
Journal of Combinatorial Optimization, 8, 307–328, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Pipage Rounding: A New Method of Constructing
Algorithms with Proven Performance Guarantee∗

A.A. AGEEV ageev@math.nsc.ru
Sobolev Institute of Mathematics, pr. Koptyuga 4, 630090, Novosibirsk, Russia

M.I. SVIRIDENKO sviri@us.ibm.com
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY

Received December 6, 2000; Accepted July 24, 2002

Abstract. The paper presents a general method of designing constant-factor approximation algorithms for some
discrete optimization problems with assignment-type constraints. The core of the method is a simple deterministic
procedure of rounding of linear relaxations (referred to as pipage rounding). With the help of the method we
design approximation algorithms with better performance guarantees for some well-known problems including
MAXIMUM COVERAGE, MAX CUT with given sizes of parts and some of their generalizations.

Keywords: approximation algorithm, performance guarantee, linear relaxation, rounding technique, maximum
coverage, max cut

1. Introduction

Rounding of linear relaxations is one of the most effective techniques in designing approxi-
mation algorithms with proven performance guarantees. Two points are most important for
those who aim at success when applying this technique: a good choice of integer program
formulation and a good choice of rounding scheme for its linear relaxation. Selecting a good
integer program formulation highly depends on the nature of the problem and and is often
a matter of intuition. As for rounding methods, there are two basic different approaches—
deterministic and random. When applying random rounding methods one encounters the
additional problem of derandomization. This problem may prove to be extremely difficult
or quite intractable. For example, a difficult point in implementation of random roundings
is that of producing feasible solutions in the case of some simple equality constraints like a
cardinality or a budget one. Though by using some tricks this difficulty could be overcome,
the resulting algorithm will be too sophisticated to admit derandomization.

The main result of this paper is a simple deterministic rounding method—we call it
the pipage rounding—especially oriented to tackle some problems with assignment- and
budget-type constraints.

∗Parts of this paper appeared in preliminary form in Proceedings of IPCO’99 (Ageev and Sviridenko, 1999) and
ESA’00 (Ageev and Sviridenko, 2000).

308 AGEEV AND SVIRIDENKO

The paper is organized as follows. In Section 2 we give a general description of the pipage
method.

In Section 3 we demonstrate relatively simple but effective applications of the method.
We apply the method to the maximum coverage problem. The result is the (1− (1−1/k)k)-
approximation algorithm for the maximum coverage problem where k is the maximum
size of the subsets. The performance guarantee of (1 − (1 − 1/k)k) improves on that of
1 − e−1 in each case of bounded k, established by Cornuejols et al. (1977) for the greedy
algorithm.

In Section 4 we consider the maximum k-cut problem in hypergraphs with the additional
constraint that the sizes of the parts (sides) of the partition must be equal to given numbers
(hypergraph max k-cut with given sizes of parts or, for short, HYP MAX k-CUT WITH GSP).
By applying the pipage rounding method, we prove that HYP MAX k-CUT WITH GSP can be
approximated within a factor of min{λ|S| : S ∈ E} of the optimum, where E is the edge set
of the hypergraph and λr = 1 − (1 − 1/r)r − (1/r)r . This gives a 0.5-approximation for
the case of graphs and a (1 − e−1)-approximation for the case of hypergraphs with edges
of size at least 3. We also show that the performance guarantee of our algorithm in the later
case is best possible unless P = NP.

In Section 5 we present an essentially more sophisticated application of our method. We
combine the pipage rounding with the partial enumeration method of Sahni (1975) to design
an algorithm with a better approximation ratio for a knapsack generalization of MAXIMUM

COVERAGE.
In the last section we apply the pipage rounding to a scheduling problem. In this prob-

lem, for a set of unrelated parallel machines, it is required to find a schedule minimizing
the total weighted completion time provided that for each machine the number of jobs
that it can process is bounded by a given number. The version without restrictions on the
numbers of jobs was studied earlier by Skutella (1998, 1999) who proved that it can be
approximated within a factor of 3/2 of the optimum. Applying pipage rounding we ob-
tain that the same approximation bound also holds for the (more general) problem with
the restrictions on the numbers of jobs. A distinctive feature of this application is that it
deals with a minimization problem while the previous applications treated maximization
ones.

2. Pipage rounding: A general description

In this section we present a general description of the rounding procedure, that underlies
all the algorithms presented in this paper. The description, being far from most general,
still covers the most important particular cases treated so far. We will also dwell on specific
features of the scheme corresponding to some important special cases.

We start with formulating a general problem. Suppose we are given a bipartite graph
G = (U, W ; E), a function F(x) defined on the rational points x = (xe : e ∈ E) of the
|E |-dimensional cube [0, 1]|E | and computable in polynomial time, and p : U ∪ W → Z+.

PIPAGE ROUNDING 309

Consider the binary program

max F(x) (1)

s.t.
∑

e∈δ(v)

xe ≤ pv, v ∈ U ∪ W, (2)

0 ≤ xe ≤ 1, e ∈ E, (3)

xe ∈ {0, 1}, e ∈ E . (4)

Denote by F∗ the optimal value of (1)–(4). We call a solution x satisfying (2)–(3) fractional
if some of its components are non-integral. Notice that the fractional relaxation (1)–(3) is
not assumed to be polynomially solvable.

Let x̌ be a fractional solution to (1)–(3). We further describe a rounding algorithm, called
PIPAGE, that converts x̌ into an integral vector x̄ satisfying (2)–(4). After that we will
formulate some sufficient conditions on F guaranteeing F(x̄) ≥ F(x̌).

Algorithm PIPAGE. PIPAGE consists of uniform steps at each of which a current frac-
tional solution x transforms into a new solution x ′ with smaller number of non-integral
components. We proceed to description of the general step. Let x be a current vector sat-
isfying (2)–(4). If x is integral, then the algorithm terminates and outputs x . Suppose now
that x is fractional. Construct the subgraph Hx of G with the same vertex set and the edge
set Ex defined by the condition that e ∈ Ex if and only if xe is non-integral. If Hx contains
cycles, then we set R to be such a cycle. If Hx is a forest, then we set R to be a path of
Hx whose endpoints have degree 1. Since Hx is bipartite, in both cases R can be uniquely
represented as the union of two matchings. Let M1 and M2 denote those matchings. Define
a new solution x(ε, R) by the following rule: if e ∈ E \ R, then xe(ε, R) coincides with xe,
otherwise xe(ε, R) = xe + ε when e ∈ M1, and xe(ε, R) = xe − ε when e ∈ M2. Set

ε1 = min
{

min
e∈M1

xe, min
e∈M2

(1 − xe)
}

and

ε2 = min
{

min
e∈M1

(1 − xe), min
e∈M2

xe

}
.

