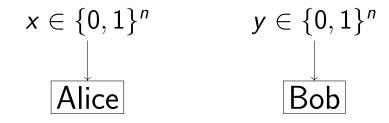
Exactly N With More Than 3 Players

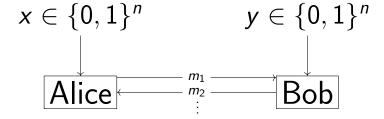
University of Toronto Theory Student Seminar (October 2022)

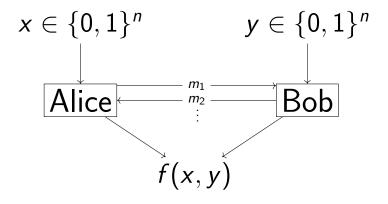
Lianna Hambardzumyan Toniann Pitassi Suhail Sherif **Morgan Shirley** Adi Shraibman

Alice

Bob

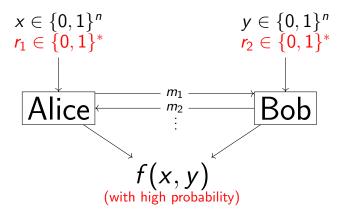






The cost of the protocol is the *number of bits exchanged*.

Randomized Communication Complexity



Classical Complexity: P vs BPP still open Communication Complexity:

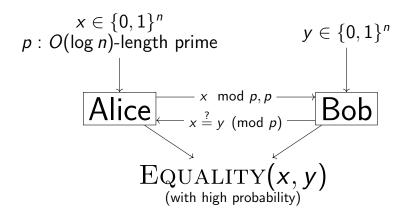
Randomness helps!

Randomized Communication Complexity

Equality
$$(x, y) = 1 \Leftrightarrow x = y$$

Randomized Communication Complexity

Equality
$$(x, y) = 1 \Leftrightarrow x = y$$



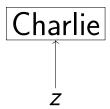
3-party communication complexity

Alice

Bob

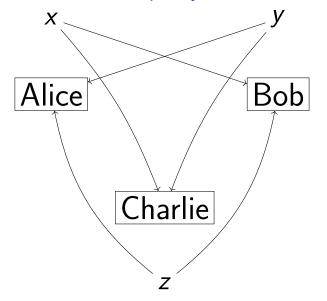
Charlie

3-party communication complexity



This is the *number-in-hand* model (NIH)

3-party communication complexity



This is the number-on-forehead model (NOF)

Why we care about NOF complexity

Applications to other fields!

- Strong NOF lower bounds give ACC₀ lower bounds [Y90,HG91]
- ► Lower bounds for Lovász-Schrijver systems in proof complexity [BPS07]
- Explicit pseudorandom generator constructions [BNS92]
- Time-space trade-offs in Turing Machines [BNS92]
- This talk: applications to additive combinatorics

NIH vs. NOF

NOF lower bounds seem harder to prove than NIH lower bounds.

 $\textbf{Example: } E_{QUALITY}$

Model	Det.	Rand.	Notes
2-party	Hard	Easy	Yao, folklore
NIH	Hard	Easy	by reduction to 2-party model
NOF	Easy	Easy	Charlie announces $x = y$
			Bob announces $x = z$

NIH vs. NOF

NOF lower bounds seem harder to prove than NIH lower bounds.

Example: EQUALITY

Model	Det.	Rand.	Notes
2-party	Hard	Easy	Yao, folklore
NIH	Hard	Easy	by reduction to 2-party model
NOF	Easy	Easy	Charlie announces $x = y$
			Bob announces $x = z$

Can we separate randomized and deterministic communication in the NOF model?

The EXACTLY N function

Inputs x_1, \ldots, x_k are in $\{0, \ldots, N\}$.

EXACTLY
$$N(x_1, \ldots, x_k) = 1$$
 if $\sum_{i=1}^k x_i = N$

 $\operatorname{Exactly} \emph{N}$ has an easy randomized protocol

 $\operatorname{EXACTLY} \emph{N}$ is a candidate hard function for deterministic NOF communication...

The EXACTLY N function

Inputs x_1, \ldots, x_k are in $\{0, \ldots, N\}$.

