Chapter 1

1 Introduction

This thesis presents a biologically inspired feature contrast detector designed with two goals.  The first is to be used as a component of a computational attention system and the second is as a computational model for feature contrast detection in the human visual system.

1.1 Attention and Feature Contrast Detection in Biological Vision 

From our everyday experience it seems that as soon as we open our eyes we immediately perceive all that is before us.  All objects in our field of view are instantaneously seen and known by us.  Studies of the human visual system have demonstrated that the reality of visual processing is much more complex than our experience would lead us to believe.  It is true that our eyes receive information about the entire scene almost immediately, but it is not true that all details of the scene are processed and understood at once.    Early studies of human vision pointed out that our eyes are constantly in motion, continually directing attention to different areas of a scene.  These movements, known as saccades, are present even when we are concentrating on a single object.  Our eye usually focuses attention on any point for less than 3 seconds before moving on to the next point of focus (Ditchburn 1973).  These saccades are present at all times, even though we are not aware of them.  Within a small radius around the point of focus, the foveated area, the eye gathers detail about the scene, and it is within this area that the most extensive processing of visual information is possible. Outside of that radius, the detail gleaned from the visual information is partial at best.  In addition to the saccades, evidence has been found that even within the foveated area, we direct our attention, not with our eyes but with our internal eye, to even smaller stimuli in a sequential fashion (Treisman and Gormican 1988)

The pattern and order of the points of focus are specific to the scene being viewed and the reason for viewing that scene, in other words, the task.  The pattern is different when we see a face than when we see an outdoors scene.  When looking at a face, we tend to focus most attention around the eyes, nose and mouth, only occasionally focusing on the outline of the face. When looking at an outdoors scene, attention is directed to the horizon, trees or any figures in the image (Yarbus 1967).  In each case attention is drawn to the specific features of the scene.  The features of the scene, however, only partially guide our visual attention system.  It is also guided by any apriori information the viewer has.  As early as 1871, Helmholtz observed that visual attention is automatically drawn, as indicated by eye movements, to intense colour, intense brightness, changes in brightness and movement.  He also observed, through an experiment of viewing a printed page illuminated by an electric spark for less than 1/4000 second, that attention can be consciously directed to a pre-determined location in the periphery of the visual field. (Helmholtz, cited in Warren &Warren 1968)   Yarbus (1967) in more detailed experiments examined a subject’s eye movements in response to specific questions, such as “How old are the people in the scene?” and “What are the material circumstances of the family shown?”   He observed very different eye movements in response to the different questions.  When asked how old the people are, the subjects direct attention to the faces of the people.  When asked about material wealth, the subject directed attention to the furnishings in the scene.  In all of the above examples, except for the pre-determined location, attention is guided based on the features present in an image.  In order for this to occur, the visual system must gather some sparse initial data to use as input to the attention guidance system. 

In 1967 Neisser coined the term “preattentive processes” to denote the first stage of visual processing (Neisser 1967).  He maintained that processes in this stage operate in parallel across the whole field of vision detecting global, non-specific features such as movement, general location and brightness.  These features are used to perform texture segregation and figure-ground grouping which control shifts of attention.  The second stage of processing, performed on the area of focus, is known as focal attention or attentive processing.  According to Neisser’s model, attentive processing is responsible for grouping complex combinations of features into objects and identifying the objects.

Experiments to study the processing performed pre-attentively and attentively most often fall into one of two categories: texture segmentation experiments or visual search experiments.  Texture segmentation is the immediate and effortless grouping of areas of an image, which may (and often does) indicate objects and background.  Experiments of this type typically present an image to a subject for a brief period of time, and then ask the subject to indicate some feature of the embedded region such as its shape or general location.  

Visual search experiments most often involve displays containing a number of distracter items among which a target item may or may not be displayed.  The test subject is asked to indicate, quickly and accurately, the presence or absence of the target item. The reaction time is then plotted against the number of distracter items.  If the resulting function is near constant, this indicates that all items are being processed in parallel, which is a property of pre-attentive processing.  If, however, the line shows a positive, constant slope, then this indicates a serial search, one in which each element is examined individually.  Serial search is a property of attentive processing.