Let x1 = x(−ε1, R), x2 = x(ε2, R). Set x ′ = x1 if F(x2) < F(x1) and x ′ = x2 otherwise.
We call the above transformation the rounding of x over R .
Define ϕ(ε, x, R) = F(x(ε, R)).

Correctness and analysis. Consider an arbitrary step of PIPAGE. Note first that Ex ′ is a
proper subset of Ex and hence x ′ has smaller number of fractional components than x . This
means that PIPAGE terminates after at most |E | steps, and its output, x̄ , is integral. Recall
now that by assumption each pv is an integer and by description, if R is a path, the endpoints
of R have degree 1 in H . It follows that x(ε) satisfies (2)–(3) for every ε ∈ [−ε1, ε2].

310 AGEEV AND SVIRIDENKO

Let v ∈ U ∪ W and qv = ∑
e∈δ(v) xe. Observe that if v is not an endpoint of R, then∑

e∈δ(v) xe(ε) = qv for all ε. Assume that qv is an integer. Then v cannot have degree
1 in Hx and therefore it cannot be an endpoint of R when R is a path. Consequently,∑

e∈δ(v) xe(ε) = qv whenever ε ∈ [−ε1, ε2]. Assume now that qv is non-integral. Then, by
the definition of ε1 and ε2, �qv	 ≤ ∑

e∈δ(v) xe(ε) ≤ �qv	 + 1 whenever ε ∈ [−ε1, ε2]. Thus
we have established the following relations between x̄ and x̌ .

Property 1. If
∑

e∈δ(v) x̌e is integral, then
∑

e∈δ(v) x̄e = ∑
e∈δ(v) x̌e.

Property 2. If
∑

e∈δ(v) x̌e is non-integral, then

⌊ ∑
e∈δ(v)

x̌e

⌋
≤

∑
e∈δ(v)

x̄e ≤
⌊ ∑

e∈δ(v)

x̌e

⌋
+ 1.

Since all pv are integers, Properties 2 and 2 imply that x̄ satisfies (2). Thus, after per-
forming at most |E | steps PIPAGE transforms x̌ into a solution x̄ obeying (1)–(4). Since
each step can be clearly implemented in polynomial time, it follows that the overall running
time of the algorithm is polynomially bounded.

The pipage rounding scheme. Assume now that there is a polynomial-time algorithm for
finding a fractional feasible solution x̌ to (1)–(3) such that

F(x̌) ≥ CF∗, (5)

where C is a positive constant. If, in addition, x̄—the output of PIPAGE—satisfied

F(x̄) ≥ F(x̌), (6)

we would obtain a C-approximation algorithm for solving (1)–(4). The inequality (6) clearly
holds if at each step of PIPAGE F(x ′) ≥ F(x), which in turn is the case if ϕ(ε, x, R), treated
as a function of ε, attains its maximum at an endpoint of the interval [−ε1, ε2]. Thus we
arrive at the following condition that guarantees (6).

Definition 1. We say that the program (1)–(4) satisfies the ε-convexity condition if the
function ϕ(ε, x, R) is convex in ε for every feasible solution x to (1)–(3) and for all paths
and cycles R of the graph Hx .

We describe now a general way of constructing algorithms satisfying (5). Assume that one
can associate with F(x) another function L(x) that is defined and polynomially computable
on the same set, coincides with F(x) on binary x satisfying (2), and such that the program

max L(x) (7)

s.t.
∑

e∈δ(v)

xe ≤ pv, v ∈ U ∪ W, (8)

0 ≤ xe ≤ 1, e ∈ E (9)

PIPAGE ROUNDING 311

(henceforth called the nice relaxation) is polynomially solvable.

Definition 2. We say that the functions F and L satisfy the F/L lower bound condition if

F(x̌) ≥ C L(x̌), (10)

where x̌ is an optimal solution to (7)–(9) and C is a positive constant.

Since L(x̌) ≥ F∗, this condition implies (5). Thus if both of the above conditions hold
(we will further refer to them as the main conditions) one can construct a C-approximation
algorithm for solving (1)–(4).

Remark 1. The pipage rounding is essentially based on Properties 1 and 2. It is easy
to observe that both properties hold for some modifications of the problem (1)–(4), which
expose the actual range of applicability of our method. In particular, ≤ in (2) can be replaced
by =. Moreover, after a few obvious alterations in the description (namely, the ε-convexity
and F/L lower bound conditions should be replaced by the ε-concavity and F/L upper
bound conditions, respectively) the method is applicable to the problem obtained from the
above by converting max in (1) into min and ≤ in (2) into ≥ or =.

3. Maximum coverage

In the maximum coverage problem (MAXIMUM COVERAGE for short), given a family F =
{Sj : j ∈ J } of subsets of a set I = {1, . . . , n} with associated nonnegative weights w j and
a positive integer p, it is required to find a subset X ⊆ I with |X | = p so as to maximize the
total weight of the sets in F having nonempty intersections with X . The polynomial-time
solvability of MAXIMUM COVERAGE clearly implies that of the set cover problem and so it
is NP-hard. In a sense MAXIMUM COVERAGE can be treated as an inverse of the set cover
problem and like the latter has numerous applications (see, e.g. Hochbaum, 1997). It is well
known that a simple greedy algorithm solves MAXIMUM COVERAGE approximately within a
factor of 1−(1−1/p)p of the optimum (Cornuejols et al., 1977). Feige (1998) proves that no
polynomial algorithm can have better performance guarantee provided that P �=NP. Another
result concerning MAXIMUM COVERAGE is due to Cornuejols et al. (1980) who prove that
the greedy algorithm almost always finds an optimal solution to MAXIMUM COVERAGE in
the case of two-element sets. We show below that MAXIMUM COVERAGE can be solved in
polynomial time approximately within a factor of 1 − (1 − 1/k)k of the optimum, where
k = max{|Sj | : j ∈ J }. Although 1−(1−1/k)k like 1−(1−1/p)p can be arbitrary close to
1 − e−1, the parameter k looks more interesting: for each fixed k (k = 2, 3, . . .) MAXIMUM

COVERAGE still remains NP-hard. E.g., in the case when k = 2, which is the converse of
the vertex cover problem, the performance guarantee of the greedy algorithm has the same
value of 1 − e−1 (Cornuejols et al., 1980), whereas our algorithm finds a solution within
a factor of 3/4 of the optimum. Ultimately, the performance guarantee of our algorithm
beats the performance guarantee of the greedy algorithm in each case of bounded k and
coincides with that when k is unbounded. Note also that our result is similar in a sense to

312 AGEEV AND SVIRIDENKO

the well-known result (Bar-Yehuda and Even, 1981; Hochbaum, 1982) that the set cover
problem can be approximated in polynomial time within a factor of r of the optimum, where
r is the maximum number of sets containing an element.

