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Abstract. For every known NP-complete problem, the number of solutions of its instances varies 
over a large range, from zero to exponentially many. It is therefore natural to ask if the inherent 
intractability of NP-complete problems is caused by this wide variation. We give a negative answer 
to this question using the notion of randomized polynomial time reducibility. We show that the 
problems of distinguishing between instances of SAT having zero or one solution, or of finding 
solutions to instances of SAT having a unique solution, are as hard as SAT, under randomized 
reductions. Several corollaries about the difficulty of specific problems follow. For example, 
computing the parity of the number of solutions of a SAT formula is shown to be NP-hard, and 
deciding if a SAT formula has a unique solution is shown to be DP-hard, under randomized 
reduction. Central to the study of cryptography is the question as to whether there exist NP- 
problems whose instances have solutions that are unique but are hard to find. Our result can be 
interpreted as strengthening the belief that such problems exist. 

1. Introduction 

Several authors have observed that, among most known NP-complete problems, 
reductions can be found that preserve the number of solutions [3, 15, 18]. Such 
reductions are called parsimonious reductions. A characteristic of each such NP- 
complete problem is that its instances have widely varying numbers of solutions. 
Their number may be zero, one, several, or exponentially many. It is natural to ask 
whether the inherent difficulty in solving NP-complete problems is caused by this 
wide variation. 

In this paper we give a negative answer to this question, in the following sense. 
Let A be any NP-complete problem to which satisfiability is parsimoniously reduc- 
ible. Let # A(x) denote the number of solutions to instance x. For each Boolean 
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predicate Q, define the problem UAo: 

{~ if CA A(x) =0, 

UAo(x) = if CA A ( x )  = 1, 

Q(x )  if CA A ( x )  > 1. 

Our main result is that there is a randomized polynomial time reduction from A to 
UA o that is valid for any predicate Q. This shows that if there is a random 
polynomial-time (i.e., RP) decision procedure that gives the correct answer on 
instances of A having zero or one solution, and an arbitrary answer on the remaining 
instances, then NP = RP. 

Equivalently, we prove that the following 'promise problem' [10] is NP-hard, 
under randomized reductions (see Corollary 3.4): 

Input: an instance x of A, 

Output: a solution to x, 

Promise: # A ( x )  = 1. 

A procedure for this problem is required to give the correct answer only if  CA A(x)  = 1. 
It must, however, halt on each input. 

Via our theorem, we can establish for several problems for the first time that they 
are NP-hard, under randomized polynomial-time reductions. Let A be as defined 
above. Then PARITY-A, which gives the parity of the number of solutions of an 
instance of A, is NP-hard. The problem of computing the permanent of a (0, 1)- 
matrix rood k, for any k which is not an exact power of 2, is NP-hard. 

One further motivation for studying UA o is that every problem in UP is polynomial 
time reducible to it (for any Q). UP is the class of sets recognized by nondeterministic 
polynomial-time Turing machines that for all inputs have either zero or one solution. 
The class appears to be especially relevant in cryptography and has been studied 
before [8, 11, 12, 14, 19]. Note that it is not known whether, for any Q, USAT o is 
itself a member of UP. Hence, our proof does not show the existence of a hard 
problem in UP. 

As remarked earlier, most of the known polynomial-time reductions among 
NP-complete problems are parsimonious. For reducing SAT to USATo, this is 
exactly the property that our reducibility should not have. Instead, we shall use a 
randomized reduction. Such reductions have been used in the past for classifying 
the complexity of certain NP problems which have not yielded to proofs of NP- 
completeness in the standard sense [1, 2, 22]. Our reduction is of the following kind: 
We shall say that a problem A is reducible to B by a randomized polynomial-time 
reduction if there is a randomized (coin flipping) polynomial-time Turing machine 
T, and a polynomial p, such that: 

(1) Vx[x~A--> T [ x ] ~ B ] .  (Even though the output of T, on input x~A,  may 
depend on the coin flips, it will definitely not be in B.) 