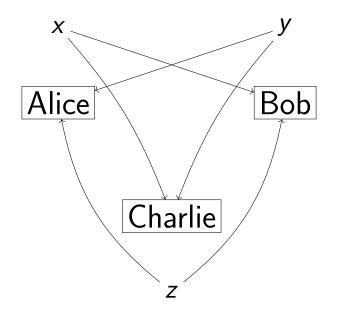
EXACTLY
$$N(x_1, \ldots, x_k) = 1$$
 if $\sum_{i=1}^k x_i = N$

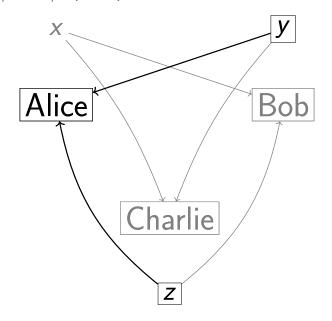
 $\operatorname{Exactly} \emph{N}$ has an easy randomized protocol

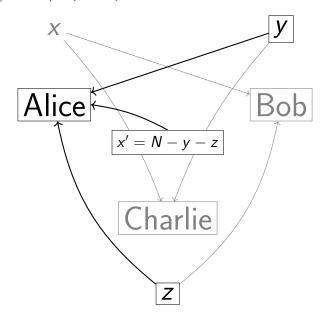
 $\operatorname{EXACTLY} \textit{N}$ is a candidate hard function for deterministic NOF communication...but it isn't maximally hard!

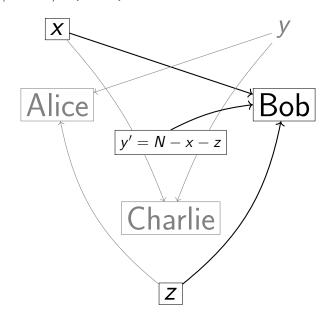
A maximally hard function would take $O(\log N)$ bits of communication.

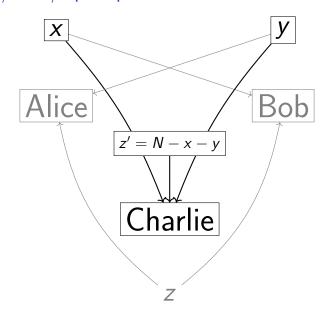
EXACTLY N can be done with less.











$$x' = N - y - z$$
 $y' = N - x - z$ $z' = N - x - y$

$$x' = N - y - z$$
 $y' = N - x - z$ $z' = N - x - y$

Let
$$\Delta = N - (x + y + z)$$

$$x' = N - y - z$$
 $y' = N - x - z$ $z' = N - x - y$

Let
$$\Delta = N - (x + y + z)$$

$$(x'-x) = (y'-y) = (z'-z) = \Delta$$

$$x' = N - y - z$$

$$y' = N - x - z$$

$$z' = N - x - y$$

Let
$$\Delta = N - (x + y + z)$$

$$(x'-x) = (y'-y) = (z'-z) = \Delta$$

Define
$$T = x + 2y + 3z$$

$$x' = N - y - z$$

$$x' = N - y - z$$
 $y' = N - x - z$ $z' = N - x - y$

$$z' = N - x - y$$

Let
$$\Delta = N - (x + y + z)$$

$$(x'-x) = (y'-y) = (z'-z) = \Delta$$

Define
$$T = x + 2y + 3z$$

$$T_x = x' + 2y + 3z$$

$$x' = N - y - z$$

$$x' = N - y - z$$
 $y' = N - x - z$ $z' = N - x - y$

$$z' = N - x - y$$

Let
$$\Delta = N - (x + y + z)$$

$$(x'-x) = (y'-y) = (z'-z) = \Delta$$

Define
$$T = x + 2y + 3z$$

$$T_x = x' + 2y + 3z = T - \Delta$$

$$x' = N - y - z$$

$$|x' = N - y - z|$$
 $|y' = N - x - z|$ $|z' = N - x - y|$

$$z' = N - x - y$$

Let
$$\Delta = N - (x + y + z)$$

$$(x'-x) = (y'-y) = (z'-z) = \Delta$$

Define
$$T = x + 2y + 3z$$

$$T_x = x' + 2y + 3z = T - \Delta$$

 $T_y = x + 2y' + 3z = T - 2\Delta$
 $T_z = x + 2y + 3z' = T - 3\Delta$

T_x , T_y , T_z comprise a 3-term arithmetic progression

Arithmetic progressions

A k-term arithmetic progression (k-AP) is a set of the form

$${a, a+b, \ldots, a+(k-1)b}.$$

A k-AP is *trivial* if b = 0 (i.e. if it is a singleton).