In general it has been found that these two methods often obtain similar results.  That is, if a particular combination of features is a good candidate for texture segregation, then this combination will also result in near constant search time.  Studies on pre-attentive processing show that features such as line orientation, line endings, curvature, colour, motion, stereoscopic disparity, spatial frequency and brightness are among the simple features detected pre-attentively.  (Beck 1967, Treisman & Gelade 1980, Julesz 1981, Beck 1982, Nakayama & Silverman 1986)  

Treisman’s Feature Integration Theory (FIT) (Treisman & Gelade 1980, Treisman & Souther 1985, Treisman 1985, Treisman 1986a, Treisman 1993) is based on the finding that although these features can be detected pre-attentively, combinations of these features require focused attention (Treisman et al. 1977, Treisman & Gelade 1980).  For example, the visual system may detect “redness”, “blueness”, an “X” and an “O” pre-attentively, but determining which letter is blue and which is red relies on focused, attentive processing (Figure 1).
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Figure 1:  Treisman's experiment illustrating that different types of features are not combined pre-attentively.  (Figure adapted from Goldstein 1996)
The FIT theory states that the visual system creates feature maps and that these maps are directly accessible.  Therefore detecting a vertical target is simply a matter of detecting activity on the “vertical” feature map.  This theory accounts for the results of many visual search and texture segregation studies such as those mentioned previously.  It also accounts for the results found in Treisman et al. (1977) and Treisman and Gelade (1980), that locating a target defined by colour or shape (disjunctive search) can be accomplished pre-attentively, whereas locating a target defined as a combination of colour and shape (conjunctive search) requires focused attention.

The full story of human pre-attentive vision appears to be somewhat more complicated than directly accessing feature maps.  Wolfe et al (1994) and Bilsky & Wolfe (1995) determined that although the search for a target defined as a combination of colours or sizes is serial, when a target is defined in a whole-part relationship of colours or sizes, the search can be performed in parallel, and therefore pre-attentively.  For example, to search for a red and yellow house among distracter houses which are yellow/blue and blue/red requires a serial search, but to search for a red house with yellow windows among distracter houses which are blue with yellow windows and red with blue windows can be performed more efficiently than a typical serial search but generally less efficiently than a typical parallel search.

In the mid to late 1980s, several researchers began to concentrate on the effects of feature differences, that is, the local feature contrast, rather than the effects of absolute feature values. (Sagi & Julesz 1985a, Nothdurft 1991, Nothdurft 1993a)  Duncan & Humphreys (1989) found that visual processing is not so neatly divided between serial and parallel processing, but rather that these are two special cases at either end of a continuum.  Where a search falls on this continuum depends on the similarity of the distracters to each other and the similarity of the target to the distracters.  Search time increases (approaching serial search times) as similarity between target and distracters increases, reducing local feature contrast, and search time decreases (approaching parallel search times) as similarity among distracters decreases, reducing the relative feature contrast of target to distracters.  Even Treisman & Gelade (1980) found that display size has less effect on reaction time if distracters are homogeneous rather than heterogeneous.

The model presented by Duncan & Humphreys (1989) for visual search includes a selection stage that is able to account for many of the preceding results.  It operates on a hierarchical representation that is based on structural units.  A structural unit may be a finger at the bottom level, a hand at the next level, an arm at the next level and an entire person at the top level.  Structural units may be based on properties such as proximity, similarity or apriori knowledge of relations.  In the selection process, the structural units compete for limited attention resources.  Initially, the weights of all structural units are equal.  A target template is applied to each unit and as a result, the weights are increased or decreased.  Any change in weight is distributed to other structural units proportionally to the strength of the grouping.  