(2) V x [ x  ~ A--> T[x] ~ B with probability at least 1/p(lxD]. 
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Define RP to be the class of sets accepted by randomized Turing machines with 
one-sided error. In particular, A ~ RP if there is a randomized Tufing machine T 
such that: 

(1) V x [ x ~ A ~  T rejects x]. 
(2) Vx[x ~ A ~  T accepts x with probability at least ½]. 
Notice that if, in the above definition, "½" is replaced by "[p(IxD] -b ' ,  for any 

polynomial p, we still obtain the same class. Clearly, if A is reducible to B by a 
randomized polynomial-time reduction and if B e RP, then A e RP. 

In the remainder of this paper we shall take the conjunctive normal form SAT 
itself as representative of the class of NP-complete problems parsimoniously inter- 
reducible with it. Hence, our main result can be stated as follows. 

Theorem 1.1. There is a randomized polynomial-time reduction from SAT to USATQ 
that is valid for any predicate Q. 

Corollary 1.2. If,, for some predicate Q, USATQ e RP, then NP = RP. 

Our technique can be used to establish certain problems to be complete in the 
class D p [13]. In particular, it can be shown that UNIQUE SAT, the problem of 
determining whether a formula has exactly one solution or not, is complete in D p 
under randomized polynomial reduction. This contrasts with the result of Blass and 
Gurevich [4] that states that completeness here does not hold under any deterministic 
reduction that relativizes. 

2. The proof 

We shall show that for any Q there is a randomized polynomial-time reduction 
from SAT to USATQ. The idea of the reduction is the following: given instance f 
of SAT we will successively conjoin constraints to f to obtain a series of formulae 
f l , . . .  , f ,  that will have decreasing numbers of solutions. We shall prove that if f 
is satisfiable, then with probability at least ¼ one of these formulae will have a unique 
solution. Hence, if we pick one of these formulae at random it will have a unique 
solution with probability at least (4n) -1. On the other hand, if f is not satisfiable, 
then each of these formulae will be unsatisfiable, including the randomly chosen one. 

Since we do not know what the solutions of f are, we will pick constraints at 
random from a suitable set. Ideally, we would like to knock out each solution 
independently with a certain probability. This is not possible with only polynomially 
many random choices. Surprisingly, the use of GF[2] inner products with poly- 
nomlally few {0, 1} vectors suffices. This use can be viewed as an application of 
universal hash functions [5]. Such inner products have been used previously in 
complexity theory by Sipser [16] and Stockmeyer [17]. 
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We shall view truth assignments to the variables x~ , . . . ,  x, as n-dimensional {0, 1} 
vectors from the vector space GF[2]". The solutions to f form a set of vectors from 
this space {0, 1}". For u, v e {0, 1}" we denote by u. v the inner product over GF[2] 
of u and v. 

First we observe the following: 

Lemma 2.1. I f  f is any C N F  formula  in x ~ , . . .  , x ,  and w ~ , . . . ,  Wk ~ {0, 1}", then one 

can construct in linear time a formula f ' k  whose solutions v satisfy f and the equations 

v .  wt = .  • • = v .  Wk = O. Furthermore, one can construct a polynomial-size CNF for- 

mula fk in variables x ~ , . . . ,  x , ,  y ~ , . . . ,  Ym for  some m such that there is a bijection 

between solutions o f  fk and f 'k,  defined by equality on the x l ,  . . . , x ,  values. 

Proof. It is sufficient to show the lemma for k = 1. Then, f~ is 

f ^  (xil xi2 . . . xij l), 

where ~ denotes exclusive-or and i ~ , . . . ,  ij are the indices of the xi that have values 
1 in w. Also, ./'1 is the CNF equivalent of the formula 

f ^  (ylC:~x~,~ X~) ̂  (Y2C:~Yl~ Xi3) 

^ ' "  " ̂  (yj_l <~.:~ Y j_ 2 ~  Xij) A (yj_l (~ l ). [] 

The intuition behind our main theorem can be explained as follows. Let S be 
any subset of {0, 1}". Define the sets 

S l = { v [ v e S ,  v . w = O }  and S ~ = { v l v ~ S , v . w = l } .  