$$T_x = x' + 2y + 3z = T - \Delta$$

 $T_y = x + 2y' + 3z = T - 2\Delta$
 $T_z = x + 2y + 3z' = T - 3\Delta$

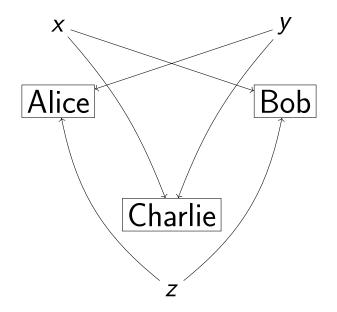
 T_x , T_y , T_z comprise a 3-AP that is trivial $\Leftrightarrow \Delta = 0$.

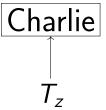
$$T_x = x' + 2y + 3z = T - \Delta$$

 $T_y = x + 2y' + 3z = T - 2\Delta$
 $T_z = x + 2y + 3z' = T - 3\Delta$

 T_x, T_y, T_z comprise a 3-AP that is trivial $\Leftrightarrow \Delta = 0$.

$$\Delta = N - (x + y + z)$$
, so $\Delta = 0 \Leftrightarrow \text{Exactly} N(x, y, z) = 1$.



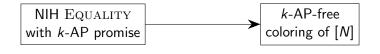


We have reduced NOF EXACTLYN to NIH EQUALITY where the inputs are promised to

comprise a k-AP!

k-AP-free colorings

Color [N] such that no color has a nontrivial k-AP.

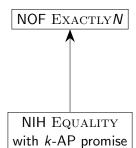


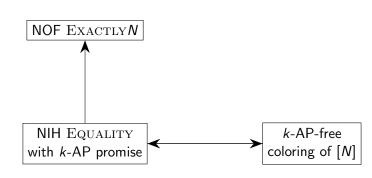
Color $w \in [N]$ with transcript of EQUALITY protocol on (w, w, w).

k-AP-free colorings

Color [N] such that no color has a nontrivial k-AP.

Alice announces the color of her input. Bob and Charlie announce if they agree.

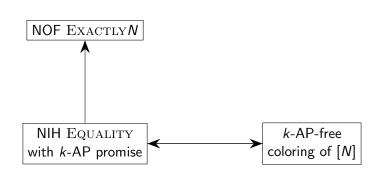




k-AP-free colorings

Theorem (Behrend): [N] has a 3-AP-free coloring with $2^{O(\sqrt{\log N})}$ colors

So EXACTLY *N* for 3 players can be solved using $O(\sqrt{\log N})$ bits of communication!

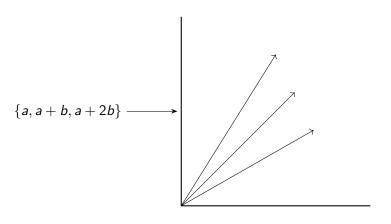


Salem/Spencer: map [N] to vectors in $[n]^d$ by base-n representation

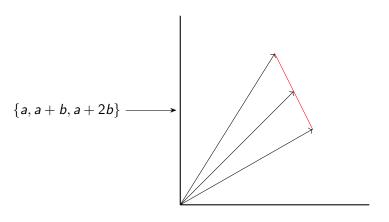
Example:
$$x = 184$$
, $N = 300$

$$n = 10$$
 $vec(x) = (1, 8, 4)$
 $n = 16$ $vec(x) = (0, 11, 8)$

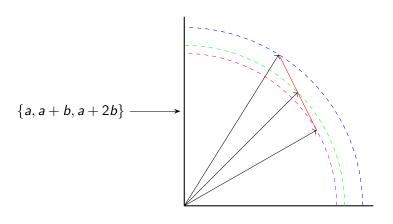
Behrend's idea: look at the *lengths* of the Salem/Spencer vectors



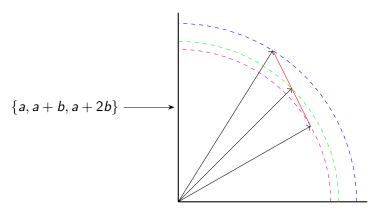
Behrend's idea: look at the *lengths* of the Salem/Spencer vectors



Behrend's idea: look at the lengths of the Salem/Spencer vectors



Behrend's idea: look at the *lengths* of the Salem/Spencer vectors



If 3 vectors have the same length, they can't be a 3-AP! Color $x \in [N]$ by the (squared) length of vec(x).