Let J = {1, . . . m}. MAXIMUM COVERAGE can be equivalently reformulated as a con-
strained version of MAX SAT over variables y1, . . . , yn with m clauses C1, . . . , Cm such that
C j is the collection of yi with i ∈ Sj and has weight w j . It is required to assign “true” values
to exactly p variables so as to maximize the total weight of satisfied clauses. Furthermore,
analogously to MAX SAT (see, e.g. Goemans and Williamson, 1994), MAXIMUM COVERAGE

can be stated as the following integer program:

max
m∑

j=1

w j z j (11)

s.t.
∑
i∈Sj

xi ≥ z j , j = 1, . . . , m, (12)

n∑
i=1

xi = p, (13)

xi ∈ {0, 1}, i = 1, . . . , n, (14)

0 ≤ zi ≤ 1, i = 1, . . . , m. (15)

It is easy to see that the relation “xi = 1 if i ∈ X , and xi = 0 otherwise” establishes a 1-1
correspondence between the optimal sets in MAXIMUM COVERAGE and the optimal solutions
to (11)–(15). Note that the variables xi determine the optimal values of z j in any optimal
solution. Moreover, it is clear that MAXIMUM COVERAGE is equivalent to maximizing the
function F(x) = ∑m

j=1 w j (1 − ∏
i∈Sj

(1 − xi)) over all binary vectors x satisfying (13). To
see that that this non-linear problem is a special case of of the problem (2)–(4) we define
U = {u} and W = {1, . . . , n} where u is a dummy element corresponding to the cardinality
constraint. Observe also that the objective function (11) can be replaced by the function

L(x) =
m∑

j=1

w j min

{
1,

∑
i∈Sj

xi

}

of the variables x1, . . . , xn , thus providing a nice relaxation of the form (7)–(9).
We now show that the functions F and L just defined satisfy the ε-convexity and F/L

lower bound conditions.
The F/L lower bound condition holds with C = (1 − (1 − 1/k)k) where k = max{|Sj | :

j ∈ J }, which is implied by the following inequality (used first by Goemans and Williamson,
1994 in a similar context):

1 −
k∏

i=1

(1 − yi) ≥ (1 − (1 − 1/k)k) min

{
1,

k∑
i=1

yi

}
, (16)

PIPAGE ROUNDING 313

valid for all 0 ≤ yi ≤ 1, i = 1, . . . , k. To make the paper self-contained we derive it below.
By using the arithmetic-geometric mean inequality we have that

1 −
k∏

i=1

(1 − yi) ≥ 1 −
(

1 − z

k

)k

,

where z = min{1,
∑k

i=1 yi }. Since the function g(z) = 1 − (1 − z/k)k is concave on the
segment [0, 1] and g(0) = 0, g(1) = 1 − (1 − 1/k)k , we finally obtain

g(z) ≥ (1 − (1 − 1/k)k)z,

as desired.
To check the ε-convexity condition it suffices to observe that in this case ϕ as a function in

ε is convex because it is a quadratic polynomial in ε, whose main coefficient is nonnegative
for each pair of indices i and j and each x ∈ [0, 1]n . Thus by concretizing the general
scheme described in the introduction we obtain a (1− (1−1/k)k)-approximation algorithm
for the maximum coverage problem.

We now demonstrate that the integrality gap of (11)–(15) can be arbitrarily close to
(1 − (1 − 1/k)k) and thus the rounding scheme described above is best possible for the
integer program (11)–(15). Set n = kp, w j = 1 for all j and let F be the collection of all
subsets of {1, . . . , n} with cardinality k. Then, by symmetry, any binary vector with exactly
p units maximizes L(x) subject to (13)–(14) and so the optimal value of this problem is
equal to L∗ = Ck

n − Ck
n−p. On the other hand, the vector with all components equal to

1/k provides an optimal solution of weight L ′ = Ck
n to the linear relaxation in which the

objective is to maximize L(x) subject to (13) and 0 ≤ xi ≤ 1 for all i . Now it is easy to
derive an upper bound on the ratio

L∗

L ′ = Ck
n − Ck

n−p

Ck
n

= 1 − (n − p)!

k!(n − p − k)!

k!(n − k)!

n!

= 1 −
(

n − p

n

)(
n − p − 1

n − 1

)
. . .

(
n − p − k + 1

n − k + 1

)

≤ 1 −
(

n − p

n

)(
n − p − 1

n

)
. . .

(
n − p − k + 1

n

)

= 1 −
(

1 − 1

k

)(
1 − 1

k
− 1

n

)(
1 − 1

k
− 2

n

)
. . .

(
1 − 1

k
− k + 1

n

)

≤ 1 −
(

1 − 1

k
− k + 1

n

)k

,

which tends to (1 − (1 − 1/k)k) when k is fixed and n → ∞.

314 AGEEV AND SVIRIDENKO

Remark 2. The algorithm and the argument above can be easily adopted to yield the same
performance guarantee in the case of the more general problem in which the constraint (13)
is replaced by the constraints

∑
i∈It

xi = pt , t = 1, . . . , r

where {It : t = 1, . . . , r} is a partition of the ground set I and pt are positive integers. It can
be shown, on the other hand, that the worst-case ratio of the straightforward extension of
the greedy algorithm cannot be lower bounded by any absolute constant. So, our algorithm
is the only algorithm with constant performance guarantee among those known for this
generalization.

Remark 3. It can be easily observed that from the very beginning (and with the same ulti-
mate result) we could consider objective functions of the following more general
form:

F(x) =
m∑

j=1

w j

(
1 −

∏
i∈Sj

(1 − xi)

)
+

l∑
t=1

ut

(
1 −

∏
i∈Rt

xi

)
,

where Sj and Rt are arbitrary subsets of {1, . . . , n}, and ut , w j are nonnegative weights.
The problem with such objective functions can be reformulated as the constrained MAX SAT

in which each clause either contains no negations or contains nothing but negations.

4. Hypergraph Max k-Cut with given sizes of parts

In this section we consider Hypergraph Max k-Cut with given sizes of parts or, for short, HYP

MAX k-CUT WITH GSP. An instance of HYP MAX k-CUT WITH GSP consists of a hypergraph
H = (V, E), nonnegative weights wS on its edges S, and k positive integers p1, . . . , pk such
that

∑k
i=1 pi = |V |. It is required to partition the vertex set V into k parts X1, X2, . . . , Xk ,

with each part Xi having size pi , so as to maximize the total weight of the edges of H ,
not lying entirely in any part of the partition (i.e., to maximize the total weight of S ∈ E
satisfying S �⊆ Xi for all i).