The surprising fact is that if we pick w randomly, then any S will be partitioned in 
this way into roughly equal halves with high probability. By letting S be the set of 
solutions of f, choosing w~, . . . ,  wk at random and constructing fk we obtain a 
formula with roughly 2-k]S[ solutions. 

The randomized polynomial-time reduction of Theorem 1.1 from SAT to USAT o 
is simply the following: Given an instance f of  SAT, randomly choose an integer 
k from {1 , . . . ,  n}, randomly choose vectors w l , . . . ,  wk ~ {0, 1}", and output fk. 

The phenomenon that a random w partitions S into about equal halves is expressed 
bY the following result from [21]. 

Theorem 2.2. For all e > 0 there exists a constant a > 1 such that for  all x >~ 1 i f  

S ~ {0, 1}" with [S[ >t n "~', then the probability that either [S d or ]S~[ is smaller than 

(½-e)lS I is less than n-". 

While this result is sufficient to establish Theorem 1.1, it does not yield the simplest 
proof. Sharp bounds on the tails of the distribution are not necessary, while bounds 
applying to all sizes ISI are advantageous. Mark Jerrum observed that the following 
remarkably precise statement is true and easily proved. 
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theorem 2.3. I f  Sc_ {0, 1}"-{0"}, w l , . . . ,  w,  are randomly chosen f rom {0, 1}" and  

~i is defined as 

{vtv  S, v .  w , = v .  w2 . . . .  = v .  w, =0}, 

!hen the expectation and variance o f  Si are as follows: 

E(Isil)=2-'lSl a n d  v(ISil)=2-i(1-2-i)lSl. 

Sharper bounds still on the required probabilities can be established by a direct 

~rgument due to Michael Rabin. The main idea is to dispense with discussing the 

;ize of Si and do induction on its rank. We shall restrict ourselves to giving this last 

~rgument which is encapsulated in Theorems 2.4 and 2.5. The final conclusions are 

he  following. 

l'heorem 2.4. Let S c_ {0, 1}". Suppose w ~ , . . . ,  w, are chosen at random, for  each i <~ n, 

~i = {v Iv ~ S, v . wl . . . .  = v . wi = O} and P,,( S)  is the probability that, for  some i <<- n, 

Sil = 1. Then" 

(i) P . ( S ) ~  '-" 4 ,  

(ii) i f  w , , . . . ,  w, are chosen to be linearly independent in addition, then P,(  S)>~½. 

Clearly, Theorem 1.1 follows directly from either one of the above two statements. 
In order to prove them, we first state and prove the following. 

l'heorem 2.5. L e t  S ~_ {0, 1}", S ~ O. Randomly  choose vectors wl ,  w2, . . . f i o m  {0, 1}". 
Define Hi = { v I v .  wi = 0}, So = S, and Si = S n H1 n . . . n Hi. Then: 

P(S)  d,f Prob(=ii Is, I = 1) i> ½. 

?roof. Let Tk = min{P(S)}, where S ranges over all nonempty sets with rank(S) <~ k. 
~Ve shall show by induction on k that  Tk >~ 2~-1/(2 k -  1). 

For k = 0 we have S = {0"} and To = 1. If  k = 1, then IS[ <~ 2 and T1 = 1. Assume 

he statement true for all 0<~ m <~ k - 1 ,  and let r ank (S )=  k. A nonsingular l inear  

.ransformation on {0, 1}" = GF[2]" permutes the vectors as well as hyperplanes of  

3F[2]". We may therefore assume w.l.o.g that {e~ , . . . ,  ek}_ S, where ei is the i th 
mit  vector, and these vectors span S. 