Problem: x, y, z are a 3-AP $\Rightarrow \text{vec}(x), \text{vec}(y), \text{vec}(z)$ are a 3-AP

Problem: x, y, z are a 3-AP $\Rightarrow \text{vec}(x), \text{vec}(y), \text{vec}(z)$ are a 3-AP

Solution: Restrict to vectors with ℓ_{∞} -norm $\leq n/3$

Problem: x, y, z are a 3-AP $\Rightarrow \text{vec}(x), \text{vec}(y), \text{vec}(z)$ are a 3-AP

Solution: Restrict to vectors with ℓ_{∞} -norm $\leq n/3$

Use a pigeonhole argument to find a large 3-AP-free set

From a large set, we can get a small coloring (by translation) Behrend: set of size $N/2^{O(\sqrt{\log N})} \Rightarrow$ coloring of size $2^{O(\sqrt{\log N})}$

Chandra/Furst/Lipton protocol for EXACTLY N

Chandra/Furst/Lipton protocol for EXACTLY N

Chandra/Furst/Lipton protocol for EXACTLY N

What if the vectors have large ℓ_{∞} norm?

Linial/Pitassi/Shraibman protocol

Explicitly reason about the possibility of carries!

Alice announces her best guess for the **carry vector** of x + y + z

If the parties agree on the carry vector, they can use this to ensure that the vectors for T_x , T_y , T_z are a 3-AP (details omitted).

Linial/Pitassi/Shraibman protocol

How much communication?

- \triangleright Send carry vector: O(d) bits
- ightharpoonup Send (squared) vector length: $O(\log n)$ bits
- ▶ Bob and Charlie confirm: O(1) bits

Balanced at $d = O(\sqrt{\log N})$, $n = 2^{O(\sqrt{\log N})}$ (matches Behrend)

Q: Why do we care about explicit protocols?

Q: Why do we care about explicit protocols?

A: Another connection to combinatorics: corners!

Corners

A corner in $[N] \times [N]$ is a set of the form

$$\{(x,y),(x+\xi,y),(x,y+\xi)\}$$

for $\xi \neq 0$.

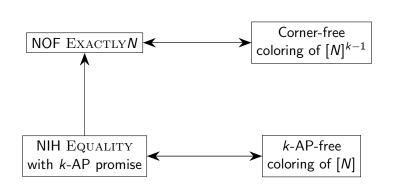
Corner-free colorings from EXACTLY N protocols

Color (y, z) by the message that Alice sends.

Let $x^* = N - y - z - \xi$ Bob can't distinguish between (x^*, y, z) and $(x^*, y + \xi, z)$ Charlie can't distinguish between (x^*, y, z) and $(x^*, y, z + \xi)$ So if $\{(y, z), (y + \xi, z), (y, z + \xi)\}$ are colored the same, the protocol claims $x^* + y + z = N$, which is only true when $\xi = 0$.

EXACTLY *N* protocols from corner-free colorings

Compare the colors of (N-y-z,y),(x,N-x-z), and (x,y). This is $\{(x+\xi,y),(x,y+\xi),(x,y)\}$ with $\xi=\Delta$.



Better corner-free colorings

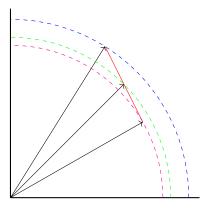
Linial/Shraibman show that we don't need to communicate the whole carry vector!

This gives the best improvement on corner-free colorings since Behrend.

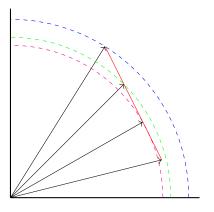
Green gives a further improvement.

What about when k > 3?

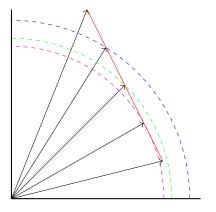
Behrend still works...



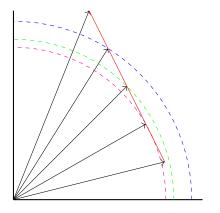
Behrend still works...



Behrend still works...



Behrend still works...



...but we can do better.

Rankin gives a better construction of k-AP-free colorings!

Higher-degree progressions

A degree-m k-term polynomial progression (k- P_m P) is a set of the form

$$\{p(0), p(1), \ldots, p(k-1)\}\$$

where p is a polynomial of degree at most m.

