Is Sortition both Representative and Fair?

Soroush Ebadian¹

Gregory Kehne²

Evi Micha¹

Ariel D. Procaccia²

Nisarg Shah¹

¹University of Toronto

² Harvard University

Outline

• Intro. to Sortition

• Based on "Democracy and the pursuit of randomness" by Ariel Procaccia [1]

Outline

• Intro. to Sortition

- Based on "Democracy and the pursuit of randomness" by Ariel Procaccia [1]
- Fairness and Representation in Sortition
 - Definitions
 - Dichotomy
 - (A bit of) Algorithms and Analysis
- Trade-off between Fairness and Representation

Jean-Jacques Rousseau (1762)

"The people of England deceive themselves when they fancy they are free; they are so, in fact, only during the election of Members of Parliament:

Jean-Jacques Rousseau (1762)

"The people of England deceive themselves when they fancy they are free; they are so, in fact, only during the election of Members of Parliament: for, as soon as a new one is elected, they are again in chains, and are nothing."

Alternative: *Sortition*

Democracy built on random selection of representatives

History *

462-322 BC

Ancient Athens: Council of 500 and magistracies chosen by lotteries

462-322 BC

1328-1530

Ancient Athens: Council of 500 and magistracies chosen by lotteries Florence: The government and legislative council chosen by lot

History *

462-322 BC

Ancient Athens: Council of 500 and magistracies chosen by lotteries

1328-1530

Florence: The government and legislative council chosen by lot

1776-present

USA:

American and French revolutions make democracy synonymous with elections

History *

462-322 BC

Ancient Athens: Council of 500 and magistracies chosen by lotteries

1328-1530

Florence: The government and legislative council chosen by lot

1776-present

USA:

American and French revolutions make democracy synonymous with elections

21st Century

Worldwide:

Citizen's assemblies organized by local and national governments

Recent Examples *

	lreland (2016, 2019)	France (2019)	Mongolia (2017)	Chile (2020)
Participants:	99	150	669	400
Торіс:	Constitution	Climate	Constitution	Pension, Health

Uniformly Random Selection

Pipeline in Practice *

Uniformly Random Selection

Uniformly Random Selection

• Fairness

Equal chance of participation

$$\forall i: \Pr(i \in P) = \frac{k}{n}$$

• Fairness

Equal chance of participation

$$\forall i: \Pr(i \in P) = \frac{k}{n}$$

Likely to reflect the composition of the population

• Fairness

Equal chance of participation $\forall i: \Pr(i \in P) = \frac{k}{n}$

Uniformly Random Selection

Representation

Likely to reflect the composition of the population

• Fairness

Equal chance of participation $\forall i: \Pr(i \in P) = \frac{k}{n}$

Uniformly Random Selection

Perfectly fair

Representation

Likely to reflect the composition of the population

? Is it representative in a rigorous sense?
[This work]

Metric Representation

Metric Representation

Smaller Distance ↔ Better Representation

Metric Representation

How to determine the metric?

- Demographic features
- Domain specific features
- Tricky: Legal interpretations

Smaller Distance ↔ Better Representation

Cost of Panel

Cost of panel for an individual: Distance to its *q*-th closest panel member

Smaller q-Cost ↔ Better Representation

Cost of Panel

Cost of panel for an individual: Distance to its *q*-th closest panel member Optimal Panel: Minimizes the sum of costs (i.e., min social cost)

Representation:
$$\frac{\min_{P^*} \operatorname{social-cost}(P^*)}{\operatorname{E}_{P\sim \operatorname{Alg}} [\operatorname{social-cost}(P)]} \longrightarrow \operatorname{Between 0 and 1}$$

Dichotomy of Results

$$q > \frac{k}{2}$$

Uniform Selection achieves constant representation when $\frac{k}{2} < q < k - \Omega(k).$

$$q \leq \frac{k}{2}$$

• Uniform Selection incurs zero representation in the worst case

• Interpretation: one wants the majority of the panel to be representative of themselves.

 Interpretation: one wants the majority of the panel to be representative of themselves.

Theorem 1.

