
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Sampling Gn,p component by component

The key is the consider for any vertex, v , what is the probability
that it is in a large component?

Since each edge is considered independently from the others, we
get to pick an order to consider them in. We’ll pick an order that
reveals the graph component by component. The method follows a
breadth first search starting from v .

• Set q = [v ], and seen = [v ]
• While q is not empty:

▶ u = q.deque()
▶ sample the edges in {{u,w} : w ∈ V \ seen}. If u ∼ w ,

enqueue w , and add w to seen
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Picture
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Subcritical Phase, c < 1

Let Xi be the number of newly enqueued vertices on the ith step
of the algorithm. (i starts at 1)

• At the end of iteration k , the size of the queue is
1 − k +

∑k
i=1 Xi .

• If the queue is empty after iteration k , the size of the
component was k.

• If the component size is greater than k, the queue better not
be empty at iteration k! =⇒

∑k
i=1 Xi ≥ k
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Subcritical Phase, c < 1

• Note that Xi ∼ Bin(n − i , c/n), which is dominated by
Bin(n, c/n).

• Thus,
∑k

i=1 Xi is dominated by Bin(kn, c/n).

• The mean of Bin(kn, c/n) is ck . So by Chernoff,
Pr[Bin(kn, c/n) ≥ k] ≤ exp(−const · k). Picking k = c1 ln(n)
for an appropriate constant c1, we can make this probability
o(1/n).

• Union bound over all vertices to show that no vertex is in a
component of greater than k = O(ln(n)).
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Supercritical Phase, c > 1.

Call a vertex...

• Small if it lies in a component of size < K ln(n)

• Large if it lies in a component of size (y ± δ)n.

• Awkward, otherwise (if it is between K ln(n), and (y − δ)n, or
larger than (y + δ)n).

Outline of the proof:

1. Show that there are no awkward vertices.

2. Count the number of small vertices (and hence the number of
large vertices).

3. Show there’s a unique large component.
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A neat lemma

• Let Ni be the number of unseen vertices at the end of
iteration i .

• Ni ∼ Ni−1 − Bin(Ni−1, p) ∼ Bin(Ni−1, 1 − p)

• By induction, Ni ∼ Bin(n − 1, (1 − p)i )
• If the process terminates at time step k (and thus the

component it uncovers has size k), it had better be the case
that Ni = n − k. Thus

Pr(v is in a component of size k) ≤ Pr(Bin(n − 1, (1 − p)k) = n − k).

= Pr(Bin(n − 1, 1 − (1 − p)k) = k − 1)

≈ Pr(Bin(n, 1 − (1 − p)k) = k)
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No Awkward Vertices

Let Y = Bin(n, 1 − (1 − c/n)k), and let µ be the mean of Y .

• Case k = o(n). Approximate 1 − (1 − c/n)k with ck/n.
µ = ck . Asking Y to be k is asking it to deviate from it’s
mean by a constant factor → apply Chernoff and pick K to
make this probability o(n−10).

• Case k = xn. In this case, 1 − (1 − c/n)k ≈ 1 − e−cx , so
µ = (1 − e−cx)n. Whenever x ̸= (1 − e−cx), we are again
asking the RV to deviate from it’s mean by a constant factor,
this probability is exponentially small in n. (Set y to be the
solution to x = 1 − e−cx).
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A vertex is awkward if it lies in a component of size
between K ln(n), and (y − δ)n, or larger than
(y + δ)n.

The probability that a vertex is in a component of size

exactly k is at most Pr(Bin(n, 1− (1− p)k) = k).



No Awkward Vertices

Let Y = Bin(n, 1 − (1 − c/n)k), and let µ be the mean of Y .

• Case k = o(n). Approximate 1 − (1 − c/n)k with ck/n.
µ = ck . Asking Y to be k is asking it to deviate from it’s
mean by a constant factor → apply Chernoff and pick K to
make this probability o(n−10).

• Case k = xn. In this case, 1 − (1 − c/n)k ≈ 1 − e−cx , so
µ = (1 − e−cx)n. Whenever x ̸= (1 − e−cx), we are again
asking the RV to deviate from it’s mean by a constant factor,
this probability is exponentially small in n. (Set y to be the
solution to x = 1 − e−cx).