A hyperplane H = {vI v- w = 0} satisfies rank(S n H)  < k iff w ~ 0k{0, 1} "-k. There 
Ire 2" - 2 n - k  such vectors w. Also, ei ~ S n H for all 1 ~ i <~ k iff w ~ lk{0, 1} "-k. I f  

.'~ e S n H for some/,  then certainly S n H ~ ~. Hence, the probabili ty that S n H ~ ~, 

'elative to the event that rank(S n H)  < k, satisfies 

2 n - k  2 k - 2  
Prob(S n H ~ OI rank(S n H)  < k) ~> 1 2" - 2  "-k--  2 k - 1" (1) 
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When randomly choosing wx, w 2 , . . . ,  we encounter  with probability 1 an index 

j such that rank(Sc~ H~ c ~ . . .  c~/-/j)< k: Let i be the smallest such index, thus 

Sc~ H~ c~- • • c~ H~_, = S, and H~ satisfies rank(S c~ Hi) < k: By (1), the probability 
that Sc~ Hi # 0  is at least (2k--2)/(2 k -- 1), thus 

2 k - 2 2 k - 2 2 k -- 2 2 k-1 

~ ~ 2 k _  1_ 2 k --2t: []  Tk >~ Tk-12k--1 1 --1 --1" 

Proof of Theorem 2.4. (i) Clearly, P,,(S) >1 P(S)Prob(H1 n .  • • c~ H .  = {0"}). Now, 

Hx c~. • • n H,  = {0 ~'} iff the vectors w x , . . . ,  w,, are linearly independent.  The proba- 
bility of that is 

( 2 " - 1 ) ( 2 " - 2 ) . . .  (2" - 2"-~)/2"e ~> ~. 

Hence, P,,(S)~>½x~. To obtain the claimed constant of  ~ we consider the cases of 
0 n ~ S and 0" ~ S separately. In these two cases, 

Pn(S) ~ Prob (H1  n . . .  c~ Pin = {0"}) ~>~ and 

P,,( S) >1 P( S)Prob(rank( Hl c~ . • • c~ H,,_x) = 1) ~>~x~,~ 

respectively. 

(ii) Satisfaction of  the condit ion ":1 i [Sil = 1" by the random process only depends 

on the indices i~ ( = 1), i2 , . . . ,  i,, for which strictly 

/ - / ,  H , ,  n/4  • • n .  • • = { 0 n } .  

Therefore, P(S) equals 

Prob(3i  IS~I -- IIH~ = H, n H 2 ~ . . "  D H , n . . .  n H,  = {0"}). 

Also, if0" ~ S, then it suffices to go down to Hn-i  since now IS n/-/1 n .  • • n H,_~[ <~ 1. 
Hence, by choosing w ~ , . . . ,  w, to be linearly independent  we get a process utilizing 

just n hyperplanes and achieving the same bound of ½ as P(S). [] 

3. Applications 

By deterministic polynomial-t ime reductions from USATQ, we can show for 

several problems for the first time that  they are NP-hard under randomized poly- 
nomial-time reductions. Let A by any NP-complete problem to which SAT is 

parsimoniously reducible and define UA o as in Section 1. 

Corollary 3.1. For any choice of Q, UA o / s  NP-hard, under randomized reductions. 

Important  examples of  UAQ are the following, defined for each positive integer 

k: 

{~ i f # A ( x ) = O m o d k ,  
#k A(X) = if  # A(x)  ~ 0 rood k. 
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Corollary 3.2. For any k > 1, #k A is NP-hard, under randomized reductions. 

For the following problem, testing for the existence of solutions is in P (by a 
reduction to finding perfect matchings in bipartite graphs); yet, counting solutions 
rood k is hard. 

Corollary 3.3. For any k > 1 that is not an exact power of two, computing the permanent 
rood k of a (0, 1)-matrix is NP-hard, under randomized reductions. 