Any *perfectly fair* selection algorithm achieves a representation of at least $\frac{1}{2} \cdot \frac{k-q+1}{k}$.

Theorem 2.

Any *perfectly fair* selection algorithm incurs a representation of at most $2 \cdot \frac{k-q+1}{k}$.

• Constant representation (near optimal) when $\frac{k}{2} < q < k - \Omega(k)$.

Zero Representation when $q \leq \frac{k}{2}$

Optimal social cost: 0 (e.g., $\frac{k}{2}$ from left and $\frac{k}{2}$ from right) Uniform selection: prone to picking less than q from one side

Zero Representation when $q \leq \frac{k}{2}$

Optimal social cost: 0 (e.g., $\frac{k}{2}$ from left and $\frac{k}{2}$ from right) Uniform selection: prone to picking less than q from one side Fix: Always pick $\frac{k}{2}$ panel members randomly from left and $\frac{k}{2}$ randomly from right

Zero Representation when $q \leq \frac{k}{2}$

Optimal social cost: 0 (e.g., $\frac{k}{2}$ from left and $\frac{k}{2}$ from right) Uniform selection: prone to picking less than q from one side Fix: Always pick $\frac{k}{2}$ panel members randomly from left and $\frac{k}{2}$ randomly from right

Theorem 3 (weaker version).

Any *perfectly fair* selection algorithm incurs 0 representation when $q \leq \frac{\kappa}{2}$.

What is the Difference when $q > \frac{k}{2}$?

- Optimal cost is bounded away from zero
- For two individuals i, j and optimal panel P^*

What is the Difference when $q > \frac{k}{2}$?

- Optimal cost is bounded away from zero
- For two individuals i, j and optimal panel P^*

What is the Difference when $q > \frac{k}{2}$?

• Optimal cost is bounded away from zero

 $\forall i \neq j: \quad d(i,j) \leq c_q(i,P^*) + c_q(j,P^*)$

$$\Rightarrow \sum_{i \neq j} d(i,j) \le \sum_{i \neq j} c_q(i,P^*) + c_q(j,P^*)$$
$$\Rightarrow \sum_{i \neq j} d(i,j) \le 2(n-1) \cdot \text{social-cost}(P^*)$$

Proof of Theorem 2

Theorem 2.

Any *perfectly fair* selection algorithm achieves a representation of at least $\frac{1}{2} \cdot \frac{k-q+1}{k}$.

• On Blackboard!

Positive news for $q \leq \frac{k}{2}$?

Trade-off between Fairness and Representation

Positive news for $q \leq \frac{k}{2}$

Theorem 4.

RandomReplace achieves $\frac{1}{q+1}$ representation while selecting each individual w.p. $\frac{q}{n}$.

RandomReplace Algorithm

- Find P^*
- Randomly pick a group S of size q
- For each $i \in S$:
 - Replace i with one of its (remaining) closest q neighbors in P^*

Positive news for $q \leq \frac{k}{2}$

Theorem 4.

RandomReplace achieves $\frac{1}{q+1}$ representation while selecting each individual w.p. $\frac{q}{n}$.

RandomReplace Algorithm

- Randomly pick a group S of size q
- For each $i \in S$:
 - Replace *i* with one of its (remaining) closest q neighbors in P^*

Conclusion

- Sortition and Metric Representation
 - Dichotomy
 - $\frac{k}{2} < q < k \Omega(k)$: Uniform selection is almost optimal in *expectation* • $q \leq \frac{k}{2}$: No representation if fairness is sought
- Trade-off between Fairness and Representation
 - RandomReplace: Scratched the surface
 - What level of fairness can be achieved if we seek *constant* representation?

Conclusion

- Sortition and Metric Representation
 - Dichotomy
 - $\frac{k}{2} < q < k \Omega(k)$: Uniform selection is almost optimal in *expectation* • $q \leq \frac{k}{2}$: No representation if fairness is sought
- Trade-off between Fairness and Representation
 - RandomReplace: Scratched the surface
 - What level of fairness can be achieved if we seek *constant* representation?
- Other cost functions
 - Some results for average distance to all members of the panel
 - Several other options

Thank you!