
ar
X

iv
:1

00
8.

05
30

v1
 [

cs
.G

T
]

 3
 A

ug
 2

01
0

Strategy iteration is strongly polynomial for 2-player

turn-based stochastic games with a constant discount factor

Thomas Dueholm Hansen
∗

Peter Bro Miltersen
∗

Uri Zwick
†

Abstract

Ye showed recently that the simplex method with Dantzig pivoting rule, as well as Howard’s policy

iteration algorithm, solve discounted Markov decision processes (MDPs), with a constant discount

factor, in strongly polynomial time. More precisely, Ye showed that both algorithms terminate

after at most O
(

mn

1−γ
log

(

n

1−γ

))

iterations, where n is the number of states, m is the total number of

actions in the MDP, and 0 < γ < 1 is the discount factor. We improve Ye’s analysis in two respects.

First, we improve the bound given by Ye and show that Howard’s policy iteration algorithm actually

terminates after at most O
(

m

1−γ
log

(

n

1−γ

))

iterations. Second, and more importantly, we show that

the same bound applies to the number of iterations performed by the strategy iteration (or strategy

improvement) algorithm, a generalization of Howard’s policy iteration algorithm used for solving

2-player turn-based stochastic games with discounted zero-sum rewards. This provides the first

strongly polynomial algorithm for solving these games, resolving a long standing open problem.

∗Department of Computer Science, Aarhus University, Denmark. E-mail: {tdh,bromille}@cs.au.dk. Supported by
the Center for Algorithmic Game Theory, funded by the Carlsberg Foundation.

†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: zwick@tau.ac.il. Supported by
grant 1306/08 of the Israeli Science Foundation.

http://arxiv.org/abs/1008.0530v1

1 Introduction

Markov Decision Processes (MDPs) are widely used in operations research, machine learning and
related disciplines, to model long-term sequential decision making in uncertain, i.e., stochastic, envi-
ronments. Stochastic Games (SGs), a generalization of MDPs to a 2-player setting, are widely used
to model long-term sequential decision making in stochastic and adversarial environments. MDPs
were first introduced by Bellman [2]. SGs, which form a more general model, were introduced slightly
earlier by Shapley [32]. Many variants of MDPs and SGs were studied in the literature. The MDPs
and SGs considered in this paper are infinite-horizon discounted MDPs/SGs. The SGs we consider
are turn-based and we thus refer to them as 2-player Turn-Based Stochastic Games (2TBSG).

MDPs may be viewed as degenerate 2TBSGs in which one of the players has no influence on the
game. For a thorough treatment of MDPs and their numerous practical applications, see the books
of Howard [18], Derman [9], Puterman [29] and Bertsekas [3]. For a similar treatment of SGs, see the
books of Filar and Vrieze [13] and Neyman and Sorin [28].

A 2TBSGs is composed of a finite set of states and a finite set of actions. Each state is controlled
by one of the players. In each time unit, the game is in exactly one of the states. Each state has
a non-empty set of actions associated with it. The player controlling the state must play one of
these actions. Playing an action incurs an immediate cost, and results in a probabilistic transition
to a new state according to a probability distribution that depends on the action. The process goes
on indefinitely. The first player tries to minimize the total expected discounted cost of the infinite
sequence of actions taken, with respect to a fixed discount factor. The second player tries to maximize
this total discounted cost. Discounting captures the fact that a cost incurred at a later stage has a
smaller effect than the same cost incurred at an earlier stage. For formal definitions, see Section 2.

A policy or a strategy for a player is a possibly probabilistic rule that specifies the action to be taken
in each situation, given the full history of play so far. One of the fundamental results in the theory
of MDPs and 2TBSGs, is that both players have positional optimal strategies. A positional strategy
is a strategy that is both deterministic and memoryless. A memoryless strategy is a strategy that
depends only on the current state, and not on the full history. MDPs and 2TBSGs are solved by
finding optimal positional strategies for the players.

MDPs can be solved using linear programming (d’Epenoux [8], Derman [9]). The preferred way of
solving MDPs in practice, however, is Howard’s [18] Policy Iteration algorithm. The policy iteration
algorithm maintains and iteratively improves a policy by performing “obvious” improving switches
(for details, see Section 5). Howard’s algorithm may be viewed as a parallel version of the simplex
algorithm in which several pivoting steps are performed simultaneously. The problem of determining
the worst case complexity of Howard’s algorithm was stated explicitly at least 25 years ago. (It is men-
tioned, among other places, in Schmitz [31], Littman et al. [23] and Mansour and Singh [25].) Meister
and Holzbaur [27] established, decades ago, that the number of iterations performed by Howard’s al-
gorithm, when the discount factor is fixed, is polynomially bounded in the bit size of the input. Their
bound, however, is not polynomial in the number of states and actions of the MDP. The first strongly
polynomial time algorithm for solving MDPs was an interior point algorithm of Ye [34].

Very recently, Ye [35] presented a surprisingly simple proof that Howard’s algorithm terminates after
at most O

(

mn
1−γ log

(

n
1−γ

))

iterations, where n is the number of states, m is the total number of actions,
and 0 < γ < 1 is the discount factor. In particular, when the discount factor is constant, the number of
iterations is O(mn log n). Since each iteration only involves solving a system of linear equations, Ye’s
result established for the first time that Howard’s algorithm is a strongly polynomial time algorithm,
when the discount factor is constant. Ye’s proof is based on a careful analysis of an LP formulation
of the MDP problem, with LP duality and complementary slackness playing crucial roles.