Proof. [20, Lemmas 3.1, 3.2, and 3.3] give a transformation from a SAT formula f 
to a (0, 1)-matrix B such that Perm(B) equals # SAT(f). 4 t mod k (where t is a 
polynomial-time computable function of f ) .  Hence, # S A T ( f ) = 0 m o d  k iff 
Perm(B) = 0 rood k: [2] 

Corollary 3.4. Consider the problem of finding solutions to instances of SAT with the 
relaxation that for instances having no solution or more than one solution the output 
can be arbitrary (the algorithm still has to terminate). This problem is NP-hard under 
randomized reductions. 

Proof. For any instance of this problem (i.e., with the arbitrariness resolved) there 
is some Q such that USAT o reduces to it trivially. Apply this problem to an instance 
f of SAT and output 1 or 0 according to whether the output is a solution of f. [] 

By self-reducibility, the converse of the above also holds. 
The next application, due to Selman, identifies a problem to be complete in the 

class D p introduced by Papadimitriou and Yannakakis [13], 

O p = { L 1 -  L2I L1,/-,2 E NP}. 

The problem UNIQUE SAT is defined as follows: Given an instance of SAT, does 
it have a unique solution? 

Corollary 3.5. UNIQUE SAT is complete in D p under randomized polynomial-time 
reductions. 

Proof. In [13] it was shown that the following problem SAT-UNSAT is complete 
for DP: Given a pair (fl, f2) of formulae in CNF, determine whether it is the case 
that "'f~ is satisfiable but f2 is not". We achieve the required randomized reduction 
by transforming (f~,f2) to ~ ^ f [  as follows: f ;  is such that it has exactly one more 
solution than f2 has (see [4]). f~ is obtained from fl exactly as f~ in Theorem 1.1. 
The variables of f l  and f~ are made distinct. [] 

Our final application involves the problem of APPROXIMATE COUNTING. Sipser 
and Gacs [16] show that this problem is solvable by a randomized polynomial-time 
TM with a SAT oracle. Our hash function yields a simpler proof. Once again, this 
result seems to be the best achievable; Stockmeyer [17] shows an oracle relative to 
which this problem is not in A~. 
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Corollary 3.6. For any e > 0 there is a randomized polynomial-time TM with a SAT 
oracle, which given a SAT formula f outputs a number k such that (1 - e )  • #f<~ k ~  < 
(1 + e) • # f with probability at least 1 - ~. 

Proof. As in Theorem 1.1, we obtain f~ , . . .  , f ,  from f. Using the SAT oracle, we 
determine i such that #f~ > 0 and #f~+l = 0, and output 2 i. The corollary follows 
from Theorem 2.3 and standard methods for reducing the probability of error in 
polynomial time. [] 

4. Open problems 

The obvious open problem is whether there are deterministic reductions from 
SAT to USAT o, for each Q. Blass and Gurevich [4] give an oracle relative to which 
UNIQUE SAT is not complete in D p under deterministic reductions. On the other 
hand, a deterministic reduction from SAT to UNIQUE SAT will make UNIQUE SAT 
complete in D p. Therefore, any deterministic reduction that relativizes could not 
work for reducing SAT to UNIQUE SAT. 

We have shown that PARITY SAT is NP-hard under randomized reductions. The 
problem is clearly in PSPACE; however, we would like to determine where in the 
hierarchy it lies. 

A possible direction for further work is to try to narrow the gap between plausible 
cryptographic functions and NP-completeness. An ideal cryptographic function 
would have exactly ohe solution but it would be NP-hard to find the solution. The 
following question may be a more tractable first step: Find an NP-complete problem 
in which for some fixed polynomial p(n) the instances either have no solution, or 
the number of solutions of an instance of size n is in the range [s(n), t(n)], where 
t (n ) / s (n )  <~p(n). In this regard it is known that not all NP-complete problems are 
parsimoniously reducible from SAT. Graph edge-coloring is a natural counter- 
example [7]. Whether the number of solutions of all NP-complete problems is 
nevertheless polynomial-time interreducible (i.e., whether NP-completeness implies 

# P completeness) is also open. 
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