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A Convertible Bond (CB) is a corporate debt security that gives the holder the right
to exchange future coupon payments and principal repayment for a prescribed number
of shares of equity. Thus, it has both an equity part and a fixed-income part, and may
contain some additional features, such as callability and puttability.

In this paper, we study the model for valuing Convertible Bonds with credit risk
originally developed by Kostas Tsiveriotis and Chris Fernandes (TF). The Convertible
Bond is a derivative of the stock price, and the pricing model developed by TF is based
on a free boundary value problem associated with a pair of parabolic Partial Differen-
tial Equations (PDEs) with discontinuities at the time points when there is a coupon
payment, or when the bond is converted, or when it is called back (purchased) by the
issuer, or when it is put (sold) to the issuer. We explore the possible derivation of the
TF model and study the convergence of several numerical methods for solving the free
boundary value problem associated with the TF model. In particular, we consider the
Successive Over-Relaxation (SOR) iteration and a penalty method for solving the linear
complementarity problem used to handle the free boundary. Special emphasis is given

to the effectiveness of the numerical scheme as well to the treatment of discontinuities.
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Chapter 1

Introduction

A bond is a financial instrument or contract which is paid for up-front and yields a known
amount on a known date in the future. A bond may also pay a known cash dividend at
fixed times during the life of the contract. The cash dividend is often called a coupon, and
is usually paid semiannually or annually. Depending on the issuer, bonds are categorized
as corporate bonds or government bonds. The main reason a bond is issued is to raise

capital.

A Convertible Bond is a corporate bond with the additional feature that the bond
owner can exchange (convert) the bond into a specified asset, e.g. the company’s stocks,
at some time in the future. That is, the owner either receives periodic coupon payments
and a prescribed amount at a prescribed time when the bond expires, or the owner
converts the bond some time before it expires and forgoes the coupon payments and
principal repayment. A Convertible Bond may be associated with a call option, in the
sense that the company that issued the bond may have the right to buy (call) it back.
Likewise, a Convertible Bond may be associated with a put option, in the sense that the
holder may return (sell) the bond back to the issuer for a specified amount. Usually,
the holder of a Convertible Bond may convert it even after it is called. Therefore, a

Convertible Bond may involve many features, and its valuation (i.e., determining a fair



CHAPTER 1. INTRODUCTION 2

price for the bond) is complex.

Today, Convertible Bonds are very common, composing about 10% of all debt in the
USA (this is the average ratio of convertible to total debt between 1900 and 1993 [8]).
It is an indirect means to add equity to the capital structure, allowing a firm to borrow
more cheaply than if it issued a non-Convertible Bond [13]. However, a Convertible Bond
is very difficult to model and evaluate because its pricing involves both equity and debt,
as well as possible embedded call and put option features. Thus, pricing a Convertible
Bond involves many factors, such as the equity price, the maturity, the interest rate, the
volatility, the conversion ratio, and the exercise price. Currently, many researchers are

studying Convertible Bond pricing.

There are essentially two approaches to modelling a Convertible Bond [8]: one is
based on the firm value, the other is based on the equity value. The firm value approach
uses the modern Black-Scholes-Merton model. It assumes that the value of the firm as
a whole is composed of equity and Convertible Bonds, and it models the value of the
firm as a geometric Brownian motion. For example, Ingersoll decomposes the value of
a non-callable Convertible Bond (CB) into a straight bond K (with the same principal
as the Convertible Bond) and a warrant with an exercise price equal to the face value of
the bond, i.e. CB = K + max(yVy — K,0) where Vr is the value of the company at T
and 7 is the fraction of the equity that the bond holders obtain if they convert. Ingersoll
then generalizes his result to price Convertible Bonds with calls. Firm value Convertible
Bond models have also been developed by Brennan and Schwartz [3], Nyborg [13], and as
mentioned in [8] by Merton and Geske. On the other hand, the equity-value approach to
pricing Convertible Bonds is based on the equity, rather than the value of the firm. The
equity is modelled by geometric Brownian motion and uses the Black-Scholes equation.
The equity value Convertible Bond models include those developed by Tsiveriotis and
Fernandes [16], Ho and Pfeffer [9], and as mentioned in [8] by Goldman Sachs, Davis and

Lischka, and Quinlan. The firm value is not directly observable and has to be inferred;
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moreover, the true complex nature of the capital structure of the firm makes it difficult to
model. On the other hand, the price of the equity is explicitly observable in the market.
However, when a firm encounters financial difficulty, the firm value approach becomes
easier. Under the risk-neutral measure, the equity price follows a stochastic process. The
Convertible Bond value is determined by the maximum of the following values: the put
price, the conversion value, and the minimum of the call price and the current Convertible
Bond value. Cash-flows are valued differently depending on whether they are related to

equity or debt.

The model developed by Kostas Tsiveriotis and Chris Fernandes (henceforth referred
to as TF)[16] is based on the equity value approach. The model consists of two coupled
Partial Differential Equations (PDEs). The PDEs are linear, thus all the difficulty is
in the treatment of the boundary conditions and the treatment of the discontinuities
associated with the PDEs. This research paper explores accurate and efficient numerical
methods for solving these PDEs with particular attention to the method for handling the
boundary conditions and the discontinuities. We investigate three Finite Different Meth-
ods (FDMs): the explicit method, the fully implicit method, and the Crank-Nicolson
method. The explicit method applies the constraints directly; it is a first-order method,
and it is conditionally stable; therefore the convergence speed is slow. The fully implicit
method is also first-order method, but it is unconditionally stable. The Crank-Nicolson
method can be viewed as a combination of the two methods; it is a second-order im-
plicit method and unconditionally stable. For the implicit schemes, two iterative ap-
proaches to handling the free boundary conditions are considered. One approach is to
view the problem as a linear complementarity problem, and then use a Projected Suc-
cessive Over-Relaxation (PSOR) technique to solve the discrete algebraic equations. A
second approach is to view the problem as a nonlinear algebraic system, where the non-
linear constraint is approximated by a penalty method. The resulting system of nonlinear

algebraic equations is then solved using a Newton iteration.
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In order to gain some insight into the two approaches outlined above, we start by
considering the simpler problem of pricing an American option, which has a free boundary
similar to that associated with a Convertible Bond. This gives some insight into the more
complex problem of pricing a Convertible Bond.

A Convertible Bond may be converted some time during its life. We consider the
American-style Convertible Bond which can be converted any time during its life. Other
types of Convertible Bonds have restrictions on when they can be converted. They can
be viewed as special cases of the American-style Convertible Bond, and are therefore
easier to evaluate.

The organization of this thesis is as follows. Chapter 2 introduces the TF model and
its derivation. Chapter 3 presents finite difference discretizations of the PDEs associated
with the TF model. Chapter 4 explores the two approaches for handling the free bound-
ary associated with the TF model: the Projected Successive Over-Relaxation (PSOR)
method and the penalty method. Chapter 5 presents the numerical results, and discusses
the advantages and disadvantages of the methods considered. Chapter 6 concludes and

discusses some possible future work.



Chapter 2

Mathematical Model

This chapter introduces some models for pricing Convertible Bonds. To gain some insight
into this complex problem, we first consider the similar, but simpler, problem of pricing
an American option. We then discuss the TF model [16] for pricing a Convertible Bond,
as well as the related model in the paper of Ayache, Forsyth, and Vetzal [1]. Finally
we provide possible derivations for the TF model, since we could not find these in the

literature.

2.1 The American Option

The American option is a contract that gives the holder the right, but not the obligation,
to buy or sell the underlying asset (e.g., a stock) at a specified price in the future. The
option can be exercised any time before or at the maturity of the option, whereas a Eu-
ropean option can be exercised at maturity only. The added flexibility of an American
option typically makes it more valuable than the corresponding European option. How-
ever, this added flexibility also makes an American option considerably more difficult to
price than the corresponding European option. For example, some European options can
be evaluated analytically, while American options typically have to be priced numerically.

We take an American put option as an example.
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Let S denote the price of the underlying asset, typically the stock price, and let E
denote the exercise price. Let T" be the maturity time of the option, and let ¢ denote the
current time: 0 < ¢ < T. The option price V is a function of S and ¢. The standard
approach for pricing an American option is associated with a free boundary problem [18],
and the exercise boundary S;(t) generally varies with time. The American put option
should be exercised if S < S;(t) and held otherwise. At any time during the life of the

option, the value of a put option satisfies
V(S,t) > max(F — S,0). (2.1)

In addition, the option value satisfies the following differential inequality associated with

the Black-Scholes Partial Differential Equation [18]:

oV 025292V oV
AT v <o. 2.2
8t+ 5 852-1-7'585 rV <0 (2.2)

At any given time, one of (2.1) or (2.2) must be an equality. The final condition is
V(S,T) = max(FE — S, 0), (2.3)
and the boundary conditions are

V(0,t) = E,

V(S,t) ~ 0 as S — oc. (2.4)

We can reformulate the problem above as a linear complementarity problem. To this

end, we introduce the notation

2Q2 92
Ul LU, (2.5)

LV=art 5 252 "%

and let

V*(S,t) = max(E — S,0), (2.6)

denote the payoff function. The option can either continue to be held (LV = 0) or be

exercised (V = V*); therefore, at least one equation holds. Thus, the American option
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price V (S, t) satisfies the linear complementarity problem

LV =0 LV <0
Vv

V-V >0 V-V =0

together with the final condition (2.3) and the boundary conditions (2.4). In (2.1),
the symbol V means that either the two conditions in the left bracket hold or the two

conditions in the right bracket hold.

2.2 The TF Model

A Convertible Bond (CB) has both an equity part and a fixed-income part. In general,
the CB is regarded as a derivative of the underlying equity and interest rate, and can
be accurately valued only by simultaneously pricing the equity and fixed-income parts.
Considering the exposure to different credit risks, or default risks, the TF model views the
value of a CB as two components. It introduces a new hypothetical security, the “Cash-
Only” part of the CB, abbreviated as COCB. The holder of the COCB is entitled to all
cashflows, and no equity flows, that an optimally behaving holder of the corresponding
CB would receive. This part is related to the future cash payments: the coupon, principal
repayment, and, when coupled with put provisions, the cash payment to the holder if the
holder sells the CB back to the issuer. Clearly, these cashflows depend on the issuer’s
timely access to the required cash amounts, and thereby introduce credit risk. However,
the equity part has zero default risk, given that the issuer can always deliver its own
stock.

To evaluate the credit risk, the TF model introduces an effective credit spread, which
can be simply approximated. CBs should be viewed and valued as derivatives of the
underlying equity and interest rate, and, because the value of the future cash payments
that a rational CB holder will choose to receive is itself a derivative of the underlying

equity and interest rates, the value of the COCB is also a derivative security of the same
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underlyings.

Let U represent the CB value, and B represent the COCB value. Then U — B
represents the value of the CB related to payments in equity, and it should be discounted
using the risk-free interest rate.

The TF model is described using two coupled parabolic partial differential equations,

0B 0%5%6°B 0B

Bt T2 agz TSy BB =0, 27)
oU  02S8%20%°U oU
—Bt +Tw+TgSg—T(U—B)—(T+7"C)B+f(t)_O: (28)

where S is the price of the underlying stock, r the risk-free interest rate, r, the growth
rate of the stock, r. the observable credit spread between the convertible and the non-
convertible bonds of the same issuer for maturities similar to that of the CB, and f(¢)
describes various predetermined external flows — in cash or equity — to the derivative.

