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1 Introduction

In these notes we summarize Cindy Zhang’s survey of Nathan Ross’ survey on the Fundamentals of
Stein’s Method with particular emphasis on the proof of the Central Limit Theorem. If you prefer
to be talked at, consider Fraser Daly’s video lectures. Throughout, let the Gaussian distribution
be

g(x) =
1√
2π
e−x

2/2. (1)

In 1972, Charles Stein, dissatisfied with the existing proof of the Central Limit Theorem, devised
an alternative. We discuss his method and compare it to the standard Fourier Analysis approach.
Central to this method is a characterization of the standard Gaussian random variable Z as one
which satisfies: Ef ′(Z) = EZf(Z) for all well-behaved functions f (bounded and smooth). Any
other random variable Y which approximately satisfies this identity is then close to Z in probability
metric. We consider the Central Limit Theorem (CLT) as shown in Theorem 1.

Theorem 1. (Central Limit Theorem). Let X1, ..., Xn be iid random variables with mean µ and
variance σ2. Define Sn = X1 + · · ·+Xn be their sum. Then

lim
n→∞

P

[
a <

Sn − nµ√
nσ2

< b

]
=

1√
2π

∫ b

a
e−x

2/2dx.

Recall its proof via Fourier Analysis. Use the notation from Theorem 1 and suppose for simplicity
that µ = 0 and σ = 1. Let the probability density function (pdf) of the Xis be f(x). Then the pdf
of Sn is the n-fold convolution of f i.e. f∗n(x). Further the pdf of Sn√

n
, the random variable that

we would like to show can be approximated by Z ∼ N (0, 1), has pdf fn(x) =
√
nf∗n(

√
nx) by a
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change of variables (see Lemma 9). Let F (s) = Ff(s) be the Fourier Transform of f . Note that

F

(
s√
n

)
=

∫ ∞
−∞

f(x)e−2πisx/
√
ndx

=

∫ ∞
−∞

f(x)

(
1− 2πisx√

n
− 2π2s2x2

n
+ o(1)

)
dx

=

∫ ∞
−∞

f(x)dx− 2πisx√
n

∫ ∞
−∞

xf(x)dx− 2π2s2

n

∫ ∞
−∞

x2f(x)dx+

∫ ∞
−∞

f(x)o(1)dx

≈ 1− 2π2s2

n

since f is the pdf of the Xis, E[Xi] = 0, and E[X2
i ] = 1. The Fourier Transform of fn(x) becomes(

F
√
nf∗n(

√
nx)
)

(s) =
√
nFn

(
s√
n

)
=

(
1− 2π2s2

n

)n
≈ e−2π2s2 =

1√
2π
g
( x

2π

)
by making the change of variables s = x

2π (see Lemma 10), which is exactly the Fourier Transform
of the Gaussian distribution. Thus, by applying the inverse Fourier Transform and taking the limit
as n→∞, the pdf fn(x) of Sn/

√
n tends to g(x).

To summarize, take the random variables X1, ..., Xn and analyze the pdf of their convolution. Since
they are independent, the Fourier Transform of their convolution is the product of their Fourier
Transforms . Observe that the Fourier Transform approximates the Gaussian so the original convo-
lution must also approximate the Gaussian. Instead, Stein’s approach characterizes the Gaussian
and then shows that the normalized sum has approximately the same properties as the Gaussian.

2 Notation

In order to precisely capture approximately the same, we require the ability to compare distances
between two probability distributions. Recall the definition of a probability metric for two
probability measures µ and ν on a family H of test functions,

dH(µ, ν) = sup
h∈H

∣∣∣∣∫ h(x)dµ(x)−
∫
h(x)dν(x)

∣∣∣∣ .
Typically the probability measures µ and ν are probability density functions for random variables Y
and Z respectively. Then dH(Y,Z) = suph∈H |Eh(Y )− Eh(Z)|. By considering particular families,
we can define particular metrics.

Definition 2. (Wasserstein metric). Let W be the collection of 1-Lipschitz functions and Y,Z be
two random variables. Then the — of Y and Z is

dW (Y,Z) = sup
h∈W
|Eh(Y )− Eh(Z)| .

Definition 3. (Kolmogorov-Smirnov metric). Let K be the set of indicator function {1≤x : x ∈ R}
Y,Z be two random variables. Then the — of Y and Z is defined as

dK(Y,Z) = sup
x∈R
|P[Y ≤ x]− P [Z ≤ x]| .
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In the case where Z ∼ N (0, 1) (and more generally when Z has bounded density in-terms of
Lebesgue measure) we have the following bound on the the Kolmogorov metric in-terms of the
Wasserstein metric.