Several closely related versions of HYP MAX k-CUT WITH GSP were studied in the literature
but few results have been obtained. Andersson and Engebretsen (1998) presented an 0.72-
approximation algorithm for the ordinary HYP MAX CUT problem (i.e., for the version
without any restrictions on the sizes of parts). Arora et al. (1999) designed a PTAS for
dense instances of this problem or, more precisely, for the case when the hypergraph H is
restricted to have �(|V |d) edges, under the assumption that |S| ≤ d for each edge S and some
constant d . Another known special case of HYP MAX k-CUT WITH GSP is MAX BISECTION.
In this problem we should split a regular graph into two equal parts and maximize a total
weight of the cut between them. Frieze and Jerrum (1997) obtained 0.64-approximation
algorithm based on semidefinite programming relaxation.

PIPAGE ROUNDING 315

By applying the pipage rounding method, we prove that HYP MAX k-CUT WITH GSP

can be approximated within a factor of min{λ|S| : S ∈ E} of the optimum, where
λr = 1 − (1 − 1/r)r − (1/r)r . By direct calculations it easy to get some specific values of
λr : λ2 = 1/2 = 0.5, λ3 = 2/3 ≈ 0.666, λ4 = 87/128 ≈ 0.679, λ5 = 84/125 = 0.672,
λ6 ≈ 0.665 and so on. It is clear that λr tends to 1 − e−1 ≈ 0.632 as r → ∞. A bit less
trivial fact is that λr > 1 − e−1 for each r ≥ 3 (Lemma 2 in this paper). Summing up
we arrive at the following conclusion: our algorithm finds a feasible cut of weight within
a factor of 0.5 on general hypergraphs, i.e., in the case when each edge of the hypergraph
has size at least 2, and within a factor of 1 − e−1 ≈ 0.632 in the case when each edge has
size at least 3. Finally, we show that in the case of hypergraphs with each edge of size at
least 3 the bound of 1 − e−1 cannot be improved, unless P = NP.

It is easy to see that an instance of HYP MAX k-CUT WITH GSP can be equivalently
formulated as the following (nonlinear) integer program:

max F(x) =
∑
S∈E

wS

(
1 −

k∑
t=1

∏
i∈S

xit

)
(17)

s.t.
k∑

t=1

xit = 1 for all i, (18)

n∑
i=1

xit = pt for all t, (19)

xit ∈ {0, 1} for all i and t. (20)

The equivalence is shown by the one-to-one correspondence between optimal solutions to
the above program and optimal k-cuts {X1, . . . , Xk} of instance of HYP MAX k-CUT WITH

GSP defined by the relation “xit = 1 if and only if i ∈ Xt ”.
By defining U = {1, . . . , k} and W = {1, . . . , n} we can see that the problem (17)–(20)

is a special case of the general non-linear problem (2)–(4). As a nice relaxation we consider
the following linear program:

max
∑
S∈E

wSzS (21)

s.t. zS ≤ |S| −
∑
i∈S

xit for all S ∈ E, (22)

k∑
t=1

xit = 1 for all i, (23)

n∑
i=1

xit = pt for all t, (24)

0 ≤ xit ≤ 1 for all i and t, (25)

0 ≤ zS ≤ 1 for all S ∈ E . (26)

316 AGEEV AND SVIRIDENKO

It is easy to see that, given a feasible matrix x , the optimal values of zS in the above program
can be uniquely determined by simple formulas. Using this observation we can exclude the
variables zS and rewrite (21)–(26) in the following equivalent way:

max L(x) =
∑
S∈E

wS min

{
1, min

t

(
|S| −

∑
i∈S

xit

)}
(27)

subject to (23)–(25). Note that F(x) = L(x) for each x satisfying (18)–(20).
We claim that, for every feasible x and every cycle D in the graph Hx (for definitions,

see Section 2), the function ϕ(ε) = F(x(ε)) is a quadratic polynomial with a nonnegative
leading coefficient. Indeed, observe that each product

∏
i∈S xit (ε) contains at most two

modified variables. Assume that a product
∏

i∈S xit (ε) contains exactly two such variables
xi1t (ε) and xi2t (ε). Then they can have only one of the following forms: either xi1t + ε and
xi2t − ε or xi1t − ε and xi2t + ε, respectively. In either case ε2 has a nonnegative coefficient
in the term corresponding to the product. This proves that the ε-convexity condition does
hold.

For any r ≥ 1, set λr = 1 − (1 − 1/r)r − (1/r)r .

Lemma 1. Let x = (xit) be a feasible solution to (27), (23)–(25) and S ∈ E. Then

(
1 −

k∑
t=1

∏
i∈S

xit

)
≥ λ|S| min

{
1, min

t

(
|S| −

∑
i∈S

xit

)}
.

Proof: Let zS = min{1, mint (|S| − ∑
i∈S xit)}. Define qS and t ′ by the equalities

qS = max
t

∑
i∈S

xit =
∑
i∈S

xit ′ .

Note that

zS = min{1, |S| − qS}. (28)

Using the arithmetic-geometric mean inequality and the fact that

k∑
t=1

∑
i∈S

xit = |S|

PIPAGE ROUNDING 317

we obtain that

1 −
k∑

t=1

∏
i∈S

xit = 1 −
∏
i∈S

xit ′ −
∑
t �=t ′

∏
i∈S

xit

≥ 1 −
(∑

i∈S xit ′

|S|
)|S|

−
∑
t �=t ′

(∑
i∈S xit

|S|
)|S|

≥ 1 −
(

qS

|S|
)|S|

−
(∑

t �=t ′
∑

i∈S xit

|S|
)|S|

= 1 −
(

qS

|S|
)|S|

−
(|S| − ∑

i∈S xit ′

|S|
)|S|

= 1 −
(

qS

|S|
)|S|

−
(

1 − qS

|S|
)|S|

. (29)

Let

ψ(y) = 1 −
(

1 − y

|S|
)|S|

−
(

y

|S|
)|S|

.

Case 1. |S| − 1 ≤ qS ≤ |S|. Then by (28), zS = |S| − qS , and hence by (29),

1 −
k∑

t=1

∏
i∈S

xit ≥ 1 −
(

1 − zS

|S|
)|S|

−
(

zS

|S|
)|S|

= ψ(zS).

Since the function ψ is concave and ψ(0) = 0, ψ(1) = λ|S|, it follows that

1 −
k∑

t=1

∏
i∈S

xit ≥ λ|S|zS.

Case 2. 1 ≤ qS ≤ |S| − 1. Here zS = 1. Since ψ(y) is concave and ψ(1) = ψ(|S| − 1) =
λ|S|,

1 −
k∑

t=1

∏
i∈S

xit ≥ λ|S|.

Case 3. 0 ≤ qS ≤ 1. Again, zS = 1. For every t , set µt = ∑
i∈S xit . Note that, by the

assumption of the case,

0 ≤ µt ≤ 1, (30)

318 AGEEV AND SVIRIDENKO

and, moreover,

k∑
t=1

µt = |S|. (31)

By the arithmetic-geometric mean inequality it follows that

k∑
t=1

∏
i∈S

xit ≤
k∑

t=1

(
µt

|S|
)|S|

(by (30)) ≤ |S|−|S|
k∑

t=1

µt

(by (31)) = |S|−|S||S|.