This process results in several effects that can account for increased search time when target and distracters are similar or when distracters are heterogeneous.  The first effect comes from the comparison of the template to the structural units.  The template must be generic enough to allow for possible variations of the target, and so if the distracters are similar to the target, the template will likely resemble them in some way.  This will increase the weights of the distracters.  The second effect deals with grouping of distracters.  The more similar the distracters are, the stronger the grouping will be and the more effect changes in the weight of each has on the others.  Duncan and Humphreys refer to this as spreading suppression.  It can lead to large groups of similar distracters being dismissed quickly as non-targets.  The third effect also stems from grouping.  If the target and distracters are similar, they are more likely to be grouped together causing weight changes of each to influence the other.  This will decrease the target weight and increase the distracter weight.

The Duncan and Humphreys model is based primarily on psychophysical results with very little concern for the neuronal implementation of the model.  The neurophysiology responsible for the perception of salience from contrast has been studied over the past decade, and the psychophysical and neurophysiological results are converging.  Knierim & vanEssen (1992) studied the effect on neurons in V1 of stimuli outside the classical receptive field.  They discovered that 32% of cells tested respond more strongly to a bar surrounded by orthogonal lines than to a bar surrounded by similarly oriented lines or randomly oriented lines.  Although the response levels of individual cells varied widely on different trials, the response of the population as a whole was stable, leading to the belief that this population of cells is detecting contrast that causes the perception of salience and is used to guide attention.  Nothdurft further explored this possibility in psychophysical studies that tested aspects of salience perception predicted by the neurophysiological findings (Nothdurft 2000a, 2000b, 2000c).

The first study (Nothdurft 2000a) explores the feature specific or shared mechanisms involved in the perception of salience.  Many V1 cells respond optimally to a combination of features present in a stimulus, for example, an oriented line moving in a specific direction.  If these cells are responsible for the perception of salience, it is expected that the effect of adding motion contrast to a stimulus already displaying orientation contrast would be minimal.  On the other hand, it is expected that a stimulus displaying both colour and motion contrast is significantly more salient than a stimulus displaying contrast in only one of the two dimensions.  Nothdurft found that no combination of dimensions tested results in a strict additive sum of individual saliences, indicating some common mechanism among all.  However he did find that the combination of orientation and colour contrast are very closely related (very little additive effect), orientation and motion contrast are somewhat less related (slightly larger additive effect), and that luminance contrast is not closely related to contrast in any of the other feature dimensions.  (Nothdurft 2000a)

The second study (Nothdurft 2000b) explored the time delay required to perceive salience from contrast along different dimensions.  The response of V1 neurons to a single stimulus begins about 40ms after stimulus onset while response of V1 neurons to orientation contrast begins about 60ms after stimulus onset (Knierim & vanEssen 1992).  If these cells are responsible for the perception of salience, then it is expected that salience from orientation contrast requires a longer viewing time than salience from luminance contrast.  The results support this reasoning.  In addition, Nothdurft found that salience from motion contrast requires a viewing time similar to salience from orientation contrast, and salience from colour contrast requires a viewing time similar to salience from luminance contrast.  This is related to the neurophysiology of where these features are encoded.  Luminance and colour are encoded immediately in the retina whereas orientation and motion are encoded later in the visual system based on luminance and colour.  Since luminance and colour are encoded earlier in the visual process, it is reasonable to assume contrast in these dimensions is also encoded earlier in the visual process. (Nothdurft 2000b)

The third study (Nothdurft 2000c) explores the effect of density on the perception of salience.  Neurophysiological studies show that the orientation contrast response of V1 cells diminishes as the surrounding lines are moved away from the central target.  If these cells are responsible for the perception of salience, then salience should also diminish under the same circumstances.  Nothdurft found that for orientation and motion, target in low to medium density displays are more salient than those in sparse or very dense displays.  In addition, this effect was found to be related to inter-element spacing rather than element size.  Very little effect of display density on luminance contrast was found.  This reinforces the results from the previous studies that different mechanisms are responsible for the perception of salience in different feature dimensions. (Nothdurft 2000c)

The results of these three experiments support the theory that V1 cells are responsible for the perception of salience.  (Nothdurft 2000c)

1.2 Attention and Feature Contrast Detection in Computational Vision

Attention in computational vision systems performs similarly to attention in biological vision systems.  The computational vision system initially gathers sparse data.  This data is evaluated to determine which regions of the image are of greatest interest based on the image data, such as orientation, intensity, colour or contrast, and the task to be performed.  The attention system then guides the processing of the visual system to perform detailed processing of those areas which it has determined are of greatest interest.