For example, for a bond paying a coupon of ¢; at time ¢;, we have

F#) =2 ot =), (2.9)

where ¢ is the Dirac function. We will ignore f(¢) for now, and leave the handling of
coupon payments to the later chapters (Chapter 3 and 4). Equations (2.7) and (2.8)
differ only in the discounting terms (r + r.)B and (U — B) + (r + r.)B, which reveal
the different credit treatment of cash payments and the equity upside. The derivation of
equations (2.7) and (2.8) is described in the next section.

Now we discuss in detail the final, boundary and other conditions that the solutions
must satisfy due to conversion, callability, and puttability.

Assume that the bond has the face value of F', and a coupon payment of ¢; = C
semiannually. Let 7" be the maturity time of the Convertible Bond, and assume that the
bond can be converted any time during its life. The conversion ratio is x, which means
the bond can be converted into x shares of the company’s stock. It is callable at the
price B., and it is puttable at the price B,. Note both B, and B, are functions of ¢ due

to the accrued interest which will be addressed in Chapter 3.
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At maturity, the bond holder may choose either to be repaid the principal F' or given

k shares of the company’s stock. So the final condition is

r

F+C fF+C>kS
B(S,T) = «
0 if F+C < kS.

\

F+C ifF+C>kS
U(S,T) =

kS if F+C < kS,

\

Without loss of generality, when the CB is not puttable, we can set B, = 0, and,
when it is not callable, we can set B, = co. The bond price should satisfy the following
constraint

A

U = max(B,, S, min(B,, U)), (2.10)

where U is the “continuous value” of the CB, which means that none of the events of
convertibility, puttability, and callability happens.)
In detail, at any time ¢, 0 < t < T, we obtain the conditions:

Upside constraints due to conversion:

U(S,t) > kS,
B(S,t) =0, if U<&kS.

Upside constraints due to callability by the CB issuer:

U(S,t) < max(B, kS),
B(S,t) =0, if U> B,
where it is assumed that the holder has the right to convert if the issuer calls the CB.

Downside constraints due to puttability by the CB holder:

U(S,t) > B,,

B(S,t)=B,, if U< B,
To formulate the boundary conditions, we modify equations (2.7)-(2.8) at S = 0 and as
S — oco. At S =0, we have

B
%—t—(r+r0)B = 0,
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oU
— — —r.B = 0. 2.11
ey rU —r, 0 ( )

As § — oo we assume that the unconstrained solution is linear in S, therefore

0’B
o =V
0%U

Since the underlying stock price follows a lognormal random walk, using z = In S we

can convert Equations (2.7)-(2.8) into a simpler pair of diffusion equations:

0B ¢*3’B 0® 0B
gor R B =0. 2.1
5 T3 g T e )5, —(rrr)BHf(t) =0 (2.13)
oU  0*d*U o? oU
R — _\_— _ — B) — ) B =0, 2.14
o 5 g + (g 5 )(% r(U—-B)=(r+r)B+ f(t)=0 (2.14)

2.3 Model Derivation

We could not find a derivation of the TF model in the literature. Therefore, to understand
the TF model, we derived the model through different approaches. We observe that in
the TF model there are two rates, r and r4, which are the risk-free interest rate and the
stock growth rate, respectively. However, using 7, in equations (2.7) - (2.8) does not seem
right to us. Neither the TF paper [16], nor the paper of Ayache, Forsyth, and Vetzal
[1] explain why 7, should be included in these equations. In the example in the former
paper, 7 is implicitly used for r4; in the latter one, r is used for r,. To understand these
equations better, we derive them using three different approaches: the arbitrage-free
approach, the probability of default approach, and the present value theory approach.
The first approach is based on a discussion with Professor Robert Almgren, and uses the
classical no-arbitrage theory of mathematical finance; the second approach is based on
the probability perspective that is used in the paper of Ayache, Forsyth, and Vetzal [1];
the third one uses present value theory [2]. The first two approaches give rise to ry = r,

and the third one provides a possible explanation for using r, # r. We tend to believe
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the arbitrage free approach is the most natural one in this context. In the later chapters,
we use 7, = r without further discussion.

Before discussing these approaches, we review some basic concepts. As is customary,
we assume that the stock price is a stochastic process that follows the Geometric Brownian
Motion

dS = oSdW + pSdt, (2.15)

where 1 and o are the drift rate and volatility, respectively, and W is a Wiener process.

According to Ité’s Lemma, any derivative G = G(S,t) depending on S satisfies

dt + aS%dW + o(dt), (2.16)

0G 025%20*°G 0G
dG = (,uS ) 55

s 2 o ot
assuming G is sufficiently smooth. The COCB price, B, and the CB price, U, are financial

derivatives depending only on time and stock price (the risk-free interest rate is constant),

so we have
0B 0B 0?S%?0°B OB
dB = —d — ———— + — | dt. 2.1
US@S W+<u5’as+ 5 852+8t) (2.17)
oU oU o0258%20°U oU
dU =o0S5S—d ——— 4+ — | dt 2.1
U 05’85 W—i—(,uSaS-i- 5 852+8t) , (2.18)

These equations hold when there is no credit risk. Note that U includes B, while

U — B is the value that comes only from the convertibility.

2.3.1 Arbitrage Free Approach

In a short time interval, when there is no credit risk, the price change of a Convertible
Bond would be the same as (2.18). If there is credit risk, it affects the price of the COCB
part. The probability of loosing 100% of the value due to default at some time ¢ can
be “simulated” by a situation where a fraction of the money is lost per timestep. That
is, during a small interval dt we assume we loose r.Bdt, where r. is the credit spread.

Therefore, we adjust (2.18) to obtain the following equation

dU = 0S——dW + | uS== + =

U U *SPU U
83 Hoos ™ 2 952 T ot

) dt — r.Bdt. (2.19)
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Consider a portfolio I that is long one CB and short A shares of stock: II = U — AS.
Then
dll = dU — AdS, (2.20)

Substituting (2.15) and (2.19) into (2.20), and choosing A = 9% to eliminate the stochas-
tic term involving dW, we have

02S?20°U oU
dil = <—2 a5 ot

— ch) dt. (2.21)

To avoid creating an arbitrage opportunity, the portfolio must earn the risk-free interest

rate, which implies that

dIT = r1ldt, (2.22)
Thus
0%S?20°U oU
Tdt = - __ + — _r B 2.2
rIldt (2 952 T e )dt, (2.23)
hence
0258%20°U oU
nm=-—-————-—+——-r.B. 2.24
r 2 o5z T ot (2:24)
Since [I =U — Sg—g, we have
oU 02S20°U oU
—S=2) = - 4+ _r.B, 2.2
"U=535)= 3 a5t "o " (2.25)

which can be rewritten as

oUu  0*S?9°U ou
— —r.B=0. 2.2
5 T 5 g5z TSgg ~U-rB=0 (2.26)

This is the PDE (2.8) (excluding the cash flow f), since —r(U — B) — (r + r.)B =

—rU — r.B. Similarly, we can obtain (2.7).

2.3.2 Probability of Default Approach

Consider again the portfolio of the last subsection,

dll = dU — AdS, (2.27)
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in the absence of default. Substituting (2.15) and (2.18) into (2.27), and similarly as

ou

before choosing A = &%,

we get

U 0252 92U
dn_lE“L 5 @] dt. (2.28)

Now we consider default in a slightly different way than in the last subsection. Assume

that
e the probability of default in the time interval [¢,¢ + dt] is pdt;

e on default, the bond holder will loose B (the whole COCB value, this is total default

event);
e the stock price S is unchanged on default.

Then, equation (2.28) becomes

dIl = (1 — pdt) [%—[j + @%ﬂ dt — pdtB, (2.29)
which becomes
dIl = [aa_(t] + ?%ﬂ dt — pdtB, (2.30)
where [%—g + 5 ngg] p(dt)? is ignored when dt is small.

Assuming the default risk is diversifiable, the portfolio must earn risk free interest
rate. Therefore,

E(dII) = rIldt = r(U — AS)dt, (2.31)

where E(-) denotes the expectation in the risk neutral world.

Combining (2.30) and (2.31), we have

oU  o0258%20°U oU
22 2= -~ _ —nB =0. 2.32
8t+ 5 852—1-7’585 rU —p 0 (2.32)

Taking p to be the credit spread, we obtain the PDE (2.8). Similarly, we can obtain
(2.7).
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2.3.3 Present Value Theory Approach

At some future time ¢+ dt, the value of COCB is B(S +dS, t+dt). Suppose the discount
rate for the COCB is w, then

B(S,1)

= E(B 2.
o B(B(S +dS,t +du)), (2.33)

where F(-) denotes the expected value. The above equation can be rewritten as

wdtB(S,t) = E(B(S + dS, t + dt)) — B(S, t). (2.34)
Since
E(B(S +dS,t +dt)) — B(S,t) = E(B(S,t) + dB) — B(S,t) = E(dB), ~ (2.35)
we have
wdtB(S,t) = E(dB). (2.36)

According to Ito’s Lemma,

0B

0B 0%S?0°B OB
_ 98 ob o0 0"5 | OB 9.
dB aSade-l—(uSaS-l- 5 852+8t>dt (2.37)
Noting that
E(dW) =0 (2.38)
we have
0B 0%S?0°B 0B
E(dB) = —t — 4+ — 2.
(dB) (,uSaS-l— 5 852+8t>dt (2.39)
Combining (2.36) and (2.39) gives
0B 0%S?0°B 0B
97,7297 877 uB=o. 2.4
o T o g T T WB =0 (2.40)

This is (2.7), if we regard w as (r + r.). Since B is the risky bond component, this is
reasonable because B should be discounted using the risky rate.

To derive (2.8), we follow similar steps, taking into account that, when discounting
U — B, which is the equity component, the risk-free interest rate r should be used, and

when discounting B, the risky rate r + r. should be used.
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2.4 The Interpretation of Ayache, Forsyth, and Vet-

zal

Ayache, Forsyth, and Vetzal [1] extend the TF model. The authors explore the valuation
of the Convertible Bond coupled with credit risk by providing detailed information about
the handling of default: whether the stock price jumps to zero or not, how much the
recovery rate is, etc. They argue that many of the existing models, such as TF [16], are
incomplete, because there is no explicit specification about what happens in the event
of a default by the issuing firm. In these models, it is implied that, upon a default,
the firm’s stock price does not change at all, or instantly jumps to zero; however, in
reality, this is questionable in that the market must gradually react to the occurrence
of default, and the stock price should not collapse suddenly. Therefore, an appropriate
model should reflect that the firm’s stock price falls to some value between 0% and 100%
of the pre-default value.

This paper investigates a detailed problem solving procedure. It sets up a model with-
out considering credit risk, analyzes the risky bond by taking into account the probability
of default, and then adds credit risk into the model. The resulting model is referred to
as partial default model. The TF model is a special case of the partial default model
presented in [1], in that the stock price does not jump if default occurs. The CB is again
split into the equity and COCB part, and the equations (2.7)-(2.8) still hold.

In order to solve the problem using the penalty method, the TF model is written as

a linear complementarity problem. Let

oU  02S%9%U oU
N(U,B)EE‘F 2 @—FTQS%—T(

U-B)—-(r+r)B. (2.41)

Then the linear complementarity problem takes the form

e if B, > kS:
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N(U,B)=0
(U — max(B,,kS)) >0
(U - Bc) S 0

N(U,B)<0
V[ (U—-max(B,,kS)) =0
(U - Bc) S 0

N(U,B) >0
V| (U —-max(B,,kS)) >0
(U - Bc) =0

o if B. < kS,

)

16



Chapter 3

Discretization

To approximate the solution of the PDEs in Chapter 2, we use the Finite Difference
Method (FDM) for both the spatial and temporal discretization. In this chapter, we
provide the discretization for (2.8) for spatial grid points, and focus on three FDMs for
the time discretization: the explicit, the fully implicit, and the Crank-Nicolson methods;
then we interpret the constraints and boundary conditions, as well as the cash flows;
finally we compare these methods in terms of stability and convergence.