We significantly improve and extend Ye’s [35] analysis. We show that Howard’s algorithm actually
terminates after at most O

(

m
1−γ log

(

n
1−γ

))

iterations, improving Ye’s bound by a factor of n. In-
terestingly, the only added ingredient needed to obtain this significant improvement is a well-known

1

relationship between Howard’s policy iteration algorithm and Bellman’s [2] value iteration algorithm,
an algorithm for approximating the values of MDPs.

More significantly, and more surprisingly, we are able to obtain the same O
(

m
1−γ log

(

n
1−γ

))

bound
also for the Strategy Iteration (or Strategy Improvement) algorithm for the solution of 2TBSGs. This
supplies the first strongly polynomial algorithm for solving 2TBSGs, with a fixed discount factor,
solving a long standing open problem.

The strategy iteration algorithm is a natural generalization of Howard’s policy iteration algorithm
that can be used to solve 2TBSGs. The strategy iteration algorithm for discounted 2-player games
is apparently first described by Rao et al. [30]. Hoffman and Karp [17] earlier described a related
algorithm for a somewhat different class of SGs.

Prior to our strongly polynomial bound for the strategy iteration algorithm, the best time available
on the problem of solving discounted 2TBSGs was a polynomial, but not strongly polynomial, bound
of Littman [22], obtained essentially using value iteration. The best time bound expressed solely in
terms of the number states and actions was a subexponential bound of Ludwig [24]. (See also Björklund
and Vorobyov [4, 5] and Halman [16].) Interestingly, these subexponential bounds are obtained using
randomized variants of the strategy iteration algorithm that mimic the combinatorial subexponential
algorithms of Kalai [20, 21] and Matoušek, Sharir and Welzl [26] for solving LP-type problems.

What makes our analysis of the strategy iteration algorithm surprising is the fact that Ye’s analysis
relies heavily on the LP formulation of MDPs. In contrast, no succinct LP formulation is known
for 2TBSGs. (Natural attempts fail. See Condon [7].) Our proof is based on finding natural game-
theoretic quantities that correspond to the LP-based quantities used by Ye, and by reestablishing, via
direct means, (improved versions) of the bounds obtained by Ye using LP duality.

Ye’s [35] results and our results, combined with the recent results of Friedmann [14] and Fearnley [12],
supply a complete characterization of the complexity of the policy/strategy iteration algorithm for
MDPs/2TBSGs. The policy/strategy iteration algorithms are strongly polynomial for a fixed discount
factor, but exponential for non-discounted problems, or when the discount factor is part of the input.
(In non-discounted problems the discounting criteria is replaced by limiting average criteria. In a
sense, this is equivalent to letting the discount factor tend to 1. See, e.g., Derman [9].)

The rest of this paper is organized as follows. In Section 2 we define the 2-player turn-based stochastic
games (2TBSG) studied in this paper. In Sections 3, 4 and 5 we summarize known results regarding
these games. For completeness, these sections contain concise, but complete, proofs of all results.
(The proofs in these three sections are not the innovative part of this paper and may be skipped
at first reading.) Finally, in Section 6 we obtain our innovative strongly polynomial bound on the
complexity of the celebrated strategy iteration algorithm, solving a long-standing open problem. We
end in Section 7 with some concluding remarks and open problems.

2 2-player turn-based stochastic games

Discounted stochastic games were first studied by Shapley [32]. In his games, the players perform
simultaneous, or concurrent, actions. We consider the subclass of turn-based stochastic games.

We briefly review the informal definition of 2-Player Turn-Based Stochastic Games (2TBSGs), before
giving a formal definition. A game is composed of states and actions. It starts at some initial state
and proceeds, in discrete steps, indefinitely. In each time step one of the players plays an action. (The
game is thus a turn-based or perfect information game.) Each action has a cost associated with it.
This is the cost paid by player 1 to player 2 when this action is played. (The game is therefore a
zero-sum game.) Each action also has a probability distribution on states associated with it. The next
state, after playing a particular action, is chosen randomly according to this probability distribution.
(The game is, in general, stochastic.) Finally, the game is discounted. The first player tries to minimize
the expected total discounted cost, while the second player tries to maximize it.

2

Definition 2.1 (Actions). An action a over a set of states S is composed of a triplet (s(a), p(a), c(a)),
where s(a) ∈ S is the state from which a can be played, p(a) ∈ ∆(S) is a probability distribution over
states according to which the next state is chosen when a is played, and c(a) ∈ R is the cost of a.

Definition 2.2 (2-Player Turn-Based Stochastic Games). A 2-Player Turn-Based (Discounted)
Stochastic Game (2TBSG) is a tuple G = (S1, S2, A, γ), where S1 and S2 are the set of states controlled
by players 1 and 2, respectively, and A is a set of actions. We assume that S1 ∩ S2 = ∅ and let
S = S1 ∪ S2. For every i ∈ S, we let Ai = {a ∈ A | s(a) = i} be the set of actions that can be played
from i. We assume that Ai 6= ∅, for every i ∈ S. We let A1 = ∪i∈S1

Ai and A2 = ∪i∈S2
Ai be the

sets of all actions that can be played by players 1 and 2, respectively. Finally, 0 < γ < 1 is a fixed
discount factor. If the infinite sequence of actions taken by the two players is a0, a1, . . ., then the total
discounted cost of this action sequence is

∑

k≥0 γ
kc(ak).

If one of the players has only a single action available from each state under her control, the game
degenerates into a 1-player game known as a Markov Decision Process. (This happens, in particular,
when S1 = ∅ or S2 = ∅.)