When developing a computational vision system, the designers must decide if the entire image is to be processed or if there is some quick way to either eliminate certain portions of the image or to process the image in such a fashion that the areas of the images most likely to contain the target are processed first.  Any process that uses image properties to determine that an area of the image has a certain probability, either high or low, of containing the target is referred to in this thesis as an attention mechanism.

There are several reasons to implement an attention mechanism as part of a computational vision system.  The first is that it has long been understood that the human visual system has an attention mechanism.  As mentioned previously, Helmholtz studied certain aspects of visual attention in the late 19th century.  A major function of attention, to foveate portions of the visual field so that greater detail can be discerned, was already accepted as common knowledge by this time. [Helmholtz, cited in Warren &Warren (1968)]  All computational vision or pattern recognition systems are attempting to replicate some function of biological visual systems, whether that function is locating a bolt that requires tightening in an assembly line operation, object avoidance in a mobile robot, or the complete process of object recognition, learning, and visual memory.  Thus, by implementing a model that has many processing similarities to the human visual system, it is more likely to result in functionality similar to that of a biological visual system.

The second reason for implementing an attention mechanism is based strictly on the complexity of computations and time required for processing an image.  Many promising theories in the field of vision do not perform satisfactorily when implemented.  In these cases the speed of computation is often blamed on the lack of processing power, the claim being that with enough powerful, parallel processors, the system would display real-time performance.  While this may in fact be true, it would be wasteful to create a massively parallel system to obtain results that could be achieved through a less hardware intense solution.  In the case of general-purpose vision, the processing power of the visual centers of the human brain acts as an upper bound on the number of processors required.  The logic is that the human visual system has solved the problem, and therefore any solution that requires more processing power than the human brain is wasting resources and has room for optimization.

Tsotsos (1987) presents a complexity analysis of visual processes.  From this analysis, he develops constraints that must be placed on any computational vision system claiming to be a model of human vision.  The constraints are based on the processing that can be accomplished in parallel in real-time (comparable to the time required for parallel, pre-attentive processing in the human visual system).  He shows that such processing is lacking certain functionality, and so a complete vision system requires focused attention as a second step to complete the visual process.  In a subsequent paper (Tsotsos 1990) he expands his analysis to show that it is not possible in most cases to perform complete processing (analogous to focused attention without pre-attentive processing) of an entire image in a visual search task.  This approach is NP-complete and as such it is only realizable for very small images.  Except for very limited situations, attempting to solve the general vision problem by completely processing the entire scene would require much more computing power than is feasible and many times more than the processing power of the human brain.  Therefore based on the reasoning stated above, a general purpose vision system without an attention mechanism, if ever constructed, would be wasting resources and able to be further optimized.

An attention mechanism allows the image to be processed section by section based on some apriori knowledge or preliminary evaluation, so that an exhaustive search is often not required; the desired result is located before the entire image is processed.

The third reason is that many computational vision systems are hypotheses for the human visual system and as such, an attention mechanism is required because it is known that attention is an integral part of the human visual system.  The challenge in this case is to develop an attention mechanism that not only yields results that are in agreement with biological vision, but that uses computations and processes that are biologically plausible.

The type of attention mechanism implemented depends on which of the reasons listed above are applicable to the system in question. 

Biologically plausible attention models include two main categories, Selective Routing Hypothesis and Temporal Tagging Hypothesis, and several other models that are outside of these categories (Tsotsos et al. 1995).  The Selective Routing Hypothesis includes models such as Koch & Ullman (1985), Anderson & vanEssen (1987) and Olshausen et al. (1993).  These models all involve hierarchical processing. Decisions are made at each processing level that filter down through the hierarchy affecting the decisions made at lower levels, that is, the route of processing through the hierarchy.