We use the change of variables 7 = T'—t to transform the PDEs from forward time to
backward time. Recall that V' denotes the value of the American put option, U denotes
that of the Convertible Bond, and B denotes that of the COCB part of the Convertible

Bond. The Black-Scholes equation used for American option pricing becomes

v 2S2PV oV
v _ v _ 3.1
o~ 2 a5z s Y (3-1)

and the coupled PDEs for a Convertible Bond (2.7), (2.8) become

0B 0?5?9’B 0B

8—7_ = —2 @ + TS% - (/r + rc)B, (32)
oU 0252 92U oU
E = TW—FTS%—T(U—B)—(T—FTC)B. (33)

We ignore f(t) for now, leaving it for the discussion in Section 3.3.

17
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Many researchers recommend the change of variables = In S for equations (3.1) to (3.3)

to get

oV o2 0%V 0% oV

2 - 227 S 4
or 2 012 +(r 2 )&U v, (3-4)
0B 0% 0°B o’ OB

e T P i 2B, .
or 28ac2+(r 2)6:L' (r+7e) (3.5)
oU 0?2 0°U o? oU

- - s w-B)- B. .
5 5 a2 + (r 5 ) e r(U )—(r+r.) (3.6)

We provide some results using this transformation in Chapter 5, but in the rest of the

chapters, we develop the methods for the original equations (3.1) to (3.3).

We choose a set of grid points in forward time

{to,tl,tg,...,t]v}, to=0<t1 <---<ty="1T. (37)

Define At, =t,41 —t,, n=0,1,..., N — 1. Usually we choose

Ato = Atl == AtN,1 = At, (38)

but we may choose nonuniform timesteps to improve efficiency.
We use 7,, to denote the backward time points: 7,, = ty_,,n = 0,..., N. Suppose
we choose N timesteps with uniform stepsize A7 = T/N. Then the time grid points for

backward computing would be

Tn=T—nAr, n=01,...,N.

Define S; = iAS, i =0,1,...,m, to be the uniform spatial grid points, where AS is
the grid spacing, and note that Sy and S, are boundary points. Define U ~ U(S;, ;)
to be the approximation to the solution of (3.3) at asset value S; and time 7,,. Let U"
denote the vector (U} UP --- U™)T at time 7,. In the following, we investigate the rule

for computing U™ from U", and then present similar formulae for B and V.
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3.1 Finite Differences

A finite difference (FD) provides an approximation to a derivative. The first time-

derivative of U is often approximated by

oUu ur—-ur!
This is called a backward difference. The corresponding forward difference is
oUu urtt —yr
- i Tn ~ ;_ ]_
or (Sis ) AT (3.10)
The first spatial-derivative g—g(Sz-, T,) has three common approximations:
Ui, - U ur-ur, ur,-U",
i i i i d L el 11
AS N 9AS (3-11)

These are called the forward difference, the backward difference, and the central differ-
ence, respectively.
One of these approximations is asymptotically more accurate than the others. From

a Taylor series expansion of U(S + AS, 7) about the point (S, 7) we have

oUu AS%9*U 5
U+ AS,7)=U(S,7) + ASﬁ(S, T) + 5 @(S, T) + O(AS?). (3.12)
Similarly,
oU AS% 92U 3
US—AS,7)=U(S,7) — Asﬁ(S, T) + 5 W(S’ 7) + O(AS?). (3.13)

Subtracting one from the other, dividing by 2AS and rearranging gives

Sg(8,7) = = + O(AS?). (3.14)

Thus the central difference has a truncation error (the error in the approximation of
the derivative) of O(AS?), whereas the truncation error for the forward and backward
differences are O(AS). Consequently, the central difference is more accurate asymptot-

ically than the forward or backward difference because of the fortunate cancellation of
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terms, due to the symmetry about S in the definition of the central difference. We use
the central difference as the approximation to the first spatial-derivative throughout this
thesis.

The second derivative with respect to S is frequently approximated by the central

difference formula

0°U i — 207 + U

o7 S0 ® T K

(3.15)
Again, this comes from a Taylor series expansion. It is easy to show, as we did in (3.14),

that the truncation error in this approximation is also O(AS?).

3.2 Finite Difference Methods

Consider (3.3) and a uniform spatial discretization of [0,00]. Clearly, Sy = 0. Since
numerically we cannot set S,, = oo, we use a large number L to approximate oo and set
Sm = L. We will discuss how to choose this large number in Chapter 5. Consider also
a parameter 6, called the implicitness parameter, that satisfies 0 < # < 1. Then using
the FD approximations from the previous section, the differential equation (3.3) can be

approximated by the finite difference equation

uptt —ur 025208, — 22U + U ur, - U
7 1 — 1— [ 1+1 7 1—1 ; 1+1 i—1 n
AT ( 0)( 2 INGE +7'572AS TUz)
p o?S2 UM —2urtt + Ut S, R R
2 AS? 2AS
—r B, (3.16)

fori=1,...,m—1.

We refer to this as the f-method, although we use 7.B"™ in (3.16) instead of (1 —
0)r.B} + Or,B'™ that would appear in the standard #-method. We found that the
standard #-method gives poor results; our modified one in (3.16) provides better results.
The intuitive reason, we believe, is that the current value of U; should be dependent on

the most recent value of B;.
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Fori=1,...,m —1, define

O'QSZ-2 TSZ'

% = (33g7 ~3ag)7T (3:17)
02522 rS;
b = (Gagz toag)R"™

From now on, whenever it is clear from the context, we will drop the indication of the 7
index range.

Then (3.16) becomes

Urtt—Up = (1-0) (U — (rAT + 0s + B)UT + BT )
+0 (U — (rAT + oi + B) UM + BURY)
—r ATBM (3.18)
Moving all the terms involving U™"! in (3.18) to the left, and the terms involving U™ to
the right, we obtain
Ut = 0 (aUP% — (rAT + 04+ BUPH + U

= Ur+ (1—0) (aalUy — (AT + i + B)UP + BUR, ) — reATBP. (3.19)
Similarly, for B and V', we have

B = 0 (B! — (r + o) AT + o + 5) BY ! + BB

= B+ (1-0) (B, — (r+71)AT+a; + ;) BI + BBy, ), (3.20)
and

vttt g (ai‘/;rf{l — (rAT 4+ oy + BV + ,311/;7}:{1)
= VP4 (1-0) (V') — (rAT + 0 + BV + BiVEL) - (3.21)
Note that we have used uniform grid points in the whole spatial domain. This wastes

points in regions where there is little variability of the solution. We could use non-uniform

grid points and put more grid points in regions where the solution changes rapidly and
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fewer grid points where the solution changes more slowly. The finite differences would
have to be adjusted accordingly.

Notice also that Bt must be computed before U"*!| since the (3.19) involves B/
This does not mean that B**' is independent of U™'. As explained in section 3.3, the
free (interior) boundary conditions introduce dependency between BI*! and U,

We next discuss three specific finite difference methods (FDMs) for discretizing the
time variable in the PDEs in (3.1)-(3.3), namely the explicit method, the Crank-Nicolson
method, and the fully implicit method. These methods arise when # in (3.19)-(3.21) is

set to certain values. Specifically,

when 6 =0, we get the explicit or Forward Euler method;
when 6 =1/2, we get the Crank-Nicolson Method or Trapezoidal Rule;

when 6 =1, we get the fully implicit or Backward Euler method.

3.2.1 Explicit FDM

In (3.19), when 6 = 0, we have
UMt = Uy + (1 — (rAT + oy + B))U + BiUR, — reATBM (3.22)

In the above equation, U"** is given by a difference formula in terms of U? |, U?, Ul 1,
and BM"!. The time derivative uses the option values at times 7,, and 7,,;, whereas all
other terms use values at 7,, given that B! has been calculated before hand. Because
the value of U™ can be computed explicitly from the already computed values UP |, U?,
and Uj,; at time 7,, this method is called the erplicit finite difference method. The
truncation error for the explicit FDM is O(At + AS?).

Similarly, for B and V', we have
B = B, + (1 — ((r + 1) AT + oy + ) BE + 8;B2,,, (3.23)

and

VI = iV 4+ (L= (PAT + as + B))Vi" + BV (3:24)
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The (3.23) and (3.24) are traditional explicit methods, whereas (3.22) is not quite a

traditional explicit method because of the B*** term.

3.2.2 Fully Implicit FDM

In (3.19), when 6 = 1, we have
—q UM + (1 +7AT + oy + B) UM = BUR = UP — r ATB. (3.25)

In the above equation, U/"*! is related by a difference formula with U, U, U4
and B!, Consequently, U™ cannot be explicitly computed in terms of only past values
of U (i.e., values at timestep n). This method is called the fully implicit finite difference
method. The truncation error is O(At + AS?).

Similarly, for B and V, we have
—a; B 4+ (1 + (r + 1) AT + i + ;) B — BB = B, (3.26)
and

—q VM + (L+rAT + o + BV = BV =V (3.27)

2

3.2.3 Crank-Nicolson Method

The Crank-Nicolson method can be thought of as an average of the explicit method and
the fully implicit method. It uses six U values, three at time 7,, and three at time 7, ;.

In (3.19), when 6 = 3, we have the Crank-Nicolson scheme

— UM + (24 rAT + i + B U — UMY

= oU + (2 — (rAT+ o5 + 6:)) U + BUL, — rATBME (3.28)

The truncation error for the traditional Crank-Nicolson method is O(At? + AS?), but,

because of the term of —r,A7B""!  in our modified version (3.28) of this method, the
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truncation error is O(At* + AS?), where 1 < a < 2. Hence the truncation error for U in
our modified version is not as small as that in the traditional Crank-Nicolson method.

Similarly, for B and V', we have
— B + (24 (1 + 1) AT + i + B) B — BB
= B+ 22— ((r+r)AT + 0o + 5:)) B + BB, 1, (3.29)
and
—q VP 4 (24 PAT + oy + BV - BV
= oVl + 2 - (rAT+ o + 5:))V" + BVl (3.30)

Note that (3.29) and (3.30) are implementations of the traditional Crank-Nicolson method.

We have not modified them.

3.3 Boundary Conditions, Coupon Payment, and Ac-
crued Interest

Now we discuss how to incorporate the boundary conditions, the coupon payments, and
the accrued interest.

When S =0, (3.2) and (3.3) reduce to (2.11), which can be discretized as

Bt — pn
= 0 Ar O = H(r+r)BFt - (1—-6)(r+r,)BY,
Un+1 - Ug n n n

and for the American option, this boundary condition is
Vn+1 - W n n
OTO = —0rV M — (1 - 0)rV. (3.31)
The above can be rearranged to
(14+0(r +r)AT)BY = (1—(1—0)(r +r.)AT)B},

(1+o0rAn)UFT = (1= (1 -0)rAr)UY — r.ATBIH, (3.32)
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and

(1+0rAT)VI* = (1 — (1 — 0)rAT)V. (3.33)

For large values of S, the finite difference representation for the boundary condition (2.12)

1s

Byt = 2BR*) - Bt
urtt = ountl —pyntl (3.34)

For the American option, it is
Vot = oyt — vt (3.35)
An alternative boundary condition for a Convertible Bond for large S is
B =0, Ut = kSp,. (3.36)
And for an American put option, it is
Vit = . (3.37)

In each iteration of PSOR method, we use (3.34) and (3.35); in the penalty method, we
use (3.36) and (3.37).