We next define the probability and action matrices of 2TBSGs. These matrices provide a compact
representation of 2TBSGs that greatly simplifies their manipulation. Throughout the paper, we use
n = |S| and m = |A| to denote the number of states and actions, respectively, in a game.

Definition 2.3 (Probability and action matrices). Let G = (S1, S2, A, γ) be a 2TBSG. We
assume, without loss of generality, that S = S1 ∪ S2 = [n] and A = [m]. We let P ∈ R

m×n, where
Pa,i = p(a)i is the probability of ending up in state i after taking action a, for every a ∈ A = [m] and
i ∈ S = [n], be the probability matrix of the game, and c ∈ R

m, where ca = c(a) is the cost of action
a ∈ A = [m], be its cost vector. We also let J ∈ R

m×n be a matrix such that Ja,i = 1 if and only if
a ∈ Ai, and 0 otherwise. Finally, we let Q = J − γP be the action matrix of G.

It is interesting to note that a 2TBSG is fully specified by its action matrix Q = J − γP , its cost
vector c, and the partition of S = [n] into S1 and S2. (Action matrices may be thought of as a
stochastic and discounted generalization of the incidence matrices of directed graphs.)

Definition 2.4 (Strategies, strategy profiles). A (positional) strategy πj for player j, is a mapping
πj : Sj → A such that πj(i) ∈ Ai, for every i ∈ Sj. We say that player j uses strategy πj if whenever
the game is in state i, player j chooses action πj(i). A strategy profile π = (π1, π2) is simply a pair
of strategies for the two players. We let Πj = Πj(G), for j ∈ {1, 2}, be the set of all strategies of
player j, and let Π = Π(G) = Π1 ×Π2 be the set of all strategy profiles in G.

We note that a strategy profile π = (π1, π2) may be viewed as a mapping π : S → A, i.e., as a
strategy in a 1-player version of the game. All strategies considered in this paper are positional.
When convenient, we also view a strategy πj or a strategy profile π as subsets πj(S), π(S) ⊆ A. A
strategy profile π = (π1, π2), when viewed as a subset of A, is simply the union π1 ∪ π2. We let
Pπ ∈ R

n×n be the matrix obtained by selecting the rows of P whose indices belong to π. Note that Pπ

is a (row) stochastic matrix. Its elements are non-negative and the elements in each row sum to 1.
Similarly, cπ ∈ R

n is the vector containing the costs of the actions that belong to π. We conveniently
have Jπ = I and Qπ = I − γPπ, for every strategy profile π.

Definition 2.5 (Value vectors). For every strategy profile π = (π1, π2) ∈ Π, we let vπ = vπ1,π2
∈ R

n

be a vector such that (vπ)i, for every i ∈ S, is the expected total discounted cost when the game starts
at state i, player 1 uses strategy π1, and player 2 uses strategy π2.

Given two vectors u,v ∈ R
n, we say that u ≤ v if and only if ui ≤ vi, for every 1 ≤ i ≤ n. We say

that u < v if and only if u ≤ v and u 6= v.

3

Definition 2.6 (Optimal counter strategies). Let G be a 2TBSG and let π2 ∈ Π2(G) be a strategy
of player 2. A strategy π1 for player 1 is said to be an optimal counter-strategy against π2, if and
only if vπ1,π2

≤ vπ′
1
,π2

, for every π′
1 ∈ Π1(G). Similarly, a strategy π2 for player 2 is said to be

an optimal counter-strategy against π1, if and only if vπ1,π2
≥ vπ1,π′

2
, for every π′

2 ∈ Π2(G). For
every π1 ∈ Π1(G), we let τ2(π1) be an optimal counter strategy against π1, if one exists. For every
π2 ∈ Π2(G), we let τ1(π2) be an optimal counter strategy against π2, if one exists.

It is not immediately clear that optimal counter strategies always exist. (Note, that vπ1,π2
≤ vπ′

1
,π2

and vπ1,π2
≥ vπ1,π′

2
are vector inequalities. As defined, optimal counter strategies need to be optimal

for every initial state.) Furthermore, optimal counter strategies, if they exist, need not be unique. It
is well known, however, that optimal counter strategies do always exist, as we shall also show below.

In a two-player zero-sum game, an optimal strategy is by definition one that secures the best possible
guarantee on the expected payoff against any opponent. As with finite games, pairs of optimal strate-
gies in a zero-sum stochastic game coincide with the Nash equilibria of the game. This was established
by Shapley [32]. For brevity, we take this characterization to be the definition of an optimal strategy.

Definition 2.7 (Optimal strategies). A strategy profile π = (π1, π2) ∈ Π(G) is said to be optimal
if and only if π1 is an optimal counter strategy against π2, and π2 is an optimal counter strategy
against π1. In such a case we also say that π1 is an optimal strategy for player 1 and that π2 is an
optimal strategy for player 2.

Shapley [32] also established the following theorem.

Theorem 2.8. Every 2TBSG has an optimal strategy profile. If π and π′ are two optimal strategy
profiles then vπ = vπ′ .

Theorem 2.8 immediately implies the existence of optimal counter strategies against any strategy. It
is easy to see that π1 is an optimal strategy for player 1 if and only if vπ1,τ2(π1) ≤ vπ′

1
,τ2(π′

1
), for every

π′
1 ∈ Π1. An analogous condition clearly holds for player 2. The main result of this paper is a proof

that a pair of optimal strategies can be computed in strongly polynomial time, when the discount
factor is constant.