The Temporal Tagging Hypothesis includes models such as Crick & Koch (1990), Niebur et al. (1993), and Niebur & Koch (1994).  These models involve superimposing a frequency modulation on the signal at a low level of processing to shift the phase without affecting the firing rate of the cell.  The signal is later filtered to allow only tagged portions through for further processing.

Other computational attention models are briefly reviewed in Tsotsos et al. (1995).  These include the task driven system of Clark & Ferrier (1988), the foveal system of Burt (1988), and the colour matching systems of Swain & Ballard (1991), Ennesser & Medioni (1993) and Grimson et al. (1994).

The center surround feature contrast detection model described in this thesis was designed to be used as part of the Tsotsos selective tuning attention model. (Tsotsos et al. 1995)  This model involves a multidimensional pyramid structure representing the image.  Each dimension of the pyramid represents a different characteristic of the image, and each successive layer reduces resolution.  A Winner-Take-All (WTA) computation is performed at the top layer of the pyramid.  The WTA process is dependent on information about what features are most salient, for example, luminance or a specific colour.  Once a winning node (W0), or multiple equal valued nodes, is chosen at the top level, the set of nodes (S1) from the next layer of the pyramid with connections to W0 are selected for the next iteration of the WTA process.  Once a winning node or nodes (W1) from this layer has been chosen, the connections between W0 and all nodes in the set S1 except W1 are inhibited.  This process is repeated until the winning node or nodes (Wn) is selected at the lowest level of the pyramid.  This process localizes the cause of the strongest response.

The WTA algorithm in Tsotsos model is based upon previous WTA algorithms, but with a variation that results in faster convergence.  The algorithm allows nodes to influence all lesser-valued nodes by further decreasing their values.  The amount of influence depends on the value of the influencing node and a multiplier value.  Repeated application of this process result in all but the highest-valued nodes being reduced to 0.

In Tsotsos implementation, attention can be directed based on luminance, edges, colour opponency, optic flow, abrupt onset and offset, peripheral winner and stereo disparity.

The feature contrast detection model proposed in this thesis can be used to provide another characteristic of the image to which attention can be directed.  The output of the model is a map of the image with higher values representing higher levels of feature contrast.  The Tsotsos attention system is able to read and process this map as an image for which attention is to be guided to areas of greatest luminance.

Contrast detection is more commonly developed as a component of texture segmentation algorithms than as an input device for an attention system, although texture segmentation algorithms often focus on similarities rather than differences, or involve some global calculation and comparison rather than computing local contrast.  Measurement space clustering, region growing, and split and merge techniques are examples of texture segmentation algorithms that do not involve any form of local contrast (or similarity) measurement.

Techniques such as those in Jarvis & Patrick (1973), Haralick & Dinstein (1975) and Asano &Yokaya (1981) are the precursors for contrast based texture segmentation.  The Jarvis and Patrick algorithm involves creating a list for each pixel of similar neighbors for the surrounding KxK neighborhood.  If two pixels are each a member of the other’s list, they are categorized as belonging to the same region.  Asano & Yokaya look at the absolute value of a pixel minus the pixel at the center of all neighborhoods to which it belongs.  If the difference is small enough, the pixels are categorized as members of the same region.  This algorithm is looking at differences between pixels, but the emphasis remains on the similarity rather than the difference.  The difference value is used only in a yes/no decision.  There is no notion of degree of similarity involved in this algorithm.  

Spatial clustering algorithms use a combination of spatial nearness and measurement space nearness to determine if pixels ought to be categorized as members of the same region (Matsumo et al. 1981).  Pixels that contrast locally are spatially near neighbors but are distant in measurement space, and so this type of algorithm prevents locally contrasting pixels from being placed in the same region.  On the other hand, this method allows for gradual change within a region because each new pixel being considered for inclusion is compared in measurement space only to those pixels that are spatially located nearby.