We now discuss the handling of coupon payments given by (2.9). Let ¢ be the
forward time the instant after a coupon payment, and ¢, the forward time the instant

before a coupon payment. Then the discrete coupon payments are handled by setting

U(S,t,) = U(S,t5) +cp,

B(S,t;) = B(S,t) + cu- (3.38)
The payoff condition for the Convertible Bond at ¢t =T is

U(S,T) = max(kS, F + cast), (3.39)
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where ¢, is the last coupon payment at 7. For semiannual coupon payments equal to
C, assuming T (the number of years to the maturity of the bond) is an integer, we have

Clast = C.

Let ¢t be the current time in the forward direction, ¢} the time of the previous coupon
payment, and £, the time of the next pending coupon payment. Then, between two
coupon payments, we have ¢; <t < tf ;. The accrued interest on the pending coupon

payment at time ¢ is

e
ACCI(t) = Ck_f_lcitc.
k+1 ~ Yk

(3.40)

Usually quoted prices are clean prices; dirty prices include any accrued interest that has
accumulated since the last coupon payment. The dirty call price B, and the dirty put

price B, are given by

B.(t) = B + Accl(t),

By(t) = B + Accl (¢), (3.41)

where BZ' and B are the respective clean prices.

For programming purposes, in order that the B.(t) and the B,(t) work globally re-
gardless of the period of callability and puttability, we assign special values to B.(t) and
the By(t). In the period when the Convertible Bond is not callable, we assign B.(t) a
large value so that the call event is unlikely to happen; in the period when the Convertible

Bond is not puttable, we assign zero to B,(t) so that the put event never happens.

According to Hull [10], we suppose that the convertibility, and the exercise of the
call and put would happen immediately after the coupon payment; and in our numerical
procedure, we apply the call, put, and converting constraints first, and then add the

coupon payment (because we are proceeding backwards in time).
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3.4 Matrix Formulation

In this section, we describe how the discretized equations can be written in matrix format.

Recall (3.19), and define the (m + 1) x (m + 1) matrix My by

—rAT 0 0 ... 0

a;  —(rAT 4+ oy + B) By ... 0

My = 0 Qs —(rAt+as+8s) ... 0
Brm-1

0 0 0 .. 0

The matrix My is tridiagonal, that is, except for three central diagonals all the elements
of the matrix are zero.

Recall that

Ut = (U5 U s Upey U (3.42)
and
B"=(By By --- B"_, B")T. (3.43)

Let I be the identity matrix of size (m + 1) x (m + 1). The equation (3.19), for ¢ =
1,...,m — 1, together with the boundary conditions for U in (3.32) and (3.36) can be

written in matrix format as

(I—6My)U™ = 1+ (1 —6)My)U" — r,ATB" L. (3.44)
Similarly, define
—(r+r.) AT 0 0 .0
o —((r+7r) AT+ aq + B1) b1 .0
Mg = 0 Qo —((r+ro)AT+as+f2) ... 0
ﬁm—l
0 0 0 0
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and the matrix formulation of equations (3.20), for i = 1,...,m — 1, together with the

boundary conditions for B in (3.32) and (3.36) is
(I-6Mg)B™"' = (I+ (1 - 6)Mg)B". (3.45)

For an American option, the matrix formula is similar to (3.45) with the respective matrix

being M = My. Recall that
Vi= (Ve Ve Vi VT, (3.46)
so we have
(I- GM)V"+1 =TI+ (1-6M)V". (3.47)

Note that the matrix formulations (3.44) and (3.45) include the alternative boundary
conditions of (3.36) for large S. More specifically, the calculation of the last row in (3.44)

results in

umtt=ur (3.48)

and eventually, for all the timesteps, it becomes

Ut = =" =... ="

m-

(3.49)

Since U, = kSy,, the alternative boundary conditions for U in (3.36) have been included

in (3.44). Similarly, the calculation of the last row in (3.45) results in
B! =B, (3.50)
and eventually, for all the timesteps, it becomes
B! =B" =B" =-.-= B, (3.51)

which, since BY = 0, implements the alternative boundary conditions for B in (3.36).
Note that the formulations (3.44), (3.45), and (3.47) are linear problems. However,

this does not mean that a linear system is solved at each time step. When the free
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(interior) boundary conditions are taken into account, eventually a non-linear problem
results at each time step. These non-linear problems are solved by iterative methods
as discussed in the next chapter. Note also that, if we prefer to apply the boundary
conditions (3.34) and (3.35) at the right end, we cannot incorporate them into the matrix
formulation. However, at each timestep, we can easily adjust the values of B%™ and U*+!
according to (3.34), and the value of V**! according to (3.35), after having solved the
problems arising from (3.44), (3.45), and (3.47).

Note that for # # 0, the matrices on the left side of (3.44) to (3.47) are tridiagonal.
In the case of 6 = 0, i.e., the case of the explicit method, the matrices on the left side of
(3.44) to (3.47) degenerate to the identity, therefore no system needs to be solved. This

is, of course, the property of any explicit method.

3.5 Stability and Convergence

The explicit method is conditionally stable and convergent; the time and spatial stepsizes
must satisfy a relationship of the form At and AS to preserve stability. The relationship
is usually At < aAS?, where a is a constant. The fully implicit method and the Crank-
Nicolson method are unconditionally stable and convergent; there is no restriction of the
above form on At and AS. The explicit method and the fully implicit method are both
first order methods with respect to the timestep At and second order with respect to
AS. That is, the truncation error is O(At + AS?). An advantage of the fully implicit
method is that it smooths discontinuities in the initial conditions and, as noted above,
does not have a stability restriction on the choice of the timestep At. The standard
Crank-Nicolson method is a second order method with respect to both At and AS. Its
truncation error is O(At* + AS?). Thus, it has a higher convergence rate with respect
to At than the previous two methods. However, our modified Crank-Nicolson method

(3.28) has a truncation error that is not as small as O(At? + AS?).
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Iterative Methods

To solve a linear system, we can use either a direct or an iterative method. A direct
method attempts to solve the problem in one step; an iterative method starts with
an initial guess, and successively improves it until it is sufficiently close to the exact
solution. However, as noted in the last chapter, though relations (3.44), (3.45), and
(3.47) are linear systems, we cannot just solve them and proceed to the next time step.
We need to take into account the free (interior) boundary conditions, and eventually solve
a non-linear problem. A direct method cannot incorporate the free boundary conditions
arising from callability, puttability, and conversion; while an iterative method, when
appropriately adjusted, can. The Projected Successive Over-Relaxation (PSOR) method
and the penalty method used with an implicit Finite Difference method are iterative
methods appropriate for handling the free boundary conditions. In this chapter, we
discuss both the PSOR and the penalty methods which are used to solve the non-linear
problems arising from (3.44), (3.45), and (3.47), when the free boundary conditions are

taken into account.

30
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4.1 PSOR Method

Before we consider PSOR, we review the Successive Overrelaxation (SOR) method, an
iterative method for solving systems of linear algebraic equations. SOR is an extension
of the Gauss-Seidel method, and can be derived from it by introducing a relaxation
parameter. The computation of the i® vector component by SOR takes the form of a

weighted average between the previous iterate and the computed Gauss-Seidel iterate,
crn.k k— ,k k—
ViR =V oV -V, (4.1)

where k is the iteration index, n the timestep index, V™" is the respective Gauss-Seidel
iterate, V™*~! the previous iterate, and w the relaxation factor, where 0 < w < 2. When
w = 1, formula (4.1) reduces to the Gauss-Seidel method; when 1 < w < 2, it is called
over-correction or over-relaxation; and when 0 < w < 1, it is called under-relaxation.
However, because in many cases the optimal relaxation factor satisfies 1 < w < 2, the
term over-relaxation is used generically.

The PSOR method is an extension of the SOR method for solving free boundary
value problems such as those that arise for American options. We consider PSOR for
American options first for simplicity.

For American options, every iteration involves comparing the value of the option that
would be obtained if you don’t exercise the option to the payoff value V;"H’* that you
would obtain if you do exercise the option, and taking the larger of these two values
as the value of the option at that point. That is, the PSOR iteration for an American

option at node S; and time 7,4 is
VIR = max (VT V), (42)
where V;*"* is the payoff at the 7,1, and

Lk _ pnl-l w(wﬂ’k I AR (4.3)

1
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Consider (3.30), the Crank-Nicolson formula for an American option. One Gauss-Seidel

k

iterate V?H is computed by

= 1
V7‘1+1’k — iVn+1,k iVn—Fl,kfl
! 2+T’A7’—|—ai+ﬁi(a i1 T AVin
oV + (2= (FAT + 0i + B))V + BiVi). (4.4)

For a put option, the payoff is
VA = max(0, E — S;), (4.5)

where F is the exercise price. For a call option, the payoff function would be different.
For a Convertible Bond, we calculate B then U. The fully implicit method in (3.26)
gives

(1 —+ (’I" + TC)AT —+ (677 -+ ﬂ,L)B,:H_1 = a,-Bz-"lel + ﬂszn_;'—ll + an, (46)

and (3.25) gives
(1+7AT + o + B) UM = UM + BUMT + U — r ATBIM (4.7)

So the Gauss-Seidel iterates are

_ 1
¢ 1+(T+TC)AT+ai+6i(aZ -1 +ﬁz i+1 + z)7
—n+1,k 1 0 n - n
UzThL T 14 rAT ot B; (U + BUIS T+ U = r ATBIHE), - (4.8)
i i

and the SOR values of B**! and U**! at iteration k are given by

Btk = prtel g (BrthE _ prttkely (4.9)

2

Otk = gl (@ ), (4.10)

1 1 7

Now we apply all the convertible constraints to (72" L8 and ézn Tk,

First, check the callability if the bond is callable at this time:

UZ-"H”c = max(B.(Tn11), £5;),

if UM > max(Be(rp41), £S;) then
Bt =.
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Next check the puttability if the bond is puttable at this time:

. UM = B (1041),
if U"™* < By(h41) and kS; < By(7ny1) then ()

Bzm_l’k = By(Tn+1)-
At last, check if it is more profitable to convert if the bond is convertible at this time:

n+1,k __
. rrn+1,k Uz = K,SZ'
it U < kS; and Bpy(thq1) < &S; then

Bt =0
; :
The final condition for exiting the iteration is
1B — BT <
U7 = U < e (4.11)

where € is the tolerance. When this condition is satisfied, we set

1,k
Uin+1 — UiTH- *

B! = B, (4.12)

For the Crank-Nicolson method PSOR is similar except that

_ 1
B = ( B+ BB
' 21 (r+r)Ar+on+ B\ 1+ BB
4B+ (2= ((r+ 1) AT+ s + ;) B + 5,~B;1+1). (4.13)
and
o ! (cstizt! + Uz
t 2+TAT+ai+ﬂi Pl Pl

U, + (2= (AT + 04 + B)UP + BUT, — rcATBg+l). (4.14)

The pseudocode for the Crank-Nicolson timstepping and PSOR iteration are given in

Algorithm 1 and Algorithm 2.
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Algorithm 1 Crank-Nicolson timestepping for a Convertible Bond
U= BY = F + C; {F: face value of the bond; C: coupon payment at maturity}

for : =0 tom do
if U < kS; then
U = kS;; BY = 0;
end if
end for
forn=0to N —-1do
7=T— (n+1)A7 ;{ T is the maturity, A7 is the time stepsize}
calculate Accl using (3.40);
if 7 € call period then
B, = B% + Accl;
else
B, = L; {assigning a big number to B, in the non-callable period}
end if
if 7 € put period then
B, = Bgl + Accl,;
else
B, = 0; {assigning 0 to B, in the non-puttable period}
end if
calculate Uy and Bf™ using (3.32);
call PSOR iteration;
calculate U™t and B%™ using (3.34);
if 7 € coupon payment period then
Untl = yntl 4 C; Bt = Bt 4+ G
end if

end for
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Algorithm 2 PSOR iteration for a Convertible Bond

for £k =1 to MAXLOOP do
error, = errory = 0;
fori=1tom—1do
calculate B " BF using (4.13);
calculate BI""* using (4.9); B'"t"* = Btk
calculate U b using (4.14);
calculate U *'* using (4.10); U/ = gti-
if UM > max(B,, kS;) then
UMY* = max(B,, kS;);
Bl — .
end if
if U < B, then

n+1,k .
UMY = By;
n+1,k
B'"'Y" = B,
end if

if UM* < kS; then
UMHF = kS;;
B = p;
end if
erTor, = error, + (UZ-"H’IC_1 — UZ-"H’k)z;
errory, = errory + (B;”’l’k_1 — B?J’l’k)Q;
end for
if error, < € and error, < €2 then
break;
end if

end for

+1 _ —|—1lc n+l _ pn+lk.
Untl = ygntlk, gl = pntlk,
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4.2 Penalty Method

The PSOR method explicitly applies the constraints to the linear complementarity prob-
lem, whereas the penalty method applies the constraints implicitly, using a nonsmooth
Newton iteration. We discuss the penalty scheme for an American option first, and then

extend it to a Convertible Bond.