Lifting to higher-degree progressions

Theorem (Rankin, Łaba/Lacey): If x_1, \ldots, x_k are a k-P_mP with:

- k > 2m
- $ightharpoonup \operatorname{vec}(x_1), \ldots, \operatorname{vec}(x_k)$ have low ℓ_{∞} -norm (less than n/c_m)
- $\blacktriangleright \{x_1,\ldots,x_k\}$ is not a singleton

then $\|\operatorname{vec}(x_1)\|_2^2, \dots, \|\operatorname{vec}(x_k)\|_2^2$ is a non-trivial $k\text{-P}_{2m}\mathsf{P}$

Behrend's construction as lifting

 x_1, x_2, x_3 are a 3-AP (3-P₁P) with:

- k > 2m
- ▶ $\operatorname{vec}(x_1), \operatorname{vec}(x_2), \operatorname{vec}(x_3)$ have low ℓ_{∞} -norm

so if $\|\operatorname{vec}(x_1)\|_2^2 = \|\operatorname{vec}(x_2)\|_2^2 = \|\operatorname{vec}(x_3)\|_2^2$ it must be that $\{x_1, x_2, x_3\}$ is a singleton.

Behrend's construction as lifting

 x_1, x_2, x_3 are a 3-AP (3-P₁P) with:

- **▶** 3 > 2
- ▶ $\operatorname{vec}(x_1), \operatorname{vec}(x_2), \operatorname{vec}(x_3)$ have low ℓ_{∞} -norm

so if $\|\operatorname{vec}(x_1)\|_2^2 = \|\operatorname{vec}(x_2)\|_2^2 = \|\operatorname{vec}(x_3)\|_2^2$ it must be that $\{x_1, x_2, x_3\}$ is a singleton.

Rankin's construction

Repeated apply lifting! Let $k = 2^r + 1$

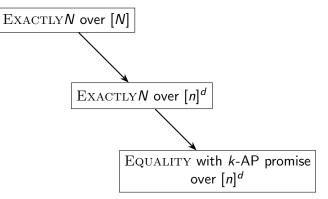
$$k\text{-}\mathsf{P}_1\mathsf{P} \to k\text{-}\mathsf{P}_2\mathsf{P} \to k\text{-}\mathsf{P}_4\mathsf{P} \to \ldots \to k\text{-}\mathsf{P}_{2^{r-1}}\mathsf{P} \to k\text{-}\mathsf{P}_{2^r}\mathsf{P}$$

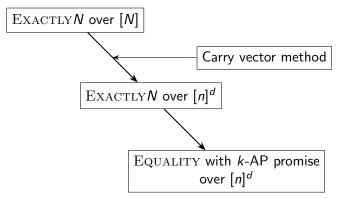
If the the k- $P_{2^r}P$ is a singleton, the original k- P_1P was also!

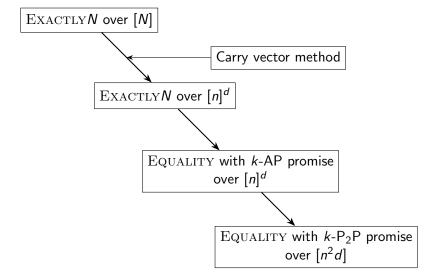
Each time the range of values shrinks from n^d to n^2d for some n, d

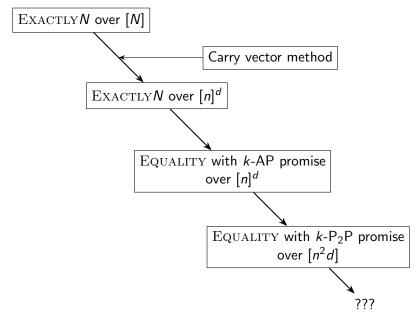
Theorem (Rankin): [N] has a k-AP-free coloring with $2^{O(\log N^{1/\log(k-1)})}$ colors

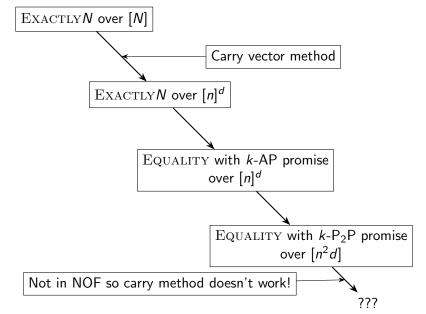
Previous explicit protocols can't use Rankin's construction.