Some more recent texture segmentation algorithms have focused more on differences between regions, that is, the local contrast at the border, than on the similarities of the interior pixels (Schofield & Foster 1995, Ma & Manjunath 2000).  The Edge Flow technique of Ma & Manjunath requires the calculation of three values at each pixel:  

E(s, () - the energy at pixel s in direction (,

P(s, () - the probability of finding an edge in the direction ( from s, and

P(s, (+() - the probability of finding an edge in the direction (+( from s.

The pixel ‘s’ is assigned a vector pointing in the direction with the highest probability of finding an edge.  Where the flows of vectors meet at an angle greater than or equal to 90(, an edge is marked.  This method can be extended to any feature dimension for which an energy measure can be calculated.

The method of Schofield & Foster (1995) is most similar to the method presented in this paper.  Both methods have processing units with properties based on cells found in biological visual systems.  The Schofield & Foster method uses a neural network with three layers.  The first layer performs edge detection, the second layer performs some of the tasks of complex cells in the visual system, and the third layer evaluates a decision, which is the response to the given task.  Using this method with two types of cells in the second layer of processing yielded results in close agreement with human results for both texture segmentation and target detection on images composed of line segments.

Examples of contrast detection in an attention system can be found in Koch & Ullman 1985), and in Wolfe (1994).  Koch & Ullman use “local inhibitory connections, mediating lateral inhibition” to indicate areas of high contrast in their feature maps.  However, because this is a small portion of the overall attention model, there are no details given about the implementation or results.  

Wolfe (1994) includes a more detailed description of his contrast detection method.  Wolfe calculates contrast for orientation and color.  The color scale used is an arbitrary mapping of spectral colors onto numerical values in a manner that is only a rough approximation of perception in that similar colours have closer values than dissimilar colours.  The algorithm contains six steps.

1. The difference between a pixel and each pixel in its 5x5 surround neighborhood is calculated.

2. This difference is thresholded to imitate the just-noticeable-difference of human non-attentive perception.  For example, although attentive processing can distinguish a 1( difference in line orientations, non-attentive processing requires a 10(-15( difference.  Any differences below the threshold are disregarded.

3. The difference is multiplied by a value obtained from very broad category channels.  These categorize the feature value as steep or shallow, left or right in the orientation domain, and yellow or blue, red or green in the colour domain.  The justification being that similarity is based not on exact values but on broad categories (Foster & Ward 1991a, 1991b).

4. The result is then divided by the distance from the central pixel to the neighbor.

5. The average of all neighbors becomes the bottom-up activation value for the pixel.

6. The activation weight is capped at an arbitrary value of 200, because it is assumed there is some maximum amount of contrast possible.

The contrast detection is combined with top-down processing which uses task information to affect the activation value for each pixel.  As with Koch & Ullman (1985), there are no results given which are specific to the contrast detection portion of the model.

1.3 The Center-Surround Feature Contrast Detection Model

Feature contrast is an indication of the degree to which an area of an image differs from its surroundings.  For example, an image of horizontal lines with a single vertical line will have low orientation contrast everywhere except in the vicinity of the vertical line.  If all lines are green except for one that is red, the image will have low colour contrast everywhere except in the vicinity of the red line.

To be used in the Tsotsos attention model and to represent biological feature contrast detection, a computational feature contrast detector requires the following properties:

i. The feature contrast detector results in a numeric value representing the degree of feature contrast present.

ii. Feature contrast is measured on a scale of [0..1] where 0 represents constancy (no contrast) and 1 represents the greatest feature contrast found in the image.  This interpretation of contrast value 1 means that all measurements within an image are relative, and so there is no relationship between the feature contrast values for different images.  A discussion of the work required for absolute feature contrast measurement can be found in chapter 6.