Proposition 4. (Bounding the Kolmogorov metric). For random variable Z with Lesbesgue density
bounded by C and any other random variable Y ,

dK(Y, Z) ≤
√

2CdW (Y, Z).

Proof. Consider the indicator function hx(y) = 1y≤x and the “smoothed” function hx,ε(y) which is
1 when y ≤ x, 0 when y > x+ ε and linear in-between. Then

Ehx(Y )− Ehx(Z) = Ehx(Y )− Ehx,ε(Z) + Ehx,ε(Z)− Ehx(Z)

≤ Ehx,ε(Y )− Ehx,ε(Z) +
Cε

2

≤ dW (Y,Z)

ε
+
Cε

2

where the second line is because Ehx(Y ) ≤ Ehx,ε(Y ) and the expectation of the amount that hx,ε(Z)
exceeds Ehx(Z) is exactly Cε/2 (density of Z is bounded by C) and the third line is because hx,ε
is (1/ε)-Lipschitz. By plugging in ε =

√
2dW (Y, Z)/C, we obtain the desired inequality.

Note that C for Z ∼ N (0, 1) is 1/
√

2π.

3 Characterizing the Gaussian

We characterize the Gaussian by the following identity.

Lemma 5. (Stein’s identity). If Z ∼ N (0, 1), then Ef ′(Z) = EZf(Z) for all absolute continuous
functions f : R→ R with E|f ′(Z)| <∞.

Conversely, if Ef ′(Z) = EZf(Z) for all bounded, continuous, and piece-wise continuously differen-
tiable functions f with E|f ′(Z)| <∞, then Z ∼ N (0, 1).

Proof. The forward direction follows from the definition of Z ∼ N (0, 1). In particular,

EZf(Z) =
1√
2π

∫ ∞
−∞

zf(z)e−z
2/2dz

=
−f(z)√

2π
e−z

2/2
∣∣∣∞
−∞

+
1√
2π

∫ ∞
−∞

f ′(z)e−z
2/2dz

= Ef ′(Z)

where we integrate-by-parts on the second line and the third line follows since E[|f ′(Z)|] is bounded.
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In the reverse direction, we suppose that Ef ′(Z) = EZf(Z) for all bounded, continuous, and piece-
wise continuously differentiable functions f . Let Φ(z) = P(Z ≤ z) be the cumulative distribution
function (cdf) of Z and fix some z ∈ R. Pay particular attention to

f(y) =
√

2πey
2/2 min

x∈{y,z}
Φ(x)

(
1− max

x′∈{y,z}
Φ(x′)

)
. (2)

We will show that f exactly satisfies Stein’s Equation:

f ′(y)− yf(y) = 1y≤z − Φ(z).

Since f is a bounded, continuous, and piece-wise continuously differentiable function, the expecta-
tion of the LHS is zero by assumption. It follows that the expectation of the RHS is zero as well
so the cdf of Y approaches the cdf of the standard normal in the limit.

To see that f satisfies the above equation, solve the ODE for f as follows.(
f(y)e−y

2/2
)′

= e−y
2/2
(
f ′(y)− yf(y)

)
= e−y

2/2 (1y≤z − Φ(z))

f(y) = ey
2/2

∫ y

−∞
e−x

2/2 (1x≤z − Φ(z)) dx

= −ey2/2
∫ ∞
y

e−x
2/2 (1x≤z − Φ(z)) dx.

Using the last identity in the case where y > z, we obtain

f(y) = ey
2/2

∫ ∞
y

e−x
2/2Φ(z)dx =

√
2πey

2/2Φ(z) (1− Φ(y)) .

Using the penultimate identity when y ≤ z obtains the other result.

From this identity, if some random variable Y satisfies Ef ′(Y ) ≈ EY f(Y ), then we would expect
Y to be approximately Gaussian. More precisely, we would like to bound the probability metric of
Y and Z as

dH(Y,Z) = sup
h∈H
|Eh(Y )− Eh(Z)| ≤ sup

f∈F
|Ef ′(Y )− Y Ef(Y )| (3)

where the RHS tends to zero. To this end, define Stein’s equation:

f ′(y)− yf(y) = h(y)− Eh(Z). (4)

By taking expectations then the sup of both sides, we can recover the inequality of Equation 3. In
a typical Stein’s method use case, the function h is given by the probability metric and we want to
find the f which satisfies Stein’s equation.