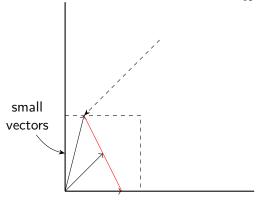






In order to ensure that the vectors have small ℓ_∞ norm... small vectors

In order to ensure that the vectors have small ℓ_∞ norm...



Alice announces how much she needs to *shift* her vector to make it small. We shift all of the vectors by this much!

Our protocol

Rankin's construction with shifts between rounds.

- Other players need different shifts: the vectors are not equal, and so we're done!
- Otherwise, we can proceed: the vectors are now short!

Communication cost:

- $ightharpoonup O(\log k)$ rounds of shifts: $d \cdot c_k$ communication each
- Length at final step (complicated expression)

This ends up being balanced by choosing

$$d \approx O\left((\log N)^{1/(\log(k-1))}\right)$$

every round, which matches Rankin

Ongoing work and future directions

- ► Can Linial/Shraibman corner result generalize with shifts?
- Can Green's improvement of Linial/Shraibman be generalized?
- Use these techniques with other NOF functions.

Thanks!

Extra slides

Graph functions

Given x_1, \ldots, x_{k-1} there is at most one value $g(x_1, \ldots, x_{k-1})$ for x_k such that $F(x_1, \ldots, x_k) = 1$.

Easy with randomness: $g(x_1, ..., x_{k-1}) = x_k$?

Theorem (Beame, David, Pitassi, and Woelfel): There are graph functions that are hard to compute deterministically.

Alice announces her best guess for the **carry vector** of x + y + z $N_i + (C_i - 1)n < y_i + z_i + C_{i-1} \le N_i + (C_i)n$

Example:
$$N = 300$$
, $n = 10$, $vec(N) = (3, 0, 0)$

$$vec(y) = (1, 8, 4)$$
 $vec(z) = (0, 0, 7)$

$$4+7+0 \le 0+20$$

 $8+0+2 \le 0+10$
 $1+0+1 \le 3+0$
 $C(y,z) = (0,1,2)$

Alice announces C(y, z)Bob and Charlie announce whether C(y, z) = C(x, z) = C(x, y)

Alice announces C(y, z)Bob and Charlie announce whether C(y, z) = C(x, z) = C(x, y)

$$vec(x) = (1,0,9)$$
 $vec(y) = (1,8,4)$ $vec(z) = (0,0,7)$

$$4+7+0 \le 0+20 \quad 9+7+0 \le 0+20 \quad 9+4+0 \le 0+20$$

$$8+0+2 \le 0+10 \quad 0+0+2 \le 0+10 \quad 8+0+2 \le 0+10$$

$$1+0+1 \le 3+0 \quad 1+0+1 \le 3+0 \quad 1+1+1 \le 3+0$$

$$C(y,z) = (0,1,2) \quad C(x,z) = (0,1,2) \quad C(x,y) = (0,1,2)$$

Alice announces C(y, z)Bob and Charlie announce whether C(y, z) = C(x, z) = C(x, y)

$$vec(x) = (1,0,6)$$
 $vec(y) = (1,8,4)$ $vec(z) = (0,0,7)$

$$4+7+0 \le 0+20 \quad 6+7+0 \le 0+20 \quad 6+4+0 \le 0+10$$

$$8+0+2 \le 0+10 \quad 0+0+2 \le 0+10 \quad 8+0+1 \le 0+10$$

$$1+0+1 \le 3+0 \quad 1+0+1 \le 3+0 \quad 1+1+1 \le 3+0$$

$$C(y,z) = (0,1,2) \quad C(x,z) = (0,1,2) \quad C(x,y) = (0,1,1)$$

Alice announces C(y, z)Bob and Charlie announce whether C(y, z) = C(x, z) = C(x, y)

$$vec(x) = (1,0,8)$$
 $vec(y) = (1,8,4)$ $vec(z) = (0,0,7)$

$$4+7+0 \le 0+20 \quad 8+7+0 \le 0+20 \quad 8+4+0 \le 0+20$$

$$8+0+2 \le 0+10 \quad 0+0+2 \le 0+10 \quad 8+0+2 \le 0+10$$

$$1+0+1 \le 3+0 \quad 1+0+1 \le 3+0 \quad 1+1+1 \le 3+0$$

$$C(y,z) = (0,1,2) \quad C(x,z) = (0,1,2) \quad C(x,y) = (0,1,2)$$