3 Basic results

For any strategy profile π, the matrix (I − γPπ) plays a prominent role in the sequel. (Recall that Pπ

is the matrix obtained by selecting the rows of P that correspond to actions that belong to π.) We
thus start with the following lemma whose trivial proof is omitted.

Lemma 3.1. For any strategy profile π, the matrix (I − γPπ) is invertible and

(I − γPπ)
−1 =

∑

k≥0

(γPπ)
k.

All entries of (I − γPπ)
−1 are non-negative and the entries on the diagonal are strictly positive.

Lemma 3.2. For every strategy profile π ∈ Π and every 0 < γ < 1, we have

vπ = (I − γPπ)
−1cπ.

Proof. When the players use the strategy profile π, the process becomes a Markov chain with rewards
with transition matrix Pπ. In particular, for every i, j ∈ [n] and every k ≥ 0, (P k

π)i,j is the probability
that a game that starts at state i is in state j after exactly k steps. The expected total discounted
costs, starting from all states are thus

vπ =

(

∑

k≥0

(γkP k
π)

)

cπ = (I − γPπ)
−1cπ.

4

Definition 3.3 (Modified costs). The modified cost vector cπ ∈ R
m corresponding to a strategy

profile π is defined to be
cπ = c− (J − γP)vπ.

The modified cost vector cπ is obtained from c via a potential transformation that uses vπ as a vector
of potentials. (If h : V → R is a function assigning potentials to the states, then the modified cost ch(a)
is defined as ch(a) = c(a) − h(a) + γ

∑

j∈S p(a)jh(j).)

It is important to stress the difference between cπ ∈ R
n, the vector obtained by selecting the entries

of c corresponding to strategy profile π, and the modified cost vector cπ = c − (J − γP)vπ ∈ R
m of

Definition 3.3. (This distinction may be confusing at first, but it is extremely useful.)

We let 0 be an all zero vector. (The dimension of 0 will depend on the context.) Using Lemma 3.2
we immediately get the following basic but important relation.

Lemma 3.4. For every strategy profile π we have (cπ)π = 0.

Definition 3.5 (Modified value vectors). For every two strategy profiles π, π′, we let vπ
π′ be the

value vector of π′ corresponding to the modified cost vector cπ.

Lemma 3.6. For every two strategy profiles π′, π we have

vπ
π′ = vπ′ − vπ.

Proof. By Definition 3.3 and Lemma 3.2 we have

vπ
π′ = (I − γPπ′)−1(cπ)π′

= (I − γPπ′)−1(cπ′ − (I − γPπ′)vπ)
= vπ′ − vπ.

Recall that A1 = ∪i∈S1
Ai and A2 = ∪i∈S2

Ai.

Lemma 3.7. (Optimality condition) A strategy profile π is optimal iff (cπ)A1 ≥ 0 and (cπ)A2 ≤ 0.

Proof. Suppose that (cπ)A1 ≥ 0 and (cπ)A2 ≤ 0. Let π = (π1, π2). We prove that π1 is an optimal
counter strategy against π2. By Lemma 3.4 we have (cπ)π1

= 0, (cπ)π2
= 0 and hence vπ

π1,π2
= 0.

For every π′
1 ∈ Π1, we have (cπ)π′

1
≥ 0, as π′

1 ⊆ A1, and hence (cπ)π′
1
,π2
≥ 0. Thus clearly vπ

π′
1
,π2
≥

0 = vπ
π1,π2

, and π1 is indeed an optimal counter strategy against π2. The proof that π2 is an optimal
counter strategy against π1 is analogous.

Suppose now that there is an action a ∈ Ai0 , where i0 ∈ S1, such that (cπ)a < 0. (The case in which
i0 ∈ S2 and (cπ)a > 0 is analogous.) Again, let π = (π1, π2). Let π′

1 ∈ Π1 be a policy such that
π′
1(i) = π1(i), if i 6= i0, and π′

1(i0) = a. We then have (cπ)π′
1
< 0 and (cπ)π2

= 0. Thus vπ
π′
1
,π2

< 0.

(The strict inequality follows from Lemma 3.1. All entries of (I−γPπ′
1
,π2

)−1 are non-negative, and the
entries on the diagonal are strictly positive.) Thus π1 is not an optimal counter strategy against π2.

In the second part of the proof above, π′
1 is obtained from π1 by a profitable switch. Profitable switches

are closely related to the pivoting steps performed by the simplex algorithm. They also lie at the core
of the strategy iteration algorithm whose analysis is the main focus of this paper.

Definition 3.8 (Flux vectors). For every strategy profile π, let xπ ∈ R
1×n be a row vector such

that (xπ)i, for every i ∈ S, is the sum of the discounted costs, over all states, when the cost of
action π(i) is 1, while the cost of all other actions is 0, and when the players use strategy profile π.

We let e = (1, 1, . . . , 1)T ∈ R
n be an all one vector. Using Lemma 3.2, we easily get

5

Lemma 3.9. For every strategy profile π, we have

xπ = eT (I − γPπ)
−1.

It is in fact possible to view Lemma 3.9 as the definition of xπ. The meaning of the flux vectors given
in Definition 3.8 is not used in the sequel. (The flux vectors are intimately related to the dual linear
program formulation of MDPs.)

Lemma 3.10. For every strategy profile π, we have

xπe =
n

1− γ
.

Proof. By Lemma 3.9, Lemma 3.1, and the fact that eT (Pπ)
ke = n, for every k ≥ 0, we have:

xπe = eT (I − γPπ)
−1e =

∑

k≥0

eT (γPπ)
ke = n

∑

k≥0

γk =
n

1− γ
.