iii. Feature contrast is defined for dimensions that have a continuous range of values.  For example, line orientation ranges from 0( to 360(, intensity ranges from dark (absence of intensity) to the brightest supported by the image format, and each of the primary colours ranges from a lack of the colour to full colour, again as supported by the image format.  In each of these dimensions there is one configuration, which is the maximum contrast for that dimension and results in the maximum contrast value.  For orientation, this configuration is perpendicular line segments; for intensity it is dark to bright; for redness it is any mixture of only green and blue to only red.  A change to the values of any of the above pairs will bring the pairs closer to each other, and so will result in a lower contrast value.

iv. Feature contrast values are greatest when contrasting elements are in close proximity and decrease as the distance between elements is increased. 

v. The feature contrast detector must operate at a speed comparable to the detection of other features in the attention system.

The feature contrast detection model described in this thesis consists of five operations, each having some basis in biological vision systems.

1. The first operation is computing the feature maps.  For each dimension being considered, the algorithm must first determine the values within that dimension to attribute to each pixel.  For example, in the orientation dimension, two feature maps can be created – one representing the “horizontalness” of the image at each pixel, and the second representing the “verticalness” of the image at each pixel.  This type of representation can be found in the Feature Integration Theory of Treisman (Treisman & Gelade 1980, Treisman & Souther 1985, Treisman 1985, Treisman 1986a).

In addition to psychophysical evidence pointing to separate representations for individual features early in the visual process, neurophysiological studies indicate that different areas of the cortex process different features (Hubel & Wiesel 1968, Zeki 1975, Cowey 1979, Zeki 1981, Maunsell & Newsom 1987).  These studies have isolated distinct areas of neurons responsive to particular orientations, stereo disparity, color and movement.
2. The second operation is the construction of the multiple-resolution representation  based on the feature maps. Although there is no evidence for “quad” trees in biological vision systems, there is strong evidence for pyramidal organization (vanEssen & Zeki 1978, Cowey 1979).  The multiple-resolution representation described here is one implementation of a pyramidal hierarchy.  At the retinal level, a complete map of the visual field exists due to the physical properties of light and the optics of the eye.  This map is preserved in area V1, which passes information along to areas V2, V3 and V4.  Each of these areas also contains a topographical representation of the visual field, but at different scales.  The receptive field sizes of neurons increase from V1 through V2 and V3 to reach a maximum at V4.  In addition, several other visual areas that do not receive input directly from V1 also have retinotopic maps.  Neurons in areas MT, V3A and STS all have receptive fields near the size of V4 receptive fields.  Thus it appears that biological vision systems do not operate with a fully detailed representation of the visual field at every level of processing.  Rather, they use a method similar to a pyramid or tree structure that decreases resolution and simplifies computation.

3. The third operation is the convolution of the feature maps by a Difference of Gaussians (DoG) operator.  The DoG operator provides the implementation of the center-surround aspect of the detector.  Excitatory-center, inhibitory-surround (or reverse) configurations are found in retinal ganglion cells, LGN neurons, and V1 neurons.  (Kuffler 1953, Hubel & Wiesel 1961, Nelson & Frost 1978, Cowey 1979, Allman et al. 1985, Gilbert & Wiesel 1990, Knierim & vanEssen 1992, Li & Li 1994, De Angelis et al. 1994, Sillito et al. 1995, Goldstein 1996, Levitt & Lund 1997, Kastner et al. 1997)  In addition to neurophysiology, psychophysical results have also shown the center-surround configuration in the human visual system (Westheimer et al. 1976).
The Difference of Gaussians operator has been used extensively in computational vision in various manners for multiple purposes.  Difference of Gaussian filters are often used to create a representation of forms or shapes within an image.  Marr & Poggio (1979) use bar-shaped DoG filters to locate edges to be used for matching stereoscopic images.  Crowley & Parker (1984) use an array of DoG filters at various scales to create an orientation, scale and noise independent representation.  Hofmann & Hallett (1993) use Gabor and DoG filters to model pre-attentive phase discrimination. Croft & Robinson (1994) create a DoG based representation which can be sub sampled for compression with very little loss of data. Blakeslee & McCourt (1997 & 2001) also use anisotropic DoG filters, which they call oriented DoGs, to account for certain visual illusions such as simultaneous brightness contrast, the White effect, the Wertheimer-Benary effect and the corrugated Mondrian effect.    
The use of the DoG operator in this work diverges from previous use of the DoG operator in that it is applied on the feature dimensions rather than on the input images and the results are combined across features within each dimension, as described in step four.