4 Application: Proof of CLT

We can prove CLT using the above. See Ross [3] for details. Let X1, ..., Xn be independent mean
zero random variables with E|Xi|4 and EX2

i = 1. If Y = (
∑
Xi) /

√
n and Z ∼ N (0, 1), then

dW (Y,Z) ≤ sup
f∈F

∣∣E [f ′(Y )− Y f(Y )
]∣∣ ≤√ 2

πn2

∑
E|Xi|4 +

1

n3/2

∑
E|Xi|3.
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5 Variant: Method of Exchangeable Pairs

Instead we will show a proof of CLT via the method of exchangeable pairs. First, for an ordered
pair (Y, Y ′) of random variables , it is an exchangeable pair1 if (Y, Y ′) =d (Y ′, Y ). For some
0 < λ ≤ 1, an exchangeable pair (Y, Y ′) which satisfies E[Y ′|Y ] = (1− λ)Y is an λ-Stein pair. We
note the following properties of an λ-Stein pair.

Proposition 6. (Properties of λ-Stein Pairs). Let F : R2 → R be an anti-symmetric function2

and (Y, Y ′) be an λ-Stein pair with Var(Y ) = σ2, then

1. EF (Y, Y ′) = 0.

2. EY = 0 and E(Y ′ − Y )2 = 2λσ2.

Proof. The first item follows by exchangeability and anti-symmetry: EF (Y, Y ′) = EF (Y ′, Y ) =
−EF (Y, Y ′). The first equality of the second item follows by conditional expectations where

EY = EY ′ = EE[Y ′|Y ] = (1− λ)EY.

The second, also by conditional expectation and by explicitly computing E(Y ′ − Y )2.

E(Y ′ − Y )2 = E
[
(Y ′)2 + Y 2 − 2E

[
Y ′|Y

]
Y
]

= 2σ2 − 2(1− λ)σ2 = 2λσ2

since Y and Y ′ have the same distribution.

Note: the first property holds for general exchangeable pairs. From the second property we can get
a sense of the effect of λ on the Stein pair: the smaller the λ, the smaller the variance of Y ′ − Y .

If we can find a Y ′ such that (Y, Y ′) is an λ-Stein pair, then we can use it to bound dW (Y, Z).

Theorem 7. (Bounding Wasserstein metric using λ-Stein pairs). If (Y, Y ′) is an λ-Stein pair with
EY 2 = 1 and Z ∼ N (0, 1), then

dW (Y,Z) =

√
Var (E[(Y ′ − Y )2|Y ])

2πλ2
+

1

3λ
E|Y ′ − Y |3.

Proof. We want to rewrite EY f(Y ) in such a way so that it is evidently close to Ef ′(Y ). To this
end, suppose that f is bounded with bounded first derivative (by

√
2/π) and second derivative

(by 2). Let F (y) :=
∫ y
0 f(t)dt. By exchangeability, we have 0 = E[F (Y ′) − F (Y )]. By Taylor’s

expansion we can rewrite this as:

0 = E

[
(Y ′ − Y )f(Y ) +

(Y ′ − Y )2f ′(Y )

2
+

(Y ′ − Y )3f ′′(Y ∗)

6

]
1Being exchangeable pairs imples same distribution, but the converse is false. In-terms of the matrix of marginals

(which is square since the support of the two random variables are the same), Y and Y ′ are exchangeable implies
that the matrix is symmetric while Y and Y ′ have the same distribution only implies that the corresponding row and
column sums are equal.

2F is anti-symmetric if F (x, y) = −F (y, x).
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where Y ∗ is some quantity in the interval with endpoints Y and Y ′. Further, by the Stein pair
condition we have:

E[(Y ′ − Y )f(Y )] = E[f(Y )E[(Y ′ − Y )|Y ]] = −λE[Y f(Y )].

Combining the above, we have

E[Y f(Y )] = E

[
(Y ′ − Y )2f ′(Y )

2a
+

(Y ′ − Y )3f ′′(Y ∗)

6a

]
and

E[f ′(Y )− Y f(Y )] ≤ ‖f ′‖
∣∣∣∣1− E[(Y ′ − Y )2|Y ]

2λ

∣∣∣∣+ ‖f ′′‖E|Y ′ − Y |3

6λ

≤
√

Var (E[(Y ′ − Y )2|Y ])

2πλ2
+

1

3λ
E|Y ′ − Y |3

where we get the last inequality by applying Cauchy-Schwarz and plugging in all the bounds.

Next, to prove the central limit theorem, let X1, ..., Xn be independent with EX4
i < ∞, EXi =

0, Var(Xi) = 1, and Y = n−1/2
∑n

i=1Xi. Construct an exchangeable pair by picking an index
uniformly at random and replacing it with an independent copy i.e. let I be uniform on {1, ..., n}
and (X ′1, ..., X

′
n) an independent copy of (X1, ..., Xn), then define

Y ′ = Y − XI√
n

+
X ′I√
n
.