4.2.1 Penalty Scheme

As described in Chapter 2, the complementarity problem for an American put option is

LV < o,
V=V >0,
LV =0) V (V-V*=0), (4.15)

where V* is the payoff function, the notation (LV = 0) V(V —V* = 0) means that either
(LV =0) or (V —V* =0) at each point in the solution domain, and recall that
oV 0252 0*V oV

The payoff for an American put option is
V*(S) = max(FE — S, 0). (4.17)

The penalty scheme is based on the nonlinear PDE

oV 025%20%V ov .
E_Tw—l-rffﬁ—ﬂf—i-pmax(v -V, 0), (4.18)

where the solution satisfies V' > V*, and, in the limit as the positive penalty parameter

p — 0o, V approaches V*.

4.2.2 Penalty Discretization for American Options

Except for the penalty part, the discretization of equation (4.18) has been discussed in the

previous chapter. By denoting the penalty term by ¢7**

7T, we can write the discretization
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scheme as
fvn—H — qn—l—l
where
:F‘/;n—{—l — (V;_n—l—l _ V;n)
—0 (V' = (rAT + 0s + BV + BV
—(1=0) (VP — (rAT + 0i + BV + VL)
and
* n+1 . n+1 *
| V=V Large i<V,
2

0 otherwise,

where Large is a large positive number, called the penalty factor.

The whole discretization scheme for the American option is

Vit =V = 0 (V! - (rAT s+ BV 4 BV
+(1 = 0) (Vs — (PAT + i+ BV + BV
+P(V (V= Vi)

where

Large  if V" < VX
PV =

0 otherwise.

37

(4.19)

(4.20)

(4.21)

To write (4.21) in matrix form, let the diagonal matrix P (V") of size (m+1) x (m+1)

be given by

Large  if V"' <V and i = j,
PV, =

0 otherwise.
Then the matrix form of (4.21) is
[I— M+ PV V™ = (T4 (1 - )M)V" + [P(V"H)]V™.

It has been proved (see [1]) that the solution of (4.22) satisfies

Vit v 50 as Large — oo

(4.22)

(4.23)
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for nodes where FV/"*' > 0. If we require that the Linear Complementarity Problem
(LCP) be computed with a relative precision of tol for those nodes where V;"*! < V* we
should have Large ~ 1/tol.

In theory, if we are taking the limit as AS, A7 — 0, then for the Crank-Nicolson

method, we should have

1

Large = O A E, a7

(4.24)

However, the method used for the Convertible Bond pricing is not the standard Crank-

Nicolson method, and a reasonable choice for Large is

: )
min[(AS)?, (AT)e]”’

Large = O( (4.25)

where 1 < o < 2. The above formula means that any error in the penalized formulation
would tend to zero at the same rate as the discretization error. However, in practice,
we can specify the value of Large in terms of the required accuracy. In other words, we
specify the maximum allowed error in the discrete penalized problem. We reduce AS,

A7 until the discretization error is reduced to this level of accuracy.

4.2.3 Penalty Discretization for Convertible Bonds

Convertible Bonds are much more complicated than American options. The whole Con-
vertible Bond value U depends on the value of the bond component B, which follows a
process similar to that of U. On one hand, B should be evaluated separately before the
evaluation of U; on the other hand, B has to be adjusted after U has been evaluated to
incorporate the convertibility, puttability and callability constraints.

Because the convertibility is through the whole life of the Convertible Bond, the payoff

function U* is

when B, > kS, U* = max(By, kS),

when B, < kS, U* = KS. (4.26)
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The penalty discretization scheme for the Convertible Bond is

Urtl—ur = ¢ (aiU{‘_’Lll — (rAT + oy + B) UM + 5z‘Uz~T11)
+(1— 0) (WU — (rAT + s + BYUN + UL,
—r ATBM?

+PUT(UF = U, (4.27)

where

Large if UM < Up,
pr =4

0 otherwise.

To write (4.27) in matrix form, let the diagonal matrix P(U™*!) of size (m+1) x (m+1)
be given by

Large  if UM < Uf and i = j,
P(U™);; =

0 otherwise.

Then the matrix form of (4.27) is

[I—6My +PU"MU™ = 1+ (1 —-0)My)U" — r, ATB" + [P(U)|U*. (4.28)

4.2.4 Penalty Iteration

Let V"LF be the kth estimate for V1. We briefly describe the penalty iteration for an

American option in Algorithm 3.

Algorithm 3 Brief description of penalty iteration on American options
for k=0, ..., until convergence do

solive [T — M + P(VHAY 441 = (T4 (1 GIM)V™ 4 [P (V)1
|V-n+1’k+1—V."+l’k|
. 1,|V"+17;k+1‘)

< tol| or [P(VnHLAth) = P(Vn+1k)] then

if |max; pover
exit from for loop;
end if

end for
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The penalty iteration for a Convertible Bond is different from that of an American
option due to the Convertible Bond’s complexity. First, we estimate B"™! by ignoring
any constraints; then this value is used to compute U"*! using the implicit method; next,
we check the constraints explicitly; at last, we use a few steps of the penalty iteration
to enhance the convergence. The timestepping algorithm and the penalty iteration on a

Convertible Bond are shown in Algorithms 4 and 5.

4.2.5 About the Penalty Method

The penalty method has the advantage of finite termination (in exact arithmetic). For
an iterate sufficiently close to the solution, the algorithm terminates in one iteration.
This is especially advantageous when dealing with American option pricing, since, for
each penalty iteration, we have an excellent initial guess from the previous timestep. In
fact, as we shall see, for typical grids and timesteps, the algorithm takes, on average,
less than two iterations per timestep to converge. Finite termination also implies that
the number of iterations required for convergence is insensitive to the size of the penalty
factor (until the limit of machine precision is reached). Another advantage is that the
iteration is globally convergent using full Newton steps.

The disadvantage of the penalty method is that the constraints are satisfied only
approximately, but since this error can be easily made to be much smaller than the

discretization error, this does not appear to be a practical disadvantage.
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Algorithm 4 Penalty timestepping for a Convertible Bond

U= B =F + C; {F: face value of the bond; C: coupon payment at maturity}
for : =0 to m do
if U; < kS; then
U; = kS;; B; = 0;
end if
end for
forn=0to N -1do
7 =T — (n+ 1)A7 ;{T is the maturity, A7 is the time interval }
calculate Accl using (3.40);
if 7 € call period then
B. = B¢ + Accl,
else
B, = L; {L is the number representing oo}
end if
if 7 € put period then
B, = Bf! + Accl;
else
B, = 0;
end if
calculate B"*! using implicit method in (3.45);
calculate U™"! using B"*! and implicit method in (3.44);
apply constraints explicitly, similarly as in the PSOR iteration;
call Penalty iteration with Crank-Nicolson method for 3 iterations;
B! = min(B™, U™H);
if 7 € coupon payment period then
Untt = yntl + C; Bt = B"* 4+ C;
end if

end for
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Algorithm 5 Penalty iteration for a Convertible Bond

U* = max(B,, kS);
for : = 0 to m do
if UM < U then
P(UM) = Large;
else
PUM) = 0;
end if
end for
for k£ =0, ..., until convergence do
solve (4.28);
for : =0 to m do
if B, < kS; then
UrHLEtL _ g
end if
if Ut < kS, then
P(UMY Y = Large;
else
PO — o
end if

end for
|U?+1,k+1_Up+1,k

¥
max(1,[U )

if [max; L < tol| or [P(UMYFH) = P(UMYF)] then

exit from for loop;
end if

end for

n+l _ 7rn+lk+1.
U =U ;
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Numerical Results

In this chapter, we illustrate results from the methods described in Chapter 4, starting
with the American option pricing, followed by the more complex Convertible Bond pric-
ing. In order to study the Convertible Bond, we investigate both the simple Convertible
Bond and the full-featured Convertible Bond. The simple Convertible Bond is only con-
vertible, and has no coupon, put or call features. The full-featured Convertible Bond
includes all the following features: coupon payment, convertibility, callability, and putta-
bility. In this chapter, we first discuss replacing the boundary condition at S = oo in the
continuous model by a boundary condition at a finite value of S in the finite difference
method. For comparison purposes, we include the results from the explicit method as
well as from implicit methods. For the implicit methods, we include a version of each
method that uses the PSOR iteration and another version that uses the penalty iteration.

Finally we present some plots based on these results.

Our first numerical example is an American option with parameter values shown in
Table 5.1. The parameters for the Convertible Bond are shown in Table 5.2. In the
numerical result tables, “Price” is the at-the-money price, which is 100 in our examples;
“Nodes” is the number of spatial grid points; “Difference” or “Diff” is the absolute value

of the change in the solution as the grid is refined; “Ratio” is the ratio of successive

43
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differences; and “Time” is the computation time. Unless otherwise specified, either the
timestep is halved at each grid refinement, or the spatial grid is halved at each timestep

level.

Table 5.1: Model parameters for the American put option

Parameter Value

Time to expiry T' 0.25 years
Interest rate r  10% or 0.10
Exercise price £ 100
Volatility o 80% or 0.80

Tolerance ¢ 1.0e-07

Table 5.2: Model parameters for the Convertible Bond

Parameter Value

Time to expiry T 5 years
Conversion 0 to 5 years into 1 share
Conversion ratio k 1.0
Clean call price B 110 from year 2 to year 5
Clean put price B 105 at 3 years (during the third year)
Coupon payments $4.0, semiannually
Coupon dates .5, 1.0, 1.5, ..., 5.0
Risk-free interest rate r 5% or 0.05
Credit risk r, 2% or 0.02
Volatility o 20% or 0.20
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5.1 Replacing the Boundary Condition at Infinity by
a Finite Boundary Condition

If the asset-stepsize AS and the time-stepsize AT are constant, the grid is made up of
the points at asset values

S =iAS, i=0,1,...,], (5.1)

and times

T=T—-nAr, n=0,1,...,N. (5.2)

That is, the option price is computed at asset values from zero up to the asset value
S = IAS. Noting that the Black-Scholes equation is to be solved for 0 < § < oo, we
are effectively replacing an infinite spatial domain in the continuous problem by a finite
domain in the finite difference approximation. In a sense, IAS is our approximation to
infinity. In practice, this upper limit does not have to be too large: usually three or four
times the value of the exercise price, or more generally, three or four times the largest
asset value at which we are interested in the option price [17] suffices to get satisfactory
results.