Lemma 3.11. For every strategy profile π, we have

eTvπ = xπcπ.

Proof. By Lemma 3.2 and then Lemma 3.9, we get eTvπ = eT (I − γPπ)
−1cπ = xπcπ.

Lemma 3.12. For every strategy profile π, we have

eT (vπ′ − vπ) = xπ′(cπ)π′ .

Proof. By Lemma 3.6 and then Lemma 3.11, we have eT (vπ′ − vπ) = eTvπ
π′ = xπ′(cπ)π′ .

4 Value iteration

If x ∈ R
m and B ⊆ [m], we let minB x = minj∈B xj , and similarly maxB x = maxj∈B xj. We also let

argminB x = argminj∈B xj and argmaxB x = argmaxj∈B xj .

Definition 4.1 (Value iteration operator). The value iteration operator T : Rn → R
n is defined

as follows:

(T v)i =

{

minAi
c+ γPv , if i ∈ S1,

maxAi
c+ γPv , if i ∈ S2.

The operator T is a contraction with Lipschitz constant γ.

Lemma 4.2. For every u,v ∈ R
n we have ‖T u− T v‖∞ ≤ γ ‖u− v‖∞.

Proof. Assume that i ∈ S1 and that (T u)i ≥ (T v)i. (The other cases are analogous.) Let a =
argminAi

c+ γPu and b = argminAi
c+ γPv. Then,

(T u− T v)i = (ca + γPau)− (cb + γPbv)
≤ (cb + γPbu)− (cb + γPbv)
= γPb(u− v)
≤ γ ‖u− v‖∞.

The last inequality follows from the fact that the elements in Pb are non-negative and sum-up to 1.

Banach fixed point theorem now implies that the value iteration operator T has a unique fixed point.

6

Corollary 4.3. There is a unique vector v∗ ∈ R
n such that T v∗ = v∗.

We next define the strategy extraction operators that play an important role in this section, and the
central role in the next section.

Definition 4.4 (Strategy extraction operators). The strategy extraction operators P1 : R
n → Π1

and P2 : R
n → Π2 and P : Rn → Π are defined as follows:

(P1v)(i) = argminAi
c+ γPv , i ∈ S1,

(P2v)(i) = argmaxAi
c+ γPv , i ∈ S2.

and
Pv = (P1v,P2v).

The following relation between the value iteration and strategy extraction operator is immediate.

Lemma 4.5. For every v ∈ R
n we have T v = (c+ γPv)π, where π = Pv.

The following simple lemma provides an interesting relation between the strategy extraction operator
and modified cost vectors.

Lemma 4.6. For every strategy profile π we have

(P1vπ)(i) = argminAi
cπ , i ∈ S1,

(P2vπ)(i) = argmaxAi
cπ , i ∈ S2.

Proof. Let v = vπ. If a ∈ Ai then,

(cπ)a = ca − (vi − γPav) = (c+ γPv)a − vi.

Thus, if a, a′ ∈ Ai, then (c+ γPv)a ≤ (c+ γPv)a′ if and only if (cπ)a ≤ (cπ)a′ .

The following lemma supplies a simple proof of Theorem 2.8. (This is, in fact, the original proof given
by Shapley [32].)

Lemma 4.7. Let v∗ ∈ R
n be the unique fixed point of T and let π = Pv∗. Then, π is an optimal

strategy profile.

Proof. By Lemma 4.5, we get that v∗ = T v∗ = cπ + γPπv
∗. By Lemma 3.2 we get vπ = v∗. We next

show that π satisfies the optimality condition of Lemma 3.7, and hence is an optimal strategy profile.
Suppose that i ∈ S1 and that a ∈ Ai. By Lemma 4.6, we have π(i) = (P1v

∗)(i) = argminAi
cπ. As

(cπ)π(i) = 0, we get that (cπ)a ≥ 0. Similarly, if i ∈ S2 and a ∈ Ai, we get that (cπ)a ≤ 0.

The value iteration algorithm, given on the left-hand side of Figure 1, repeatedly applies the value
iteration operator T to an initial vector u0 ∈ R

n, generating a sequence of vectors (uk)Nk=0, where
uk+1 = T uk, until the difference between two successive vectors is small enough, i.e., ‖uk−1−uk‖∞ < ǫ.

Lemma 4.8. Let (uk)Nk=0 be the sequence of value vectors generated by a call Value-Iteration(u0, ǫ),
for some ǫ > 0. Let v∗ be the optimal value vector. Then, for every 0 ≤ k ≤ N we have

‖uk − v∗‖∞ ≤ γk ‖u0 − v∗‖∞.

Proof. By Lemma 4.2 and the fact that T v∗ = v∗, we have

‖uk − v∗‖∞ = ‖T uk−1 − T v∗‖∞ ≤ γ ‖uk−1 − v∗‖∞.

The claim follows easily by induction.

It follows immediately from Lemma 4.8, that for any u ∈ R
n, the infinite sequence of vectors generated

by the call Value-Iteration(u0, 0) converges to the optimal value vector v∗. Also, for every ǫ > 0,
the call Value-Iteration(u0, ǫ) eventually terminates.

7

Function Value-Iteration(u0, ǫ)

k ← 0
repeat

uk+1 ← T uk

k ← k + 1

until ‖uk−1 − uk‖∞ < ǫ

return uk

Function Strategy-Iteration(σ0)

k ← 0
repeat

τk = τ2(σ
k)

vk ← vσk ,τk

σk+1 ← P1v
k (if possible σk+1 ← σk)

k ← k + 1

until σk−1 = σk

return σk

Figure 1: The Value-Iteration and Strategy-Iteration algorithms.