Consequently,

1 −
k∑

t=1

∏
i∈S

xit ≥ 1 − |S|
(

1

|S|
)|S|

= 1 −
(

1

|S|
)|S|

− (|S| − 1)

(
1

|S|
)|S|

≥ 1 −
(

1

|S|
)|S|

− (|S| − 1)|S|
(

1

|S|
)|S|

= λ|S|. �

Corollary 1. Let x = (xit) be a feasible solution to (27), (23)–(25). Then

F(x) ≥
(

min
S∈E

λ|S|
)

L(x).

The corollary states that the F/L lower bound condition holds with

C = min
S∈E

λ|S|.

Hence the pipage rounding provides an algorithm that finds a feasible k-cut whose weight
is within a factor of minS∈E λ|S| of the optimum.

Note that λ2 = 1/2. We now establish a lower bound on λr for all r ≥ 3.

Lemma 2. For any r ≥ 3,

λr > 1 − e−1.

PIPAGE ROUNDING 319

Proof: We first deduce it from the following stronger inequality:

(
1 − 1

r

)r

< e−1

(
1 − 1

2r

)
for all r ≥ 1. (32)

Indeed, for any r ≥ 3,

λr = 1 − 1

rr
−

(
1 − 1

r

)r

> 1 − 1

rr
− e−1

(
1 − 1

2r

)

= 1 − e−1 + 1

r

(
e−1

2
− 1

rr−1

)
> 1 − e−1.

To prove (32), by taking natural logarithm of both sides of (32) rewrite it in the following
equivalent form:

1 + r ln

(
1 − 1

r

)
< ln

(
1 − 1

2r

)
for all r ≥ 1.

Using the Taylor series expansion

ln(1 − σ) = −
∞∑

i=1

σ i

i

we obtain that for each r = 1, 2, . . . ,

1 + r ln

(
1 − 1

r

)
= 1 + r

(
−1

r
− 1

2r2
− 1

3r3
− · · ·

)

= − 1

2r
− 1

3r2
− 1

4r3
. . .

< − 1

2r
− 1

2(2r)2
− 1

3(2r)3
. . .

= ln

(
1 − 1

2r

)
,

as required. �

We now show that in the case of r -uniform hypergraphs the integrality gap for the
relaxation (21)–(26) can be arbitrarily close to λr . It follows that no other rounding of this
relaxation can provide an algorithm with a better performance guarantee.

320 AGEEV AND SVIRIDENKO

Indeed, consider the following instance: the complete r -uniform hypergraph on n = rq
vertices, k = 2, wS = 1 for all S ∈ E , p1 = q and p2 = n − q. It is clear that any feasible
cut in this hypergraph has weight

Cr
n − Cr

q − Cr
n−q .

Consider the feasible solution to (23)–(26) in which

xi1 = 1/r and xi2 = 1 − 1/r for each i.

The weight of this solution is equal to Cr
n , since for each edge S we have

r −
∑
i∈S

xi1 ≥ r −
∑
i∈S

xi2 = 1

and therefore zS = 1 for all S ∈ E . Thus the integrality gap for this instance is at most

Cr
n − Cr

q − Cr
n−q

Cr
n

= 1 − q!(n − r)!

(q − r)!n!
− (n − q)!(n − r)!

(n − q − r)!n!

≤ 1 − q!

(q − r)!nr
− (n − q)!

(n − q − r)!nr

≤ 1 − (q − r)r

nr
− (n − q − r)r

nr

= 1 −
(

1

r
− 1

q

)r

−
(

1 − 1

r
− 1

q

)r

,

which tends to λr as q → ∞.
We conclude the paper with a proof that the performance bound of 1−e−1, our algorithm

provides on hypergraphs with each edge of size at least 3, cannot be improved, unless
P = NP.

In the Maximum Coverage problem (MAXIMUM COVERAGE for short), given a family
F = {Sj : j ∈ J } of subsets of a set I = {1, . . . , n} with associated nonnegative weights
w j and a positive integer p, it is required to find a subset X ⊆ I (called coverage) with
|X | = p so as to maximize the total weight of the sets in F having nonempty intersections
with X . It is well known that a simple greedy algorithm solves MAXIMUM COVERAGE

approximately within a factor of 1 − e−1 of the optimum (Cornuejols et al., 1977). Feige
(1998) proved that no polynomial algorithm can have better performance guarantee, unless
P = NP.

Our proof consists in constructing an approximation preserving reduction from MAXIMUM

COVERAGE to HYP MAX k-CUT WITH GSP. Let a set I , a collection S1, . . . , Sm ⊆ I , nonneg-
ative weights (w j), and a positive number p form an instance A of MAXIMUM COVERAGE.
Construct an instance B of HYP MAX k-CUT WITH GSP as follows: I ′ = I ∪ {u1, . . . , um}
(assuming that I ∩ {u1, . . . , um} = ∅), (S′

1 = S1 ∪ {u1}, . . . , S′
m = Sm ∪ {um}), the same

PIPAGE ROUNDING 321

weights w j , and p1 = p, p2 = |I ′|− p. Let (X, I ′ \ X) be a maximum weight cut in B with
the sizes of parts p1 and p2. It is clear that its weight is at least the weight of a maximum
coverage in A. Thus it remains to transform (X, I ′ \ X) into a coverage of A with the same
weight. If X ⊆ I , we are done. Assume that X contains u j for some j . Then successively,
for each such j , replace u j in X by an arbitrary element in Sj that is not a member of X , or
if Sj ⊆ X , by an arbitrary element of I that is not a member of X . After this transformation
and after possibly including a few more elements from I to get exactly p elements, we
arrive at a coverage Y ⊆ I in A whose weight is at least the weight of the cut (X, I ′ \ X)
in.

5. Maximum coverage with knapsack constraint

In this section we show that the pipage rounding in conjunction with the partial enumeration
method by Sahni (1975) can produce good constant-factor approximations even in the case
of a knapsack constraint.

