Is Sortition both Representative and Fair?

Soroush Ebadian ${ }^{1}$

Gregory Kehne ${ }^{2}$

Evi Micha ${ }^{1}$

Ariel D. Procaccia ${ }^{2}$

Nisarg Shah ${ }^{1}$
${ }^{1}$ University of Toronto
${ }^{2}$ Harvard University

Outline

- Intro. to Sortition
- Based on "Democracy and the pursuit of randomness" by Ariel Procaccia [1]
[1] Link: https://www.youtube.com/watch?v=e7FwWfUcZTg

Outline

- Intro. to Sortition
- Based on "Democracy and the pursuit of randomness" by Ariel Procaccia [1]
- Fairness and Representation in Sortition
- Definitions
- Dichotomy
- (A bit of) Algorithms and Analysis
- Trade-off between Fairness and Representation
[1] Link: https://www.youtube.com/watch?v=e7FwWfUcZTg

Jean-Jacques Rousseau (1762) *

"The people of England deceive themselves when they fancy they are free; they are so, in fact, only during the election of Members of Parliament:

Jean-Jacques Rousseau (1762)

"The people of England deceive themselves when they fancy they are free; they are so, in fact, only during the election of Members of Parliament: for, as soon as a new one is elected, they are again in chains, and are nothing."

Alternative:
 Sortition

Democracy built on random selection of representatives

History

462-322 BC

Ancient Athens:
Council of 500
and magistracies
chosen by lotteries

[^0]
History

```
462-322 BC
```

Ancient Athens:
Council of 500
and magistracies chosen by lotteries

1328-1530

Florence:

The government and legislative council chosen by lot

History

[^1]
History

462-322 BC	1328-1530	1776-present	21 ${ }^{\text {st }}$ Century
Ancient Athens: Council of 500 and magistracies chosen by lotteries	Florence: The government and legislative council chosen by lot	USA: American and French revolutions make democracy synonymous with elections	Worldwide: Citizen's assemblies organized by local and national governments

[^2]
Recent Examples *

Ireland $(2016,2019)$ France (2019) Mongolia (2017) Chile (2020)

Participants:	99	150	669
Topic:	Constitution	Climate	Constitution

[^3]
Uniformly Random Selection

Pipeline in Practice *

* "Democracy and the pursuit of randomness" by Ariel D. Procaccia

Pipeline in Practice *

Fair Algorithms for Selecting Citizens' Assemblies (Nature, 2021)

* "Democracy and the pursuit of randomness" by Ariel D. Procaccia

Uniformly Random Selection

Uniformly Random Selection

Two Appealing Qualities

Two Appealing Qualities

- Fairness

Equal chance of participation

$$
\forall i: \operatorname{Pr}(i \in P)=\frac{k}{n}
$$

Two Appealing Qualities

- Fairness

Equal chance of participation

$$
\forall i: \operatorname{Pr}(i \in P)=\frac{k}{n}
$$

- Representation

Likely to reflect the composition of the population

Two Appealing Qualities

- Fairness

Uniformly Random Selection Equal chance of participation
$\forall i: \operatorname{Pr}(i \in P)=\frac{k}{n}$
\checkmark Perfectly fair

- Representation

Likely to reflect the composition of the population

Two Appealing Qualities

- Fairness

Equal chance of participation
$\forall i: \operatorname{Pr}(i \in P)=\frac{k}{n}$

- Representation

Likely to reflect the composition of the population

Uniformly Random Selection

\checkmark Perfectly fair
? Is it representative in a rigorous sense?
[This work]

Metric Representation

Metric Representation

Metric Representation

How to determine the metric?

- Demographic features
- Domain specific features
- Tricky: Legal interpretations

Cost of Panel

Cost of panel for an individual: Distance to its q-th closest panel member

$$
\text { Smaller q-Cost } \quad \leftrightarrow \quad \text { Better Representation }
$$

Cost of Panel

Cost of panel for an individual: Distance to its q-th closest panel member
Optimal Panel: Minimizes the sum of costs (i.e., min social cost)

$$
\text { Representation: } \frac{\min _{P^{*}} \operatorname{social}-\operatorname{cost}\left(P^{*}\right)}{\mathrm{E}_{P \sim \operatorname{Alg}}[\operatorname{social}-\operatorname{cost}(P)]} \quad \longrightarrow \text { Between } 0 \text { and } 1
$$

Dichotomy of Results

$$
q>\frac{k}{2}
$$

$$
q \leq \frac{k}{2}
$$

Uniform Selection achieves constant representation when $\frac{k}{2}<q<k-\Omega(k)$.

- Uniform Selection incurs zero representation in the worst case

Regime of $q>\frac{k}{2}$

- Interpretation: one wants the majority of the panel to be representative of themselves.

Regime of $q>\frac{k}{2}$

- Interpretation: one wants the majority of the panel to be representative of themselves.

Theorem 1.