5 Strategy iteration

The strategy iteration algorithm is given in the right-hand side of Figure 1. It was first described for
the MDP case by Howard [18] and is called policy iteration or Howard’s algorithm in that context. It
was described for 2-player stochastic games by Rao et al. [30]. (Their algorithm actually works on
more general imperfect information games for which it is a non-terminating approximation algorithm.)

The strategy iteration algorithm receives an initial strategy σ0 of player 1, and generates a sequence
πk = (σk, τk) of strategy profiles of the two players, ending with an optimal strategy profile. Each
iteration of the algorithm receives a strategy σk and produces an improved strategy σk+1 as follows.
The algorithm first computes an optimal counter-strategy τk = τ2(σ

k) for player 2 against σk. (We
assume here that this can be done in strongly polynomial time. One way of doing it is to apply
the strategy iteration algorithm on a restricted game in which σk is the only strategy available to
player 1.) Next, it evaluates the strategy profile πk = (σk, τk), by solving a system of linear equations,
and obtains its value vector vk = vπk . It then lets σk+1 = P1vπk . Ties are broken, if possible, in favor
of actions that are in σk. (This is important, as termination is not guaranteed without this provision.)
The algorithm terminates when two consecutive strategies σk and σk+1 are identical.

The step σk+1 = P1vπk is the main step of the strategy iteration algorithm. As we shall (implicitly)
see below, σk+1 is obtained from σk by performing a collection of improving switches.

To prove the correctness of the Strategy-Iteration algorithm we use the following lemma. (Note
that π1 in the lemma is obtained from π0 using one iteration of the Strategy-Iteration algorithm.)

Lemma 5.1. Let σ0 ∈ Π1, π
0 = (σ0, τ2(σ

0)) and σ1 = P1vπ0 , π1 = (σ1, τ2(σ
1)). Then vπ0 ≥ vπ1 .

Proof. We show that vπ0

π0 = 0 ≥ vπ0

π1 , which by Lemma 3.6 implies that vπ0 ≥ vπ1 . To show that

vπ0

π1 ≤ 0, we show that (cπ
0

)π1 ≤ 0. The fact that (cπ
0

)σ1 ≤ 0 follows from the fact that for every

i ∈ S1 we have σ1(i) = argminAi
cπ

0

and hence (cπ
0

)σ1(i) ≤ (cπ
0

)σ0(i) = 0. The fact that (cπ
0

)τ1 ≤ 0

follows from fact that τ0 is an optimal counter strategy against σ0, so in fact (cπ
0

)A2 ≤ 0.

Lemma 5.2. For every initial strategy σ0, Strategy-Iteration(σ0) terminates after a finite number
of iterations. If (vk)Nk=0 is the sequence of value vectors generated by the call, then, vk−1 > vk ≥ v∗,
for every 1 ≤ k < N . Furthermore, vN−1 = vN = v∗ and πN−1 = πN is an optimal strategy profile.

Proof. The claim vk−1 ≥ vk, for every 1 ≤ k ≤ N follows easily from Lemma 5.1 by induction. Next,
we note that if vk−1 = vk, for some k, then by the reasoning used in the proof of Lemma 5.1, we
must have (cπ

k−1

)A1 ≥ 0 and (cπ
k−1

)A2 ≤ 0. By the optimality condition, we get that πk−1 is an
optimal strategy profile. By the tie breaking mechanism used, we also get that πk = πk−1. Finally,
the fact that vk−1 > vk, for every 1 ≤ k < N , implies that strategy profiles encountered cannot
repeat themselves. As there is only a finite number of such profiles, the sequence of strategy profiles
generated must be finite.

8

We next relate the sequences of value vectors obtained by running Strategy-Iteration(σ0) and
Value-Iteration(vπ0 , ǫ), where π0 = (σ0, τ2(σ

0)). The following lemmas for the case of MDPs
are well-known and appear, e.g., in Meister and Holzbaur [27]. The proofs for the 2-player case are
essentially identical. (They may be folklore.)

Lemma 5.3. Let σ0 ∈ Π1, π
0 = (σ0, τ2(σ

0)), and σ1 = P1vπ0 , π1 = (σ1, τ2(σ
1)). Then T vπ0 ≥ vπ1.

Proof. Let i ∈ S1. As σ
1(i) = argminAi

c+ γPvπ0 , vπ0 ≥ vπ1 , and cπ1 + γPπ1vπ1 = vπ1 , we have

(T vπ0)i = minAi
c+ γPvπ0 = (c+ γPvπ0)σ1(i) ≥ (c+ γPvπ1)σ1(i) = (vπ1)i.

Similarly, if i ∈ S2, then

(T vπ0)i = maxAi
c+ γPvπ0 ≥ (c+ γPvπ0)τ1(i) ≥ (c+ γPvπ1)τ1(i) = (vπ1)i.

Using Lemma 5.3, we immediately get:

Lemma 5.4. Let (vk)Nk=0 be the value vectors generated by Strategy-Iteration(σ0), and let (uk)∞k=0

be the value vectors generated by Value-Iteration(vπ0 , 0), where π0 = (σ0, τ2(σ
0)). Then, vk ≤ uk,

for every 0 ≤ k ≤ N .

Proof. We prove the lemma by induction. We have v0 = u0. Suppose now that vk ≤ uk. Then, by
Lemma 5.3 and the monotonicity of the value iteration operator, we have:

vk+1 ≤ T vk ≤ T uk = uk+1.