The maximum coverage problem with a knapsack constraint (MCKP) is, given a family
F = {Sj : j ∈ J } of subsets of a set I = {1, . . . , n} with associated nonnegative weights
w j and costs c j , and a positive integer B, to find a subset X ⊆ I with

∑
j∈X c j ≤ B so as to

maximize the total weight of the sets in F having nonempty intersections with X . MCKP
includes both MAXIMUM COVERAGE and the knapsack problem as special cases. Wolsey
(1982) appears to be the first who succeeded in constructing a constant-factor approxima-
tion algorithm for MCKP even in a more general setting with an arbitrary nondecreasing
submodular objective function. His algorithm is of greedy type and has performance guar-
antee of 1 − e−β ≈ 0.35 where β is the root of the equation eβ = 2 − β. Recently, Khuller
et al. (1999) have designed a (1 − e−1)-approximation algorithm for MCKP by combin-
ing the partial enumeration method of Sahni for the knapsack problem (Sahni, 1975) with
a simple greedy procedure. In this section we present an 1 − (1 − 1/k)k-approximation
algorithm for MCKP where k is the maximum size of sets in the instance. Our algorithm
exploits the same idea of partial enumeration but instead of finding a greedy solution, solves
a linear relaxation and then rounds the fractional solution by a bit more general “pipage”
procedure.

Generalizing (11)–(15) rewrite MCKP as the following integer program:

max
m∑

j=1

w j z j (33)

s.t.
∑
i∈Sj

xi ≥ z j , j ∈ J, (34)

n∑
i=1

ci xi ≤ B, (35)

0 ≤ xi , z j ≤ 1, i ∈ I, j ∈ J (36)

xi ∈ {0, 1}, i ∈ I. (37)

322 AGEEV AND SVIRIDENKO

Note that one can exclude variables z j by rewriting (33)–(37) as the following equivalent
nonlinear program:

max F(x) =
m∑

j=1

w j

(
1 −

∏
i∈Sj

(1 − xi)

)
(38)

subject to (35)–(37).
Set k = max{|Sj | : j ∈ J }. Denote by IP[I0, I1] and LP[I0, I1] the integer program (33)–

(37) and its linear relaxation (33)–(36) respectively, subject to the additional constraints:
xi = 0 for i ∈ I0 and xi = 1 for i ∈ I1 where I0 and I1 are disjoint subsets of I . By a
solution to IP[I0, I1] and LP[I0, I1] we shall mean only a vector x , since the optimal values
of z j are trivially computed if x is fixed.

We first describe an auxiliary algorithm A which finds a feasible solution xA to the linear
program LP[I0, I1]. The algorithm is divided into two phases. The first phase consists in
finding an optimal solution x L P to LP(I0, I1) by application one of the known polynomial-
time algorithms. The second phase ofA transforms x L P into xA through a series of “pipage”
steps. We now describe the general step. Set xA ← x L P . If at most one component of xA

is fractional, stop. Otherwise, choose two indices i ′ and i ′′ such that 0 < xA
i ′ < 1 and

0 < xA
i ′′ < 1. Set xA

i ′ (ε) ← xA
i ′ + ε, xA

i ′′ (ε) ← xA
i ′′ − εci ′/ci ′′ and xA

k (ε) ← xA
k for all

k �= i ′, i ′′. Find an endpoint ε∗ of the interval

[
− min

{
xi ′ , (1 − xi ′′)

ci ′′

ci ′

}
, min

{
1 − xi ′ , xi ′′

ci ′′

ci ′

}]
.

such that F(x(ε∗)) ≥ F(xA). Set xA ← x(ε∗). Go to the next step.
The correctness of the second phase follows from the fact that the vector x(ε) is feasible

for each ε in the above interval, and from the earlier observation (see Section 3) that the
function F(x(ε)) is convex.

Each “pipage” step of the second phase ofA reduces the number of fractional components
of the current vector xA at least by one. So, finally, A outputs an “almost integral” feasible
vector xA having at most one fractional component.

By construction, F(xA) ≥ F(x L P). By (16), it follows that

F(xA) ≥ F(x L P)

≥
∑
j∈J1

w j + (1 − (1 − 1/k)k)
∑

j∈J\J1

w j min

{
1,

∑
i∈Sj

x L P
i

}
(39)

where and henceforth J1 = { j : Sj ∩ I1 �= ∅}.
We now present a description of the whole algorithm.

Input: An instance of the integer program (33)–(37);
Output: A feasible solution x̄ to the instance;

PIPAGE ROUNDING 323

Among all feasible solutions x to the instance satisfying
∑

i∈I xi ≤ 3, by complete enu-
meration find a solution x0 of maximum weight;

x̄ ← x0;
for all I1 ⊂ I such that |I1| = 4 and

∑
i∈I1

ci ≤ B do
begin

I0 ← ∅;
t ← 0;
while t = 0 do

begin
apply A to LP[I0, I1];
if all xA

i are integral
then begin t ← 1; x̂ ← xA end
otherwise

begin
find i ′ such that xA

i ′ is fractional;
x̂i ′ ← 0;
for all i �= i ′ do x̂i ← xA

i ;
I0 ← I0 ∪ {i ′}

end
if F(x̂) > F(x̄) then x̄ ← x̂

end
end

We now prove that the performance guarantee of the described algorithm is indeed (1 −
(1 − 1/k)k .

Let X∗ be an optimal set of the given instance of MCKP. Denote by x∗ the incidence
vector of X∗. Recall that x∗ is an optimal solution to the equivalent nonlinear program (38),
(35)–(37). If |X∗| ≤ 3, then the output of the algorithm is an optimal solution. So we may
assume that |X∗| ≥ 4. W.l.o.g. we may also assume that the set I is ordered in such a way
that X∗ = {1, . . . , |X∗|} and for each i ∈ X∗, the element i covers the sets in F not covered
by the elements 1, . . . , i − 1 of the maximum total weight among j ∈ X∗ \ {1, . . . , i − 1}.

Consider now that iteration of the algorithm at which I1 = {1, 2, 3, 4}. At this iteration
the algorithm runs through q steps, q ≤ n − 4. At step t it calls the algorithm A to find
an“almost integral” feasible solution xt = xA to IP[I t

0, I1] where I t
0 = {i1, . . . , it−1}. If all

components of xt are integral then t = q and the iteration ends up. Otherwise the vector xt

is replaced by the integral vector x̂ t which coincides with xt in its integral components and
equals zero in its single fractional component indexed by it . If the weight of x̂ t exceeds that
of the record solution, the latter is updated. Then the algorithm sets I t+1

0 = I t
0 ∪ {it } and

goes to the next step. Thus at the iteration the algorithm finds a series of feasible integral
solutions x̂1, . . . , x̂q to (38), (35)–(37) or, equivalently, subsets X̂1, . . . , X̂q ⊆ I satisfying
X̂t ⊇ I1 and X̂t ∩ I t

0 = ∅ where I t
0 = {i1, . . . , it−1}, t = 1, . . . , q.

Assume first that X∗ ∩ I q
0 = ∅. Then x∗ is an optimal solution to IP[I q

0 , I1]. Recall that
x̂q = xq and the latter is obtained from the optimal solution to LP[I q

0 , I1] by the “pipage”
process. By (39) it follows that the solution x̂q , being not better than the output solution,

324 AGEEV AND SVIRIDENKO

has weight within a factor of (1 − (1 − 1/k)k) of the optimum. Thus, in this case we are
done.