In our examples, the American option has the exercise price of 100, so we choose 500
as the upper limit for the asset values; the Convertible Bond has a put price of 105, a
call price of 110, and the principal of 100, therefore 500 is also a reasonable upper limit
on the asset value. To show that 500 is a reasonable upper limit on the asset value in
the finite difference method, two numerical experimental results are presented in Tables
5.3 and 5.4 with different upper limits.

The results in Tables 5.3 and 5.4 are for an American put option with parameter
values given in Table 5.1. We use the PSOR iteration associated with the Crank-Nicolson
method to solve for the free boundary. Table 5.3 shows the numerical results with the
upper limit of S = 500; Table 5.4 shows the numerical results with the upper limit of

S =1000. From these two tables, we observe
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Table 5.3: American put option price with an upper limit of S = 500

TimeSteps | Nodes Price Time
100 25 | 14.16785097 | Os
200 50 | 14.54745925 | Os
400 100 | 14.64501132 | 2s
800 200 | 14.67024054 | 6s
1600 400 | 14.67668766 | 24s
3200 800 | 14.67832267 | 95s
6400 1600 | 14.67873688 | 390s

12800 3200 | 14.67883348 | 1562s

Table 5.4: American put option price with an upper limit of S = 1000

TimeSteps | Nodes Price Time
100 50 14.16785097 | Os
200 100 | 14.54745925 | 1s
400 200 | 14.64501132 | 3s
800 400 | 14.67024054 | 14s
1600 800 | 14.67668767 | bH4s
3200 1600 | 14.67832268 | 216s
6400 3200 | 14.67873298 | 925s

12800 6400 | 14.67883214 | 4080s
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e At coarse grids, the respective prices in the two tables are exactly the same to
(at least) 8 digits after the decimal dot; therefore the difference in the boundary

condition is negligible compared to the discretization error.

e At finest grids, the difference in values with the same A7 and AS but different
boundary condition is smaller than the difference between results with same bound-
ary condition but different A7 and AS. Moreover, the numerical results appear to
have converged to 5 decimal places. Hence the effect of the different boundary is

negligible.

e In terms of the execution time, at the same timestep level, the experiment in
Table 5.3 handles fewer grid points, and thus takes less time than the experiment
in Table 5.4. For example, at 12800 timesteps level, the former one takes 1526
seconds, while the latter one takes 4080 seconds, which is about 2.5 times of the
former one. Therefore, using the upper bound of 1000 does not help in getting
substantially better results; in fact, it takes much longer time than when using the

upper bound of 500.

Hence, for pricing purposes it is enough to take three or four times of the at-the-money
asset value as the upper limit. All the numerical results in the rest of this chapter are

based on this upper limit.

When using the original variable S, it is easy and natural to use 0 as the left boundary.
However, when using the transformed formulae with S = Ee® or S = €”, the left boundary
cannot be exactly 0, since S = 0 corresponds to x = —oo. For this reason, when the
transformed formulae are used, we let the left boundary be a small positive number Fe*~
or e*L, for some values z;, or Z; sufficiently small, so that Ee®r ~ 0 or e®t ~ 0, which
implies that V (Fe®t) ~ V(0) or V(e®t) ~ V(0), respectively.

The finite boundary conditions also apply to the Convertible Bond pricing.
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5.2 Explicit Method Results

The explicit method is conditionally convergent. It converges if and only if the time and

space stepsizes satisfy a relationship of the form
AT < aAS? or AT < aAz? (5.3)

as A7, AS, and Az tend to zero, where a and @ are constants that depend on the volatility
parameter o. In this section, numerical results are provided for an American put option as
well as a Convertible Bond with both the original variable S and the transformed variable
z. The experimental results for ¢ and @ for the appropriate relationships between ATt
and AS?, as well as AT and Az? are also included.

Table 5.5 shows some numerical results under different relationships between A7 and
AS? for pricing an American put option using the explicit method with variable S. The
trial includes several different values of a. Using a = 10~ produces meaningless price
values, while using a = 107% and a = 107 give reasonable results. This indicates that

a = 1079 is inappropriate, and the relationship of A7 < 107°AS? is necessary.

Table 5.5: Results of explicit method for an American put option with variable S

(AT = aAS?)
a=10"° a=10"° a=10""
TimeSteps || Nodes | Price | Nodes | Price | Nodes | Price
1000 100 00 32 13.5007 10 11.0840
2000 141 —00 45 14.5114 14 15.0186
4000 200 | NaN 63 14.5223 20 13.8407
8000 283 | NaN 89 14.6317 28 14.9754

The convergence results when A7 = 1077AS? are shown in Table 5.6. The average

ratio is about 4.0, which is consistent with the theory that the explicit method is first
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order with respect to A7, and second order with respect to AS, as stated in Chapter 4.

Table 5.6: Results of explicit method for an American put option (A7 = 1077AS?)

TimeSteps(AT) Nodes(AS) Price Diff Ratio
1000(2.500000e-04) 10(5.000000e+01) | 11.08400480
4000(6.250000e-05) 20(2.500000e+01) | 13.84071902 | 2.75671422
16000(1.562500e-05) 40(1.250000e+01) | 14.47433604 | 0.63361702 | 4.4
64000(3.906250e-06) 80(6.250000e+00) | 14.62659548 | 0.15225944 | 4.2
256000(9.765625e-07) | 160(3.125000e+00) | 14.66548984 | 0.03889436 | 3.9
1024000(2.441406e-07) | 320(1.562500e+00) | 14.67548647 | 0.00999663 | 3.9
4096000(6.103516e-08) | 640(7.812500e-01) | 14.67802416 | 0.00253768 | 3.9
16384000(1.525879e-08) | 1280(3.906250e-01) | 14.67866398 | 0.00063982 | 4.0

As to the algorithm that uses transformation to the = variable, both S = Ee®* and
S = e are implemented. In the first case, using S = Ee®, we are able to have z = 0 for
S = F or S = 100 as a spatial point, and thus interpolation is not needed. The numerical
results with different @ are shown in Table 5.7.

In Table 5.7, the interval [—16,2] is used as the z domain, which is about [0, 739]
when mapping to the asset S domain. From this table, we observe that a = 1.0 and
a = 1.5 lead to convergent results; however, a = 2.0 produces invalid results. Therefore,
the value of @ should be smaller than 2, which means A7 < 2Az%. The convergence ratio
is theoretically consistent with the first order method.

In the second case, using the transformation S = e”, since the volatility ¢ is not
changed, the relationship between A7 and Az? should also follow A7 < 2Az?. The
value e® =~ 403 is used as the upper limit, e '° ~ 0 as the lower limit, and @ = 1. The
numerical results are shown in Table 5.8.

The ratio in Table 5.8 is unstable and oscillates. A possible reason for the instability
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Table 5.7: Results of explicit method for an American put option with S = FEe”®

(AT = aAx?)
a TimeSteps(AT) Nodes(Ax) Price Difference | Ratio
1(2.500000e-01) 37(5.000000e-01) | 14.75510026
4(6.250000e-02) 73(2.500000e-01) | 14.55989614 | 0.19520412
16(1.562500e-02) 145(1.250000e-01) | 14.64755463 | 0.08765848 | 2.2
64(3.906250e-03) 289(6.250000e-02) | 14.67161274 | 0.02405812 | 3.6
1.00 | 256(9.765625e-04) 577(3.125000e-02) | 14.67722778 | 0.00561504 | 4.3
1024(2.441406e-04) | 1153(1.562500e-02) | 14.67848968 | 0.00126190 | 4.4
4096(6.103516e-05) | 2305(7.812500e-03) | 14.67878578 | 0.00029610 | 4.3
16384(1.525879¢-05) | 4609(3.906250e-03) | 14.67885605 | 0.00007028 | 4.2
65536(3.814697e-06) | 9217(1.953125e-03) | 14.67887291 | 0.00001686 | 4.2
10(2.343750e-02) 145(1.250000e-01) | 14.18639051
42(5.859375e-03) 289(6.250000e-02) | 14.59038979 | 0.40399928
1.50 | 170(1.464844e-03) 577(3.125000e-02) | 14.65756419 | 0.06717440 | 6.0
682(3.662109e-04) | 1153(1.562500e-02) | 14.67358074 | 0.01601655 | 4.2
2730(9.155273e-05) | 2305(7.812500e-03) | 14.67755797 | 0.00397722 | 4.0
10922(2.288818e-05) | 4609(3.906250e-03) | 14.67854899 | 0.00099102 | 4.0
8(3.125000e-02) | 145(1.250000e-01) | 0.71412233
2.00 | 32(7.812500e-03) | 289(6.250000e-02) | 0.00000000 | 0.71412233
128(1.953125e-03) 577(3.125000e-02) | 0.00000000 | 0.71412233 | 0.0
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Table 5.8: Results of explicit method for an American put option with S = e* (A7 = Az?)

TimeSteps(AT) Nodes(Ax) Price Difference | Ratio

16(1.562500e-02) 129(1.250000e-01) | 14.82052987

64(3.906250e-03) 257(6.250000e-02) | 14.74719495 | 0.07333492
256(9.765625e-04) 513(3.125000e-02) | 14.69798816 | 0.04920679 | 1.5
1024(2.441406e-04) | 1025(1.562500e-02) | 14.68283283 | 0.01515533 | 3.2
4096(6.103516e-05) | 2049(7.812500e-03) | 14.68017481 | 0.00265802 | 5.7
16384(1.525879¢-05) | 4097(3.906250e-03) | 14.67895295 | 0.00122187 | 2.2
65536(3.814697e-06) | 8193(1.953125e-03) | 14.67891791 | 0.00003503 | 34.9

and oscillation of the ratio is the interpolation error, since the spatial point S = 100

could not be used as a grid point.

In theory, the convergence for the explicit method is first order with respect to At.
The American option follows this rule even though in some cases there are oscillations.
However, the Convertible Bond is different. Tables 5.9, 5.10, and 5.11 show the nu-

merical results for the full-featured Convertible Bond with the original variable S, the

transformation S = 100e®, and the transformation S = e®, respectively.

Table 5.9 compares the convergence using the original variable S under different
relationships between A7 and AS?. Note that the domain of S is from 0 to 500. From
this table, we observe that the relationship must satisfy A7 < 5 x 107*AS? in order
to get a convergent result. The convergence ratio oscillates for both @ = 5 x 107% and
a=10""%

Table 5.10 compares the convergence using different relationships between A7 and
Az? under the transformation S = 100e*. Note the price in this table does not need
interpolation. Note also that the asset value boundary is 100e=*® to 100e?, corresponding

to 0 to 739.
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Table 5.9: Results of explicit method for a full-featured CB with variable S (A7 = aAS?)