Combining Lemmas 4.8 and 5.4, we get

Lemma 5.5. Let (vk)Nk=0 be the sequence of value vectors generated by Strategy-Iteration(σ0),
for some σ0 ∈ Π1. Let v∗ be the optimal value vector. Then, for every 0 ≤ k ≤ N we have

‖vk − v∗‖∞ ≤ γk ‖v0 − v∗‖∞.

6 Strongly polynomial bound

In this section, the main section of the paper, we present our strongly polynomial bound on the number
of iterations performed by the strategy iteration algorithm. We begin with some technical lemmas.

Lemma 6.1. Let π′, π be two strategy profiles such that vπ′ ≥ vπ and let a = π′(i) where i ∈ S. Then,

(vπ′ − vπ)i ≥ (cπ)a.

Proof. (vπ′)i − (vπ)i = (c+ γPvπ′)a − (vπ)i ≥ (c+ γPvπ)a − (vπ)i = (cπ)a.

Lemma 6.2. Let π′′, π be two strategy profiles such that vπ′′ ≥ vπ and let a = argmaxπ′′ cπ. Then,

‖vπ′′ − vπ‖1 ≤
n

1− γ
(cπ)a.

Proof. As vπ′′ ≥ vπ, we get using Lemma 3.12 and then Lemma 3.10 that

‖vπ′′ − vπ‖1 = eT (vπ′′ − vπ) = xπ′′(cπ)π′′ ≤ xπ′′e (cπ)a =
n

1− γ
(cπ)a.

Lemma 6.3. Let π′′, π′, π be three strategy profiles such that vπ′′ ≥ vπ′ ≥ vπ. Let a = argmaxπ′′ cπ

and suppose that a ∈ π′. Then,

‖vπ′ − vπ‖1 ≥
1− γ

n
‖vπ′′ − vπ‖1.

9

Proof. Let i ∈ S be the state for which π′′(i) = π′(i) = a. By Lemma 6.1 and Lemma 6.2 we get

‖vπ′ − vπ‖1 ≥ (vπ′ − vπ)i ≥ (cπ)a ≥
1− γ

n
‖vπ′′ − vπ‖1.

Lemma 6.4. Let (σk)Nk=0 be the sequence of player 1 strategies generated by the Strategy-Iteration

algorithm, starting from some initial strategy σ0. Let L = log 1/γ
n2

1−γ . Then, every strategy σk contains

an action that does not appear in any strategy σℓ, where k + L < ℓ ≤ N .

Proof. Let (πk)Nk=0, where π
k = (σk, τk), be the sequence of strategy profiles generated by the strategy

iteration algorithm. By the correctness of the strategy iteration algorithm, π∗ = πN is composed of
optimal strategies for the two players. Let a = argmaxπk cπ

∗
. By Lemma 3.7, we have (cπ

∗
)a ≥ 0

for every a ∈ A1, and (cπ
∗
)a ≤ 0 for every a ∈ A2. We may assume, therefore, that a ∈ A1, i.e.,

that a is an action controlled by player 1. Suppose, for the sake of contradiction, that a ∈ πℓ, for some
k + L < ℓ ≤ N . Using Lemma 6.3, with π′′ = πk, π′ = πℓ and π = π∗, we get that

‖vπℓ − vπ∗‖1 ≥
1− γ

n
‖vπk − vπ∗‖1.

On the other hand, using Lemma 5.5, we get that

‖vπℓ − vπ∗‖∞ ≤ γℓ−k‖vπk − vπ∗‖∞.
Thus,

‖vπℓ − vπ∗‖1 ≤ n ‖vπℓ − vπ∗‖∞ ≤ nγℓ−k ‖vπk − vπ∗‖∞ ≤ nγℓ−k ‖vπk − vπ∗‖1.

It follows that nγℓ−k ≥ 1−γ
n and hence

γL > γℓ−k ≥
1− γ

n2
,

a contradiction.

Theorem 6.5. The Strategy-Iteration algorithm, starting from any initial strategy, terminates
with an optimal strategy after at most (m+ 1)(1 + log 1/γ

n2

1−γ) = O(m
1−γ log n

1−γ) iterations.

Proof. Let L̄ = ⌊1+log 1/γ
n2

1−γ ⌋. Consider strategies σ
0, σL̄, σ2L̄, By Lemma 6.4, every strategy in

this subsequence contains a new action that would never be used again. As there are only m actions,
the total number of strategies in the sequence is at most (m+1)L̄ = (m+1)(1+ log 1/γ

n2

1−γ). Finally,

note that log 1/γ x = log x
log 1/γ ≤

x
1−γ .

7 Concluding remarks

We have shown that the strategy iteration algorithm is strongly polynomial for 2TBSGs with a fixed
discount factor. Friedmann [14], on the other hand, has recently shown that the strategy iteration
algorithm is exponential for non-discounted 2TBSG, or when the discount factor is part of the input.

The existence of polynomial time algorithms for 2TBSGs when the discount factor is part of the
input, or for the non-discounted case, remains an intriguing and a challenging open problem, with
many possible consequences for complexity theory and automatic verification. As shown by Andersson
and Miltersen [1], this is equivalent to finding a polynomial time algorithm for Condon’s [6] Simple
Stochastic Games (SSGs). Such an algorithm will immediately provide polynomial time algorithms
for Mean Payoff Games (MPGs) (see [10],[15],[36]) and Parity Games (PGs) (see, e.g., [11], [33], [19]).