We show that (Y, Y ′) forms a (1/n)-Stein pair.

E[Y ′ − Y |Y ] =
1√
n

E[X ′I −XI |Y ] =
1

n

n∑
i=1

E[X ′i −Xi|Y ]√
n

= −Y
n
.

Apply Theorem 7 and bound 1√
2πλ

Var
(
E
[
(Y ′ − Y )2|Y

])
and 1

3λE|Y ′ − Y |3. For the first term,

E[(Y ′ − Y )2|Y ] =
1

n
E[(XI −X ′I)2|XI ] =

1

n2

n∑
i=1

E[(Xi −X ′i)2|Xi] =
1

n2

n∑
i=1

(
1 +X2

i

)
With the variance and adding in the coefficients,

1√
2πλ

√
Var (E [(Y ′ − Y )2|Y ]) ≤ n√

2π

√√√√ 1

n4

n∑
i=1

EX4
i =

√√√√ 1

2πn2

n∑
i=1

EX4
i

Further, for the second term in Theorem 7, we have

1

3λ
E|Y ′ − Y |3 =

n

3n3/2
E|XI −X ′I |3 =

1

3n3/2

n∑
i=1

E|Xi −X ′i|3 ≤
8

3n3/2

n∑
i=1

E|Xi|3

Together, the Wasserstein metric — and thus the Kolmogorov metric — is bounded by

dW (Y, Z) ≤

√√√√ 1

2πn2

n∑
i=1

EX4
i +

8

3n3/2

n∑
i=1

E|Xi|3.

The RHS tends to zero at a rate of n−1/2 since EX4
i <∞ and thus E|Xi|3 <∞.
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6 Conclusion

The same method can be used to show convergence to other distributions: Poisson, multi-variate
normal, gamma, beta, etc. See this talk at MIT by Gesine Reinert. The standard monograph for
this topic is the one by Diaconis and Holmes [2]. The standard textbook is the one by Barbour
and Chen [1].
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A Appendix

The following are some useful properties of the Gaussian distribution and Fourier Transforms.

Lemma 8. (Gaussian pdf is normalized). For g(x) from Equation 1,
∫∞
−∞ g(x)dx = 1.

Proof. Instead of integrating g(x) directly, we will instead consider

I =

∫ ∞
−∞

e−ax
2
dx

for any constant a. In particular we compute I2 using polar coordinates.

I2 =

(∫ ∞
−∞

e−ax
2
dx

)
·
(∫ ∞
−∞

e−ay
2
dy

)
=

∫ ∞
−∞

∫ ∞
−∞

e−a(x
2+y2)dxdy

=

∫ 2π

0

∫ ∞
0

re−ar
2
drdθ =

∫ 2π

0

dθ

2a
=
π

a
.

Note that dxdy = rdrdθ since we take into account the determinant of the Jacobian when trans-
forming from the (x, y) regime into the (r, θ) regime. By plugging in a = 1/2, we see that the
normalization factor of I is exactly 1√

2π
.

Lemma 9. (Fourier Transform under similarity). For any function f in L1(R) and constant a > 0,
f(x) is to Ff(s) as f(ax) is to (1/a)Ff(s/a).
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Proof. Make a change of variables u = ax in the definition of the Fourier Transform to obtain:

(Ff(ax)) (s) =

∫ ∞
−∞

f(ax)e−2πisxdx

=
1

a

∫ ∞
−∞

f(u)e−2πi
s
a
udu

=
1

a
Ff
(s
a

)
Lemma 10. (Fourier Transform of the Gaussian). Let g(x) be as shown in Equation 1. Then
Fg(s) = 1√

2π
g
(
s
2π

)
.

Proof. By definition, the Fourier Transform of g(x) is

Fg(s) =
1√
2π

∫ ∞
−∞

e−x
2/2e−2πixsdx

Applying derivatives to both sides, we see that

dFg(s)

ds
=

1√
2π

∫ ∞
−∞

e−x
2/2de

−2πixs

ds
dx

=
1√
2π

∫ ∞
−∞
−2πixe−x

2/2e−2πixsdx.

Integrating by parts where
∫
u′v = uv −

∫
uv′ with u = e−x

2/2 and v = 2πie−2πixs, we see that

F ′g(s) =
1√
2π

(
2πie−x

2/2e2πisx
∣∣
x∈R −

∫ ∞
−∞

4π2se−x
2/2e−2πixsdx

)
= −4π2sFg(s).

Solving this ODE, we see that Fg(s) = e−2π
2s2Fg(0) = e−2π

2s2 = 1√
2π
g
(
s
2π

)
.
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