6400(0.000781)

400(1.250000)

2478.0481364818

1129.75362897

a TimeSteps(AT) Nodes(AS) Price Difference |Ratio
4000(0.001250) 100(5.000000) | 124.0284121014
16000(0.000313) 200(2.500000) | 124.0053413340 | 0.02307077
5x107° | 64000(0.000078) 400(1.250000) | 123.9839671353 | 0.02137420 | 1.1
256000(0.000020) | 800(0.625000) | 123.9758623279 | 0.00810481 | 2.6
1024000(0.000005) | 1600(0.312500) | 123.9668138635 | 0.00904846 | 0.9
4096000(0.000001) | 3200(0.156250) | 123.9657495979 | 0.00106427 | 8.5
2000(0.002500) 100(5.000000) | 124.0289946695
8000(0.000625) 200(2.500000) | 124.0055282520 | 0.02346642
104 32000(0.000156) 400(1.250000) | 123.9840247217 | 0.02150353 | 1.1
128000(0.000039) | 800(0.625000) | 123.9758753760 | 0.00814935 | 2.6
512000(0.000010) | 1600(0.312500) | 123.9668173846 | 0.00905799 | 0.9
2048000(0.000002) | 3200(0.156250) | 123.9657504119 | 0.00106697 | 8.5
400(0.012500) 100(5.000000) | 163.8637564689
5x 1074 1600(0.003125) 200(2.500000) | 1348.2945075105 |1184.43075104

1.0
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Table 5.10: Results of explicit method for a full-featured CB with § = 100e”
(AT = aAx?)
@ | TimeSteps(AT) Nodes(Ax) Price Difference | Ratio
5(1.000000) 36(0.500000) | 110.1092533972
20(0.250000) 72(0.250000) | 124.7527972258 | 14.64354383
80(0.062500) 144(0.125000) | 124.2182078334 | 0.53458939 | 27.4
4 | 320(0.015625) | 288(0.062500) | 124.1103153917 | 0.10789244 | 5.0
1280(0.003906) | 576(0.031250) | 124.0055769958 | 0.10473840 | 1.0
5120(0.000977) | 1152(0.015625) | 123.9886676390 | 0.01690936 | 6.2
20480(0.000244) | 2304(0.007812) | 123.9734474118 | 0.01522023 | 1.1
5(1.000000) 72(0.250000) | 112.2273641107
20(0.250000) 144(0.125000) | 124.3931848005 | 12.16582069
16 | 80(0.062500) 288(0.062500) | 124.1398153881 | 0.25336941 | 48.0
320(0.015625) | 576(0.031250) | 124.0132501233 | 0.12656526 | 2.0
1280(0.003906) | 1152(0.015625) | 123.9906885045 | 0.02256162 | 5.6
5120(0.000977) | 2304(0.007812) | 123.9739021053 | 0.01678640 | 1.3
3(1.666667) 72(0.250000) | 111.5362689282
13(0.384615) 144(0.125000) | 123.9991362700 | 12.46286734
51(0.098039) 288(0.062500) | 124.1816042654 | 0.18246800 | 68.3
25 | 205(0.024390) | 576(0.031250) | 123.6543044680 | 0.52729980 | 0.3
819(0.006105) | 1152(0.015625) | 123.7638903385 | 0.10958587 | 4.8
3277(0.001526) | 2304(0.007812) | 123.7235920937 | 0.04029824 | 2.7
13107(0.000381) | 4608(0.003906) | 123.7423945749 | 0.01880248 | 2.1
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In Table 5.10, we observe that when a = 25, the price itself oscillates, and goes far
away from the correct price 123.97 [1], while, when @ = 16 and a = 4, the price converges
to the correct one. Therefore, the relationship between A7 and Az? for the Convertible
Bond should be AT < 25Az2. The ratio oscillates for both @ = 4 and @ = 16. Table 5.11
shows a similar oscillation when S = e® is used with the asset boundary limits of e 1°

and €% and a = 16.

Table 5.11: Results of explicit method for a full-featured CB with S = e® (A7 = 16Az?)

TimeSteps(AT) Nodes(Ax) Price Difference | Ratio

5(1.000000) 64(0.250000) | 113.7250412746
20(0.250000) | 128(0.125000) | 124.6058332351 | 10.88079196
80(0.062500) | 256(0.062500) | 124.1904104671 | 0.41542277 | 26.2
320(0.015625) | 512(0.031250) | 124.0413151474 | 0.14909532 | 2.8

1280(0.003906) | 1024(0.015625) | 123.9913983384 | 0.04991681 3.0

5120(0.000977) | 2048(0.007812) | 123.9827058205 | 0.00869252 5.7

(
(
( 123.9737963056 | 0.00890951 | 1.0
(

)
)
20480(0.000244) | 4096(0.003906)
)

81920(0.000061) | 8192(0.001953) | 123.9687492124 | 0.00504709 1.8

All the numerical results above reveal that the explicit method is not efficient for
pricing Convertible Bonds. Hence, implicit methods combined with iterative techniques

are used to improve efficiency.



CHAPTER 5. NUMERICAL RESULTS 55

5.3 Implicit Method Results

Both the Crank-Nicolson and the fully implicit methods require iterative methods to
handle the free boundary problems. We study two iterative methods, the PSOR and the
penalty methods. In our implementation, unless specifically stated, we always combine
one of the above iterative methods with the Crank-Nicolson time discretization method.
While using the iterative approach, we focus on comparing the number of iterations. In
the results, “max” is the maximum number of iterations over all timesteps; “min” is the
minimum number of iterations; “avg” is the average number of iterations; and “Iters” is
the total number of iterations used in all timesteps. The tolerance is eps = 109, unless

otherwise specified.

5.3.1 PSOR Results

Tables 5.12, 5.13 and 5.14 show the numerical results for an American put option, a
simple Convertible Bond and a full-featured Convertible Bond, respectively, using the
PSOR method.

The results of Table 5.12 are obtained using the S variable. In Table 5.12, the
convergence ratio for the American option is stable, with the average of 4.0, and a
standard deviation of 0.16. This is consistent with a second order method. Assuming
the correct answer is 14.6788 [6], the PSOR iteration obtained this result at timestep
level of 1.95 x 10 °; while in Table 5.6, where the S variable is also used, the timestep
in the explicit method must go smaller than 1.53 x 10~® to reach this result. Thus the
PSOR iteration requires substantially fewer timesteps than the explicit method to reach
the solution. Even taking into account that each PSOR timestep is more expensive than
the explicit method timestep, since the PSOR. timestep consists of about 10 iterations,
the PSOR method is much more efficient than the explicit method.

However, the Convertible Bond shows lower convergence ratio, as shown in Tables
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Table 5.12: Results of PSOR method for an American put option

o6

No. of Iterations

TimeSteps(AT) Nodes(AS) Price Diff Ratio| max| min| avg
100(2.500000e-03) | 26(2.0000e+01) | 14.16785097 11 4] 5.1
200(1.250000e-03) | 51(1.0000e+01) | 14.54745925| 0.37960828 111 4| 5.3
400(6.250000e-04) | 101(5.0000e+00)| 14.64501132| 0.09755208) 3.9 | 11| 4 | 5.5
800(3.125000e-04) | 201(2.5000e+00)| 14.67024054| 0.02522922| 3.9 | 11| 4 | 6.1
1600(1.562500e-04) | 401(1.2500e+00)| 14.67668766| 0.00644712| 3.9 | 11| 4 | 6.9
3200(7.812500e-05) | 801(6.2500e-01) | 14.67832267| 0.00163501| 3.9 | 11| 4 | 7.8
6400(3.906250e-05) | 1601(3.1250e-01)| 14.67873688| 0.00041421| 3.9 | 13| 5 | 8.9
12800(1.953125e-05)| 3201(1.5625e-01)| 14.67883348| 0.00009660{ 4.3 | 19| 5 | 11.5

5.13 and 5.14.

Table 5.13: Results of PSOR method for a simple CB with S = 100e”

No. of Iterations
TimeSteps(A7)| Nodes(Ax) Price Diff Ratio| max| min| avg
100(0.050000) | 240(0.075000) | 104.02124615 9 5 6.5
200(0.025000) | 480(0.037500) | 104.16175781| 0.14051166 11| 5 6.4
400(0.012500) | 960(0.018750) | 104.22601957| 0.06426176] 2.2 | 13| 5 6.7
800(0.006250) | 1920(0.009375) | 104.25671597| 0.03069640{ 2.1 | 19| 7 7.7
1600(0.003125) | 3840(0.004688) | 104.27171203( 0.01499606/ 2.0 | 30 | 8 9.6
3200(0.001563) | 7680(0.002344) | 104.27912277| 0.00741074) 2.0 | 50 | 10| 13.2
6400(0.000781) | 15360(0.001172)| 104.28280677| 0.00368399| 2.0 | 90| 15| 16.3
12800(0.000391)| 30720(0.000586)| 104.28468766| 0.00188089| 2.0 | 165| 18| 22.5
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Table 5.14: Results of PSOR method for a full-featured CB with S = 100e*

No. of Iterations

TimeSteps(A7)| Nodes(Ax) Price Diff Ratio| max| min| avg
100(0.050000 240(0.075000) | 124.11539278 10 7 8.1
200(0.025000 480(0.037500) | 124.05237745| 0.06301533 141 8 9.2

400(0.012500 960(0.018750) | 123.99817763| 0.05419981) 1.2 | 17| 9 11.0

( )
( )
( )
800(0.006250) | 1920(0.009375) | 123.98226223| 0.01591540| 3.4 | 23 | 12| 14.0
1600(0.003125) | 3840(0.004688) | 123.97327463| 0.00898759| 1.8 | 30 | 15| 17.8
3200(0.001563) | 7680(0.002344) | 123.96977707| 0.00349757| 2.6 | 51| 18| 23.3

6400(0.000781) | 15360(0.001172)| 123.96582260| 0.00395446| 0.9 | 90 | 25| 30.7

12800(0.000391)| 30720(0.000586)| 123.96519554| 0.00062707| 6.3 | 166| 32| 40.4

In Tables 5.13 and 5.14, the transformation S = 100e” is used, and the z domain is
[—16,2]. The simple Convertible Bond shows relatively stable convergence speed with
average ratio of 2.05 and a standard deviation of 0.08; but the full-featured Convertible
Bond reveals unstable convergence, and the ratio is from 0.9 to 6.3. The average ratio is
2.7, and the standard deviation is 1.9. The order of convergence often oscillates.

The average number of iterations to converge required by the American option is
approximately 11.5, while it is 22.5 for the simple Convertible Bond, and 40.4 for the
full-featured Convertible Bond. This indicates that the Convertible Bond requires more

iterations.

5.3.2 Penalty Method Results

The PSOR method is efficient for the problems with few discontinuities; however, when
used in complex problems, it becomes slow and inefficient. It calculates the continuous

value first, and applies the constraints to the derivative result later. It consumes many
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iterations, and the number of iterations increases fast when the timestep decreases.

The penalty method applies the constraints to the PDE formula, and can be used for
complicated problems which may have several discontinuities. It requires fewer iterations
than the PSOR method, and the number of iterations is relatively stable as the timestep
is reduced. Compared to the PSOR method, it saves considerable number of iterations,

and therefore it solves the problem more efficiently.

American Option

Table 5.15 lists the numerical results for an American put option using the penalty
method associated with the Crank-Nicolson method. The convergence ratio is 3.9, which
is consistent with a second order method. Notice that only few timesteps use more than

one iteration.

Table 5.15: Results of penalty method for an American put option

TimeSteps(AT) Nodes(AS) Price Difference | Ratio| Iters| Time
100(2.500000e-03) | 26(2.000000e+01) | 14.16785103 103 0Os
200(1.250000e-03) | 51(1.000000e+01) | 14.54745964| 0.37960861 205 0s
400(6.250000e-04) | 101(5.000000e+00)| 14.64501155| 0.09755191] 3.9 | 409 | 0s
800(3.125000e-04) | 201(2.500000e+00)| 14.67024098| 0.02522942| 3.9 | 818 1s
1600(1.562500e-04) | 401(1.250000e+00)| 14.67668852| 0.00644754| 3.9 | 1637| 3s
3200(7.812500e-05) | 801(6.250000e-01) | 14.67832417| 0.00163565] 3.9 | 3274 | 12s
6400(3.906250e-05) | 1601(3.125000e-01)| 14.67873773| 0.00041357| 4.0 | 6549 | 45s
12800(1.953125e-05)| 3201(1.562500e-01)| 14.67884244| 0.00010471| 3.9 | 13105 209s

Table 5.15 uses the same parameters and relationships between A7 and AS as Table

5.12. For comparison purposes, Table 5.16 lists the total number of iterations required
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by the PSOR and penalty methods for the American put option.