4. The fourth operation is combining the DoG results for a given dimension.  This is the step that provides the behaviour of maximum response when an image feature is surrounded by features that differ along a specific dimension.  By using a weighted sum of the DoG values for each feature map, a contrast map for each feature value can be produced.  Each feature contrast map indicates the extent to which its target feature value is neighbored by contrasting feature values.  
Cells with similar behaviour have been found in V1, V2, V4, and MT (vanEssen & Zeki 1978, Nelson & Frost 1978, Allman et al. 1985, Maunsell & Newsome 1987, Gilbert & Wiesel 1990, Knierim & vanEssen 1992, Li & Li 1994, De Angelis et al. 1994, Sillito et al. 1995, Levitt & Lund 1997).  Several of these studies determined the optimal direction of motion and orientation of a cell, and then looked at the effect of different stimuli in the area surrounding the cell’s receptive field.  They located cells that show an increased response when the surround contrasts the orientation and/or direction of motion of the center stimulus.  The responses of these cells decrease as the surround is made more similar to the center, reaching a minimum when the two regions are the same.

5. The fifth and final operation is combining contrast maps from all dimensions to achieve a single contrast map for the image.   Nothdurft (Nothdurft 1993b, Nothdurft 2000a, Nothdurft & Paralitz 1993) has reported the results of several studies investigating the relationship between saliency in different dimensions.  He concludes that salience is not feature specific, that is, the perception of salience stemming from a green object in a field of red objects is the same as the perception of salience stemming from a vertical line in a field of horizontal lines.  He demonstrates that the perception of salience can be quantified and compared cross-dimensionally.  In this thesis, the weighting of each dimension of contrast relative to other dimensions has not been established, and so the contrast measurements represented in the final contrast map are simply the within-dimension contrast measurements.  In his more recent work, Nothdurft (2000a) studies the effects of a single elements being salient in multiple dimensions.  He reports that the degree of salience is greater than for an element salient in either dimension but not as great as would be predicted by adding the salience measures from the two individual dimensions.  Salience in multiple dimensions is beyond the scope of this thesis, and so in such cases, the final contrast map is assigned a value equal to the greater of the values in the two feature contrast maps.

1.4 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 describes the implementation of the center-surround feature contrast detector.  Different options for the implementation of each stage are presented along with the justification for the chosen option.  In cases where the decision was based on experimental results, these results are included in Appendix A.

Chapter 3 presents tests illustrating some of the fundamental properties of the center-surround feature contrast detector method.  This chapter shows that the method implemented as described in chapter 2 demonstrates the desired behaviour of a feature contrast detector as outlined in the introduction.

Chapter 4 compares the results of the center-surround feature contrast detector to the results of psychophysical tests on human subjects.  The psychophysical data come from Nothdurft’s “Feature analysis and the role of similarity in preattentive vision”.  Although it is difficult to achieve a direct comparison between computational and psychophysical results, this chapter shows that, for the class of images tested, the results are similar.

Chapter 5 compares the results of the center-surround feature contrast detector to the results of a similar computational model.  The model and results used for comparison are taken from Bergen and Landy’s “Computational Modeling of Visual Texture Segregation.”  The Bergen and Landy model was designed to distinguish contrasting areas within an image whereas the center-surround model is designed to locate contrasting elements, or the border between contrasting areas in an image.  Several limitations of the center-surround method are exposed in these trials, as the method does not successfully detect contrast borders in all classes of images included in these trials.

Chapter 6 presents an overview of the results achieved, the conclusions, which can be drawn from these results and a discussion of possible future research directions.
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