Any perfectly fair selection algorithm achieves a representation of at least $\frac{1}{2} \cdot \frac{k-q+1}{k}$.

Theorem 2.

Any perfectly fair selection algorithm incurs a representation of at most $2 \cdot \frac{k-q+1}{k}$.

- Constant representation (near optimal) when $\frac{k}{2}<q<k-\Omega(k)$.

Zero Representation when $q \leq \frac{k}{2}$

$\frac{n}{2}$ people
$\frac{n}{2}$ people

Optimal social cost: 0 (e.g., $\frac{k}{2}$ from left and $\frac{k}{2}$ from right)
Uniform selection: prone to picking less than q from one side

Zero Representation when $q \leq \frac{k}{2}$

$$
\frac{n}{2} \text { people } \quad \frac{n}{2} \text { people }
$$

Optimal social cost: 0 (e.g., $\frac{k}{2}$ from left and $\frac{k}{2}$ from right)
Uniform selection: prone to picking less than q from one side
Fix: Always pick $\frac{k}{2}$ panel members randomly from left and $\frac{k}{2}$ randomly from right

Zero Representation when $q \leq \frac{k}{2}$

$$
\frac{n}{2} \text { people } \quad \frac{n}{2} \text { people }
$$

Optimal social cost: 0 (e.g., $\frac{k}{2}$ from left and $\frac{k}{2}$ from right)
Uniform selection: prone to picking less than q from one side
Fix: Always pick $\frac{k}{2}$ panel members randomly from left and $\frac{k}{2}$ randomly from right

Theorem 3 (weaker version).

Any perfectly fair selection algorithm incurs 0 representation when $q \leq \frac{k}{2}$.

What is the Difference when $q>\frac{k}{2}$?

- Optimal cost is bounded away from zero
- For two individuals i, j and optimal panel P^{*}

What is the Difference when $q>\frac{k}{2}$?

- Optimal cost is bounded away from zero
- For two individuals i, j and optimal panel P^{*}

What is the Difference when $q>\frac{k}{2}$?

- Optimal cost is bounded away from zero

$$
\begin{aligned}
\forall i & \neq j: \quad d(i, j) \leq c_{q}\left(i, P^{*}\right)+c_{q}\left(j, P^{*}\right) \\
& \Rightarrow \sum_{i \neq j} d(i, j) \leq \sum_{i \neq j} c_{q}\left(i, P^{*}\right)+c_{q}\left(j, P^{*}\right) \\
& \Rightarrow \sum_{i \neq j} d(i, j) \leq 2(n-1) \cdot \operatorname{social}-\operatorname{cost}\left(P^{*}\right)
\end{aligned}
$$

Proof of Theorem 2

Theorem 2.

Any perfectly fair selection algorithm achieves a representation of at least $\frac{1}{2} \cdot \frac{k-q+1}{k}$.

- On Blackboard!

Positive news for $q \leq \frac{k}{2}$?

Trade-off between Fairness and Representation

Positive news for $q \leq \frac{k}{2}$

Theorem 4.

RandomReplace achieves $\frac{1}{q+1}$ representation while selecting each individual w.p. $\frac{q}{n}$.

RandomReplace Algorithm

- Find P^{*}
- Randomly pick a group S of size q
- For each $i \in S$:
- Replace i with one of its (remaining) closest q neighbors in P^{*}

Positive news for $q \leq \frac{k}{2}$

Theorem 4.

RandomReplace achieves $\frac{1}{q+1}$ representation while selecting each individual w.p. $\frac{q}{n}$.

RandomReplace Algorithm

- Find $P^{*} \longleftarrow$ Hard to find. Use approximately optimal.
- Randomly pick a group S of size q
- For each $i \in S$:
- Replace i with one of its (remaining) closest q neighbors in P^{*}

Conclusion

- Sortition and Metric Representation
- Dichotomy
- $\frac{k}{2}<q<k-\Omega(k)$: Uniform selection is almost optimal in expectation
- $q \leq \frac{k}{2}$:

No representation if fairness is sought

- Trade-off between Fairness and Representation
- RandomReplace: Scratched the surface
- What level of fairness can be achieved if we seek constant representation?

Conclusion

- Sortition and Metric Representation
- Dichotomy
- $\frac{k}{2}<q<k-\Omega(k)$: Uniform selection is almost optimal in expectation
- $q \leq \frac{k}{2}$: No representation if fairness is sought
- Trade-off between Fairness and Representation
- RandomReplace: Scratched the surface
- What level of fairness can be achieved if we seek constant representation?
- Other cost functions
- Some results for average distance to all members of the panel
- Several other options

Thank you!

[^0]: * "Democracy and the pursuit of randomness" by Ariel D. Procaccia

[^1]: * "Democracy and the pursuit of randomness" by Ariel D. Procaccia

[^2]: * "Democracy and the pursuit of randomness" by Ariel D. Procaccia

[^3]: * "Democracy and the pursuit of randomness" by Ariel D. Procaccia