Gn,p Phase Transition Random Graphs, Giant Components, and Fixed Degree Sequences 28 / 45

A vertex is awkward if it lies in a component of size
between K ln(n), and (y − δ)n, or larger than
(y + δ)n.

The probability that a vertex is in a component of size

exactly k is at most Pr(Bin(n, 1− (1− p)k) = k).



Number of Large Vertices

Since there are no awkward vertices, being not small means being
large

Let S = K ln(n) be the threshold for being small.

The probability that v is not small is the sandwiched by uniform
processes with number of vertices discovered at each step
distributed according to Bin(n − S , c/n), and Bin(n, c/n). Since
for both of these distributions, the limit of the means is c , they are
both asympotic to Po(c).

Since S → ∞, and c is constant, the probability that the process
parameterized by Po(c) yields a component of size at least S tends
towards the probability that the component is infinite.
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The Poisson Process

Let z be the probability that the Poisson Process terminates after
a finite number of steps this can be written recursively as

z =
∞∑
k=0

e−cck

k!
z i = ec(z−1)

Then, y = 1 − z is the probability the component is infinite is,
written in terms of y , the recursion is y = 1 − e−cy .

Hey! That’s the same constant we found before!
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Unique Large component

The sprinkling argument. “Sprinkle” a couple of edges in not
enough to mess up any of the analysis that we did, but enough so
that two large components are joined w.h.p.

• Suppose there were two distinct large components, there are
Ω(n2) potential edges between them.

• Sprinkle: Let p′ = n−3/2, for any edge not included in the
original random graph, include it with probability n−3/2. Note
the resulting graph is the same as sampling edges from the
start with probability p + p′ − pp′ ≈ p

• Since there are Ω(n2) edges between the distinct components,
the components are joined by sprinking with probability
1 − o(1), creating a component of size at least 2(y − δ)n,
which is awkward!
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Random Graphs Models
Gn,m, and Gn,p

Gn,d

Gn,p Phase Transition

Gn,d Phase Transition
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Generalizing to Gn,d [MR95]

There’s no longer a single parameter p to set the threshold in.

What should the criteria for having a large threshold be instead?
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Asymptotic Degree Sequences

In order to talk about degree sequences with n → ∞, we need to
generalize degree sequences to families of degree sequences for
growing n.

Definition
d1, d2, ..., are integer valued functions such that di (n) gives the
number of vertices of degree i for a graph on n vertices. Note
these must satisfy

• di (n) = 0 for all i ≥ n.

• ∑
i di (n) = n for all n.
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Asymptotic Degree Sequences

We really only want to consider asymptotic degree sequences that
are in some sense similar for growing values of n. In particular,
we’ll require that there exists constants λi such that

lim
n→∞

di (n)/n = λi

For example, 3-regular, is λ3 = 1, and λj = 0 for j ̸= 0.
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Let D be the maximum degree of any graph and let λ1, ..., λD , be
the fraction of vertices of each degree. What should the criteria
be?
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Drift

In Gn,c/n, the expected change in the queue size at any is about
c − 1. Thus, when c > 1, the drift is positive and when c < 1, the
drift is negative.
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The exposure process of a random configuration

To expose a random configuration component by component (a
random matching of the half-edges) do the following

• Set all half-edges to available
• Repeat while there are available half-edges:

▶ Pick any available vertex and activate all of its half-edges
▶ While there are still active half-edges:

▶ Pick any active half-edge ui
▶ Pick any available half-edge vj
▶ If vj was not already active, set all of v ’s half-edges to active.
▶ Add the edge {u, v}
▶ Set ui and vj to be unavailable
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Drift

What is the expected increase in the the number of active
half-edges?

L∑
i=1

Pr[Get a vertex of degree i](i − 2) ≈
∑L

i=1 di (n)i(i − 2)∑L
j=1 jdj(n)

=

∑L
i=1 λi i(i − 2)

K

Set Q =
∑L

i=1 λi i(i − 2). If Q < 0, the process has negative drive
corresponding to small components only and if Q > 0, there is a
giant component
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Giant component threshold for Gn,d

Theorem ([MR95]2)

Let d = (d1, ..., ) be an asymptotic degree sequence with maximum
degree D. Furthermore, suppose λi , for i ∈ [D] are such that
limn→∞ di (n)/n = λi . Let Q =

∑
i∈[D] i(i − 2)λi Then

• If Q < 0, the largest component has size at most O(log(n)).