We believe that our results give some hope of obtaining a polynomial time algorithm for this problem.
In an earlier work, Ye [34] gave a polynomial time algorithm for the analogous MDP problem. His
algorithm uses interior point methods and its analysis relies again on the LP formulation of the MDP
problem. Given the “deLPfication” of Ye’s [35] analysis of the policy iteration algorithm carried out
here, one could speculate that looking at interior point methods for the two-player case, with Ye’s [34]
algorithm for MDPs as a starting point, would be a fertile approach.

10

References

[1] D. Andersson and P.B. Miltersen. The complexity of solving stochastic games on graphs. In Proc.
of 20th ISAAC, pages 112–121, 2009.

[2] R.E. Bellman. Dynamic programming. Princeton University Press, 1957.

[3] D.P. Bertsekas. Dynamic programming and optimal control. Athena Scientific, 2nd edition, 2001.

[4] H. Björklund and S. Vorobyov. Combinatorial structure and randomized subexponential algo-
rithms for infinite games. Theoretical Computer Science, 349(3):347–360, 2005.

[5] H. Björklund and S. Vorobyov. A combinatorial strongly subexponential strategy improvement
algorithm for mean payoff games. Discrete Applied Mathematics, 155(2):210–229, 2007.

[6] A. Condon. The complexity of stochastic games. Information and Computation, 96:203–224,
1992.

[7] A. Condon. On algorithms for simple stochastic games. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 13:51–71, 1993.

[8] F. d’Epenoux. A probabilistic production and inventory problem. Management Science, 10(1):98–
108, 1963.

[9] C. Derman. Finite state Markov decision processes. Academic Press, 1972.

[10] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International
Journal of Game Theory, 8:109–113, 1979.

[11] E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proceedings of the
32nd FOCS, pages 368–377. IEEE Computer Society Press, 1991.

[12] J. Fearnley. Exponential lower bounds for policy iteration. In Proc. of 37th ICALP, 2010.
Preliminary version available at http://arxiv.org/abs/1003.3418v1.

[13] J. Filar and K. Vrieze. Competitive Markov decision processes. Springer-Verlag New York, Inc.,
New York, NY, USA, 1996.

[14] O. Friedmann. An exponential lower bound for the parity game strategy improvement algorithm
as we know it. In Proc. of 24th LICS, pages 145–156, 2009.

[15] V.A. Gurvich, A.V. Karzanov, and L.G. Khachiyan. Cyclic games and an algorithm to find
minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical
Physics, 28:85–91, 1988.

[16] N. Halman. Simple stochastic games, parity games, mean payoff games and discounted payoff
games are all LP-type problems. Algorithmica, 49(1):37–50, 2007.

[17] A. Hoffman and R. Karp. On nonterminating stochastic games. Management Science, 12:359–370,
1966.

[18] R.A. Howard. Dynamic programming and Markov processes. MIT Press, 1960.

[19] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving
parity games. SIAM Journal on Computing, 38(4):1519–1532, 2008.

[20] G. Kalai. A subexponential randomized simplex algorithm (extended abstract). In Proc. of 24th
STOC, pages 475–482, 1992.

11

http://arxiv.org/abs/1003.3418v1

[21] G. Kalai. Linear programming, the simplex algorithm and simple polytopes. Mathematical
Programming, 79:217–233, 1997.

[22] M.L. Littman. Algorithms for sequential decision making. PhD thesis, Brown University, Depart-
ment of Computer Science, 1996.

[23] M.L. Littman, T. Dean, and L.P. Kaelbling. On the complexity of solving markov decision
problems. In Proc. of the 11th UAI, pages 394–402, 1995.

[24] W. Ludwig. A subexponential randomized algorithm for the simple stochastic game problem.
Information and Computation, 117(1):151–155, 1995.

[25] Y. Mansour and S.P. Singh. On the complexity of policy iteration. In Proc. of the 15th UAI,
pages 401–408, 1999.

[26] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Algo-
rithmica, 16(4-5):498–516, 1996.

[27] U. Meister and U. Holzbaur. A polynomial time bound for Howard’s policy improvement algo-
rithm. OR Spektrum, 8:37–40, 1986.

[28] A. Neyman and S. Sorin, editors. Stochastic Games and Applications, volume 570 of NATO
Science Series C: Mathematical and Physical Sciences. Springer, 2003.

[29] M.L. Puterman. Markov decision processes. Wiley, 1994.

[30] S.S. Rao, R. Chandrasekaran, and K.P.K. Nair. Algorithms for discounted games. Journal of
Optimization Theory and Applications, pages 627–637, 1973.

[31] N. Schmitz. How good is Howard’s policy improvement algorithm? Mathematical Methods of
Operations Research, 29:315–316, 1985.

[32] L.S. Shapley. Stochastic games. Proc. Nat. Acad. Sci. U.S.A., 39:1095–1100, 1953.

[33] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving parity games
(Extended abstract). In International Conference on Computer-Aided Verification, CAV 2000,
volume 1855 of LNCS, pages 202–215. Springer, 2000.

[34] Y. Ye. A new complexity result on solving the Markov decision problem. Mathematics of Opera-
tions Research, 30(3):733–749, 2005.

[35] Y. Ye. The simplex method is strongly polynomial for the Markov decision problem with a fixed
discount rate. Available at http://www.stanford.edu/~yyye/simplexmdp1.pdf, 2010.

[36] U. Zwick and M.S. Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158(1–2):343–359, 1996.

12

http://www.stanford.edu/~yyye/simplexmdp1.pdf

	1 Introduction
	2 2-player turn-based stochastic games
	3 Basic results
	4 Value iteration
	5 Strategy iteration
	6 Strongly polynomial bound
	7 Concluding remarks