Assume now that X∗ ∩ I q
0 �= ∅ and let I s+1

0 be the first set in the series I 1
0 = ∅, . . . , I q

0 ,
having nonempty intersection with X∗. In other words, is is the first index in the series
i1, . . . , iq−1 lying in X∗. We claim then that

F(x̂ s) ≥ (1 − (1 − 1/k)k)F(x∗). (40)

Since the weight of x̂ s does not exceed the weight of the output vector of the algorithm this
would prove that (1 − (1 − 1/k)k) is the performance guarantee of the algorithm.

In the following argument for brevity we shall use alternately the sets and their incidence
vectors as the arguments of F .

Indeed, the function F can be also treated as the set function F(X) defined on all subsets
X ⊆ I . It is well known that F(X) is submodular and, consequently, have the property
that

F(X ∪ {i}) − F(X) ≥ F(X ∪ Y ∪ {i}) − F(X ∪ Y), (41)

for all X, Y ⊆ I and i ∈ I . Let i ∈ I and Y ⊇ I1. Then

1/4F(I1) = 1/4F({1, 2, 3, 4}) = 1/4(F({1, 2, 3, 4}) − F({1, 2, 3})
+ F({1, 2, 3}) − F({1, 2})
+ F({1, 2}) − F({1})
+ F({1}) − F(∅))

(by the choice of I1)

≥ 1/4(F({1, 2, 3, i}) − F({1, 2, 3})
+ F({1, 2, i}) − F({1, 2})
+ F({1, i}) − F({1})
+ F({i}) − F(∅))

(by (41))

≥ (
F(Y ∪ {i}) − F(Y)

)
.

Thus, we have proved that for any Y ⊇ I1 and any i ∈ I ,

1/4F(I1) ≥ F(Y ∪ {i}) − F(Y). (42)

Recall that the integral vector x̂ s is obtained from an “almost integral” vector xs returned
by the algorithm A, by the replacement with zero its single fractional component xs

is
. It

follows that

F(X̂s ∪ {is}) ≥ F(xs). (43)

PIPAGE ROUNDING 325

Let x L P , zL P denote an optimal solution to LP[I s
0 , I1]. Using (37), (42) and (43) we finally

obtain

F(x̂ s) = F(X̂s)

= F(X̂s ∪ {is}) − (F(X̂s ∪ {is}) − F(X̂s))

(by (42))

≥ F(X̂s ∪ {is}) − 1/4F(I1)

(by (43))

≥ F(xs) − 1/4F(I1)

=
∑
j∈J1

w j +
∑

j∈J\J1

w j

(
1 −

∏
i∈Sj

(
1 − xs

i

)) − 1/4
∑
j∈J1

w j

(by (39))

≥ 3/4
∑
j∈J1

w j + (1 − (1 − 1/k)k)
∑

j∈J\J1

w j min

{
1,

∑
i∈Sj

xLP
i

}

≥ (1 − (1 − 1/k)k)

(∑
j∈J1

w j +
∑

j∈J\J1

w j min

{
1,

∑
i∈Sj

xLP
i

})

(by the choice of s)

≥ (1 − (1 − 1/k)k)

(∑
j∈J1

w j +
∑

j∈J\J1

w j min

{
1,

∑
i∈Sj

x∗
i

})

= (1 − (1 − 1/k)k)F(x∗).

6. Scheduling unrelated parallel machines with prescribed numbers
of jobs to be processed on each machine

We consider the problem of scheduling unrelated parallel machines with the total weighted
completion time as the objective function and bounded numbers of jobs to be processed on
each machine. An instance of the problem consists of a set J = {J1, . . . , Jn} of n jobs and
a set M = {M1 . . . , Mm} of m machines, positive integers pi j , Ri , and rational weights w j

for all Mi ∈ M, Jj ∈ J . Each positive integer pi j is a processing requirement associated
with the job Jj and depending on the machine Mi . Each job Jj must be processed without
interruption for the respective amount of time on one of the m machines. Every machine
can process at most one job at a time. The machine Mi can process at most Ri jobs, i. e., in
any feasible schedule at most Ri jobs must be assigned to the machine Mi (the cardinality
constraints). We denote the completion time of the job Jj in a feasible schedule by C j .
The objective is to find a feasible schedule that minimizes

∑
J j ∈J w j C j where w j ≥ 0 is a

weight associated with each job Jj .

326 AGEEV AND SVIRIDENKO

Polynomial algorithms for some special cases of the problem with general Ri were de-
veloped by Granot et al. (1997). For the problem of scheduling unrelated parallel machines
in the absence of cardinality constraints (or when all Ri = n) Skutella (1998, 1999) and
Sethuraman and Squillante (1999) independently suggested a convex programming relax-
ation that leads to a 3/2-approximation algorithm. In the following by using essentially
the same convex relaxation in conjunction with the pipage rounding we obtain an approx-
imation algorithm with the same performance guarantee for the problem with cardinality
constraints.

Notice that the problem can be reformulated as an assignment problem of jobs to machines
since for a given assignment of jobs to machines the sequencing of the assigned jobs can
be done optimally on each machine Mi by applying the classical Smith’s ratio rule (1956):
schedule the jobs in order of nonincreasing ratios w j/pi j . For each machine Mi , define the
corresponding total order ≺i on the set of jobs by setting Jj ≺i Jk if either w j/pi j > wk/pik

or w j/pi j = wk/pik and j < k. Now the problem can be further reformulated as an integer
quadratic program in nm assignment variables:

min
∑
J j ∈J

w j C j (44)

s.t. C j =
∑

Mi ∈M
xi j

(
pi j +

∑
k≺i j

xik pik

)
, Jj ∈ J , (45)

∑
Mi ∈M

xi j = 1, Jj ∈ J , (46)

∑
J j ∈J

xi j ≤ Ri , Mi ∈ M, (47)

xi j ∈ {0, 1}, Jj ∈ J , Mi ∈ M, (48)

where xi j = 1 means that job Jj is processed on the machine Mi . Plugging constraints (45)
into the objective function we obtain the following quadratic integer problem:

min F(x) = cT x + 1

2
xT Dx (49)

s.t.
∑

Mi ∈M
xi j = 1, Jj ∈ J , (50)

∑
J j ∈J

xi j ≤ Ri , Mi ∈ M, (51)

xi j ∈ {0, 1}, Jj ∈ J , Mi ∈ M, (52)

where x is a vector of length mn consisting of all variables xi j lexicographically ordered
with respect to the order 1, . . . , m of the machines and then, for each machine Mi , the jobs
ordered according to ≺i . The vector c ∈ Rmn is given by ci j = w j pi j and D = (d(i j)(hk)) is

PIPAGE ROUNDING 327

a symmetric mn × mn matrix given by

d(i j)(hk) =

0 if i �= h or j = k,

w j pik if i = h and k ≺i j,

wk pi j if i = h and j ≺i k.