• If Q > 0, there is one component of size Θ(n), and all other
components have size O(log(n)).

2The original theorem was more general, allowing maximum degree up to
n1/4−ϵ. This involves several additional conditions and requires the theorem
statements to include the maximum degree as an additional parameter.
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Proof Ideas

The proof follows an analysis of the exposure process. Here are
some general themes:

• Concentration inequalities.

• You need to handle some complexities like the drift changing
over time, and forming self-loops/multi-edges. Do this
similarly to before by bounding the process with a uniform one
and saying that asymptotically they don’t matter.
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More stuff

• Bollobás did a more detailed analysis of what happens very
close to c = 1 [Bol84]. In fact, with a finer parameterization,
you can define ‘Barely Subcritical’ and ‘Barely Supercritical’.

• If D, the maximum degree is not required to be constant
there is obviously at least a component of degree D. Recently,
it was shown that in the subcritical phase, a tight bound on
the size of the largest component is O(D log(n)) [CP21], can
this be improved for specific degree sequences?
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[Bol84] Béla Bollobás. “The Evolution of Random Graphs”. In: Trans. Amer. Math.
Soc. 286.1 (1984), pp. 257–274. issn: 0002-9947, 1088-6850. doi:
10.1090/S0002-9947-1984-0756039-5. url: https:
//www.ams.org/tran/1984-286-01/S0002-9947-1984-0756039-5/

(visited on 02/01/2023) (cit. on p. 75).

[Alo86] Noga Alon. “Eigenvalues and Expanders”. In: Combinatorica 6.2 (June 1,
1986), pp. 83–96. issn: 1439-6912. doi: 10.1007/BF02579166. url:
https://doi.org/10.1007/BF02579166 (visited on 01/30/2023) (cit. on
pp. 8–11).

[LPS88] Alexander Lubotzky, R. Phillips, and P. Sarnak. “Ramanujan Graphs”. In:
Combinatorica 8 (Sept. 1, 1988), pp. 261–277. doi: 10.1007/BF02126799
(cit. on pp. 8–11).

[MR95] Michael Molloy and Bruce Reed. “A Critical Point for Random Graphs with
a given Degree Sequence”. In: Random Structures & Algorithms 6.2-3
(1995), pp. 161–180. issn: 1098-2418. doi: 10.1002/rsa.3240060204.
url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240060204

(visited on 03/10/2022) (cit. on pp. 61, 71).

Gn,d Phase Transition Random Graphs, Giant Components, and Fixed Degree Sequences 43 / 45

https://doi.org/10.1090/S0002-9947-1984-0756039-5
https://www.ams.org/tran/1984-286-01/S0002-9947-1984-0756039-5/
https://www.ams.org/tran/1984-286-01/S0002-9947-1984-0756039-5/
https://doi.org/10.1007/BF02579166
https://doi.org/10.1007/BF02579166
https://doi.org/10.1007/BF02126799
https://doi.org/10.1002/rsa.3240060204
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240060204


References

[J LR00] Svante Janson, Tomasz  Luczak, and Andrzej Rucinski. Random Graphs:
Janson/Random. Hoboken, NJ, USA: John Wiley & Sons, Inc., Feb. 28,
2000. isbn: 978-1-118-03271-8 978-0-471-17541-4. doi:
10.1002/9781118032718. url:
http://doi.wiley.com/10.1002/9781118032718 (visited on 02/01/2023)
(cit. on pp. 27–30).

[Fri03] Joel Friedman. “A Proof of Alon’s Second Eigenvalue Conjecture”. In:
Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of
Computing. STOC ’03. New York, NY, USA: Association for Computing
Machinery, June 9, 2003, pp. 720–724. isbn: 978-1-58113-674-6. doi:
10.1145/780542.780646. url:
https://doi.org/10.1145/780542.780646 (visited on 01/29/2023)
(cit. on pp. 8–11).
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