Observe that the function F(x) satisfies the ε-concavity condition. Indeed, fix any feasible
fractional solution to the program (49)–(52) and any path or cycle R in the graph Hx obtained
by substituting U = J and W = M. The function ϕ(ε, x, R) is concave since for any
machine Mi ∈ M = W there are at most two edges in R incindent to Mi and if there are
exactly two such edges in R then one edge is decreased by ε and another is increased by the
same amount. Since d(i j)(hk) is positive only if i = h (i.e. xi j (ε, R)xhk(ε, R) is multiplied
by a positive number only if i = h) the function ϕ(ε, x, R) is a quadratic polynomial with
nonpositive main coefficient.

Skutella (1998, 1999) observed that for any binary vector x ∈ {0, 1}mn , the linear form cT x
can be rewritten as xT diag(c)x where diag(c) denotes the diagonal matrix whose diagonal
entries coincide with the entries of the vector c. It follows that the following nonlinear
program is a relaxation of the problem (49)–(52):

min Z (53)

s.t. Z ≥ 1

2
cT x + 1

2
xT (D + diag(c))x, (54)

Z ≥ cT x, (55)∑
Mi ∈M

xi j = 1, Jj ∈ J , (56)

∑
J j ∈J

xi j ≤ Ri , Mi ∈ M, (57)

0 ≤ xi j ≤ 1, Jj ∈ J , Mi ∈ M. (58)

Skutella shows (Lemma 2.4, Skutella, 1999) that the matrix D + diag(c) is positive
semidefinitive. Therefore (53)–(58) is a convex program and can be solved within an addi-
tive error ε in polynomial time (Grötschel et al., 1988) (notice that the running time of this
algorithm is polynomial on log 1

ε
). The objective function (53) can be replaced by

L(x) = max

{
cT x,

1

2
cT x + 1

2
xT (D + diag(c))x

}
.

We consider the problem of minimizing L(x) subject to (56)–(58) as a nice relaxation.
To get a 3/2-approximation using the pipage rounding we only need to show that F(x) ≤

3/2L(x) for all feasible vectors x . Indeed,

F(x) = cT x + 1

2
xT Dx ≤ 1

2
cT x + 1

2
cT x + 1

2
xT (D + diag(c))x ≤ 3

2
L(x).

328 AGEEV AND SVIRIDENKO

Acknowledgment

Supported by the Russian Foundation for Basic Research, project codes 01-01-00786, 02-
01-01153, by INTAS, project code 00-217, and by the Programme “Universities of Russia”,
project code UR.04.01.012.

References

A.A. Ageev and M.I. Sviridenko, “Approximation algorithms for maximum coverage and Max Cut with given
sizes of parts,” Lecture Notes in Computer Science (Proceedings of IPCO’99), vol. 1610, pp. 17–30, 1999.

A.A. Ageev and M.I. Sviridenko, “An approximation algorithm for Hypergraph Max k-Cut with given sizes of
parts,” Lecture Notes in Computer Science (Proceedings of ESA’2000), vol. 1879, pp. 32–41, 2000.

G. Andersson, “An approximation algorithm for Max p-Section,” Lecture Notes in Computer Science (Proceedings
of STACS’99), vol. 1563, pp. 237–247, 1999.

G. Andersson and L. Engebretsen, “Better approximation algorithms for Set splitting and Not-All-Equal SAT,”
Inform. Process. Letters, vol. 65, pp. 305–311, 1998.

S. Arora, D. Karger, and M. Karpinski, “Polynomial time approximation schemes for dense instances of NP-hard
problems,” Journal of Computer and System Science, vol. 58, pp. 193–210, 1999.

R. Bar-Yehuda and S. Even, “A linear-time approximation algorithm for the weighted vertex cover problem,” J.
Algorithms, vol. 2, pp. 198–203, 1981.

G. Cornuejols, M.L. Fisher, and G.L. Nemhauser, “Location of bank accounts to optimize float: An analytic study
exact and approximate algorithms,” Management Science, vol. 23, pp. 789–810, 1977.

G. Cornuejols, G.L. Nemhauser, and L.A. Wolsey, “Worst-case and probabilistic analysis of algorithms for a
location problem,” Operations Research, vol. 28, pp. 847–858, 1980.

U. Feige, “A threshold of ln n for approximating set cover,” J. of ACM., vol. 45, pp. 634–652, 1998.
A. Frieze and M. Jerrum, “Improved approximation algorithms for MAX k-CUT and MAX BISECTION,” Algo-

rithmica, vol. 18, pp. 67–81, 1997.
M. Grötschel, L. Lovasz, and A. Schrijver, “Geometric algorithms and combinatorial optimization, ser,” Algorithms

and Combinatorics, vol. 2, Springer-Verlag, 1988.
F. Granot, J. Skorin-Kapov, and A. Tamir, “Using quadratic programming to solve high multiplicity scheduling

problems on parallel machines,” Algorithmica, vol. 17, pp. 100–110, 1997.
M.X. Goemans and D.P. Williamson, “New 3/4-approximation algorithms for MAX SAT,” SIAM J. Discrete Math.,

vol. 7, pp. 656–666, 1994.
D.S. Hochbaum, “Approximation algorithms for the set covering and vertex cover problems,” SIAM J. on Com-

puting, vol. 11, pp. 555–556, 1982.
D.S. Hochbaum, “Approximating covering and packing problems: Set Cover, Vertex Cover, Independent Set, and

related problems,” in Approximation algorithms for NP-hard problems, D.S. Hochbaum (Ed.), PWS Publishing
Company: New York, 1997, pp. 94–143.

S. Khuller, A. Moss, and J. Naor, “The budgeted maximum coverage problem,” Information Processing Letters,
vol. 70, pp. 39–45, 1999.

S. Sahni, “Approximate algorithms for the 0–1 knapsack problem,” J. of ACM, vol. 22, pp. 115–124, 1975.
J. Sethuraman and M.S. Squillante, “Optimal scheduling of multiclass parallel machines,” in Proceedings of the

10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999, pp. 963–964.
M. Skutella, “Semidefinite relaxations for parallel machine scheduling,” in Proceedings of the 39th Annual IEEE

Symposium on Foundations of Computer Science, 1998, pp. 472–481.
M. Skutella, “Convex quadratic and semidefinite programming relaxations in scheduling,” J. of ACM, vol. 48,

pp. 206–242, 2001.
W.E. Smith, “Various optimizers for single-stage production,” Naval Research and Logistics Quarterly, vol. 3,

pp. 59–66, 1956.
L.A. Wolsey, “Maximizing real-valued submodular functions: Primal and dual heuristics for location problems,”

Math. Oper. Res., vol. 7, pp. 410–425, 1956.