Table 5.16: Comparison of PSOR, and penalty method (American put option)

PSOR Method Penalty Method Percentage
TimeSteps(AT) Price Iters Price Iters Saved
100(2.500000e-03) | 14.16785097 | 510 14.16785103 | 103 80%
200(1.250000e-03) | 14.54745925 | 1060 | 14.54745964 | 205 81%
400(6.250000e-04) | 14.64501132 | 2200 | 14.64501155 | 409 81%
800(3.125000e-04) | 14.67024054 | 4880 | 14.67024098 | 818 83%

1600(1.562500e-04) | 14.67668766 | 11040 | 14.67668852 | 1637 85%
3200(7.812500e-05) | 14.67832267 | 24960 | 14.67832417 | 3274 87%
6400(3.906250e-05) | 14.67873688 | 56960 | 14.67873773 | 6549 89%

12800(1.953125e-05) | 14.67883348 | 147200 | 14.67884244 | 13105 91%

Table 5.16 shows that as the timestep and mesh size are reduced, the saved percentage

(PSOR Ifggﬁﬁiggslty ITters 100%) of number of iterations increases. For example, at

the timestep level of 1.95 x 107°, as the approximate price is approaching the correct
result, the PSOR method uses 147200 iterations; while the penalty method uses only
13105 iterations. Therefore, 91% of iterations are saved, making the penalty method
substantially more efficient than PSOR.

Rannacher smoothing [6] is regarded as a second order convergence guarantee for the
Crank-Nicolson method to deal with parabolic PDEs with nonsmooth initial conditions.
In the Rannacher scheme, we take a few fully implicit steps (refereed to as Rannacher
steps or Rannacher smoothings) after each nonsmooth initial state, and then use Crank-
Nicolson thereafter. It should be noted that, if the number of fully implicit steps is small
and independent of the total number of timesteps, the second order convergence arising

from the Crank-Nicolson method is preserved. Even though second order convergence
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does not guarantee that the solution is non-oscillatory, this method works well in practice.

In order to test how many implicit steps are needed to smooth down the discontinuity,
one, two and four implicit step(s) are used and the results are shown in Table 5.17.

In Table 5.17, the relationship between A7 and AS is AT = 1.25 x 107*AS, and
“R. Smoothings” denotes the number of steps that use Rannacher smoothing. The con-
vergence ratio is 3.9, which corresponds to a little bit less than quadratic order. It is
observed that the ratios, the number of iterations, and also the running time are simi-
lar for each of the different numbers of Rannacher steps. Taking into account that the
correct answer is close to 14.6788 [6], one Rannacher step (one step of the fully implicit
method) is enough; more than one steps do not help substantially. Moreover, comparing
the results of Tables 5.15 and 5.17, we see that the benefit from having one Rannacher
step compared to having no Rannacher steps at all is minimal: only a few iterations are
saved. This is because the American put option price does not have many discontinuities.
However, the Convertible Bond price has several discontinuities, and therefore, as will
be argued further in the thesis, Rannacher smoothing for Convertible Bond pricing is
important. In the later numerical results on American options, one Rannacher step is

applied.

Variable timestep

In all results so far, we use a constant timestep. The timestep is

I'—1t
AT = —— 4
T N’ (5 )

where T is the maturity time, ¢ is the start time or current time, and /N is the number
of timesteps. While we increase N, we are reducing Ar.

Constant timestep treats every time interval the same. In the real problem, this is
not true, because more complicated problems usually have more discontinuities. In the
smooth areas, having a fine timestep does not help. A time selector is used to adjust the

timestep [6].
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Table 5.17: Results with different number of Rannacher steps used with the penalty

method for an American put option

R. Smoothings| TimeSteps| Nodes Price Difference | Ratio | Iters | Time
100 26 | 14.16709136 102 0Os
200 51 | 14.54680556 | 0.37971420 203 0s
400 101 | 14.64488489 | 0.09807932 | 3.9 408 0s
1 800 201 | 14.67016779 | 0.02528291 | 3.9 816 1s
1600 401 | 14.67665710 | 0.00648930 | 3.9 | 1635 3s
3200 801 | 14.67831088 | 0.00165378 | 3.9 | 3271 | 11s
6400 1601 | 14.67873258 | 0.00042170 | 3.9 | 6546 | 43s
12800 3201 | 14.67884034 | 0.00010776 | 3.9 | 13099 | 174s
100 26 | 14.16647146 102 0Os
200 51 | 14.54668061 | 0.38020915 204 0s
400 101 | 14.64478600 | 0.09810539 | 3.9 408 0s
2 800 201 | 14.67013048 | 0.02534447 | 3.9 816 1s
1600 401 | 14.67663930 | 0.00650883 | 3.9 | 1634 2s
3200 801 | 14.67830357 | 0.00166427 | 3.9 | 3271 | 10s
6400 1601 | 14.67872924 | 0.00042567 | 3.9 | 6546 | 45s
12800 3201 | 14.67883904 | 0.00010980 | 3.9 | 13099 | 182
100 26 | 14.16515905 102 0s
200 51 | 14.54640253 | 0.38124349 204 0s
400 101 | 14.64462995 | 0.09822742 | 3.9 408 0s
4 800 201 | 14.67006429 | 0.02543434 | 3.9 816 1s
1600 401 | 14.67661154 | 0.00654725 | 3.9 | 1634 3s
3200 801 | 14.67829206 | 0.00168051 | 3.9 | 3272 | 11s
6400 1601 | 14.67872444 | 0.00043239 | 3.9 | 6547 | 4ls
12800 3201 | 14.67883712 | 0.00011267 | 3.8 | 13100 | 178s
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Given an initial timestep A7""!, a new timestep is selected so that

[V (S, 7"+ AT+ -V (S;,77)]
max(D,|V(S;,7*+AT*t1)] [V (S;,m™)|)

2

AT = (min [ dnorm

) AT (5.5)

where dnorm is a target relative change (during the timestep) specified by the user. The

[V (S;, T +AT ) -V (S;,77)|
max(D,|V(S;,7"+AT 1) |[V(S;,m™)])

denominator in the above formula has been normalized by
max(D, |V (S;, " + Ar™H)| |[V(S;, 7")|) for two reasons. First, the scale D is selected
so that the timestep selector does not take an excessive number of timesteps in regions
where the value is small. For options valued in dollars, D = 1 is typically appropriate [6].

Second, normalization by |V (S;, 7" + A7) | or |V (S;, 7™)| avoids slow timestep growth

for large values of the contract.

The timestep selector (5.5) estimates the change in the solution at the new timestep
based on changes observed over the old timestep. We choose a (AT)° for the coarsest
grid, and then (A7)? is divided by four at each grid refinement. If the timestep is
too conservative, the timestep will increase rapidly; so there would be no problem if
(A7)? is underestimated. In the American option examples, we chose (A7)? =102 and
dnorm = 0.2 on the coarsest grid. The value of dnorm was reduced by 2 at each grid

refinement.

Table 5.18 presents the results using the timestep selector, and Table 5.19 the results

using constant timestep. In both tables, the spatial grid points are uniform.

Comparing these two tables, if we take the timestep level of 1.5625 x 1075, we see
that with the same number of spatial grid points, Table 5.18, which uses the timestep
selector, takes 531 iterations in total; while Table 5.19, which uses the constant timestep,
takes 16190 iterations, which is about 30 times more. The former obtains the result in
27 seconds, and the latter in 604 seconds. The former saves about 95.5% of the time.
The convergence ratio is almost the same, 4.1. Therefore, we conclude that the timestep

selector helps save time dramatically without impacting the convergence ratio.
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Table 5.18: Results of penalty method for an American put option (timestep selector)

TimeSteps(AT) Nodes(AS) Price Diff Ratio| Iters| Time
39(1.000000e-03) | 251(2.000000e+00)| 14.67357879 61 | O

83(2.500000e-04) | 501(1.000000e+00)| 14.67761401| 0.00403522 127 1s

170(6.250000e-05) | 1001(5.000000e-01)| 14.67856975| 0.00095574| 4.2 | 262| 6s

342(1.562500e-05) | 2001(2.500000e-01)| 14.67880218| 0.00023243| 4.1 | 531| 27s
686(3.906250e-06) | 4001(1.250000e-01)| 14.67885950| 0.00005732| 4.1 | 1067 137s
1372(9.765625e-07)| 8001(6.250000e-02)| 14.67887366| 0.00001416| 4.0 | 2137 749s

Table 5.19: Results of penalty method for an American put option (constant timestep)

TimeSteps(AT) Nodes(AS) Price Diff Ratio| Iters| Time
250(1.000000e-03) | 251(2.000000e+00)| 14.67278666 269 2s
1000(2.500000e-04) | 501(1.000000e+00)| 14.67738944| 0.00460278 1042 9s
4000(6.250000¢-05) | 1001(5.000000e-01)| 14.67851251| 0.00112307| 4.1 | 4091| 77s
16000(1.562500e-05)| 2001(2.500000e-01)| 14.67878794| 0.00027543| 4.1 | 16190| 604s
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Convertible Bond

In order to carry out a careful convergence study of the Convertible Bond, we investigate
the simple Convertible Bond with no other feature but only convertibility, and proceed
gradually to the more complicated cases: coupon payment, puttability, and callability.
The CB price is partially determined by the COCB component, and the COCB itself also
follows the same process of CB. Thus, smoothing discontinuities becomes very important.
In order to do that, four substeps are used for each timestep. The first substep uses the
fully implicit scheme functioning as a Rannacher smoothing, and the other three use the
Crank-Nicolson scheme. The fully implicit step is for smoothing the discontinuity for
both the COCB and the CB. Table 5.20 has the results for the simple Convertible Bond

and the four substeps technique.

Table 5.20: Results of penalty method for a simple CB

TimeSteps(AT) Nodes(AS) Price Diff Ratio| Iters
100(5.000000e-02) 101(5.000000e+00) | 104.11408790 700
200(2.500000e-02) 201(2.500000e+00) | 104.20544884 | 0.09136094 1400
400(1.250000e-02) 401(1.250000e+00) | 104.24753429 | 0.04208545 | 2.2 | 2800
800(6.250000e-03) 801(6.250000e-01) | 104.26758582 | 0.02005154 | 2.1 | 5600

1600(3.125000e-03) | 1601(3.125000e-01) | 104.27706862 | 0.00948280 | 2.1 | 11200
3200(1.562500e-03) | 3201(1.562500e-01) | 104.28178825 | 0.00471963 | 2.0 | 22400
6400(7.812500e-04) | 6401(7.812500e-02) | 104.28413712 | 0.00234887 | 2.0 | 44800
12800(3.906250e-04) | 12801(3.906250e-02) | 104.28530755 | 0.00117043 | 2.0 | 89600

From Table 5.20 we can see that even the simple Convertible Bond cannot achieve
the convergence ratio of the American option. The average ratio is 2.1, and the standard
deviation is 0.08. This is close to first order convergence with respect to A7r. The

following factors may be the reason: the convertibility in the whole life of the bond
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brings complexity to the Convertible Bond; the method we are using is not the traditional
second order method; a fully implicit (sub)step is used for smoothing at each timestep.
The convergence ratio becomes even worse for the Convertible Bond with other features.
This is reflected in Tables 5.21 to 5.23, which include the results for a more complicated

Convertible Bond.

Table 5.21: Results of penalty method for a simple CB plus coupon payment

TimeSteps(AT) Nodes(AS) Price Diff Ratio| Iters
100(5.000000e-02) | 101(5.000000e4-00) | 135.55245684 630
200(2.500000e-02) | 201(2.500000e+00) | 135.47984504| 0.07261180 1260
400(1.250000e-02) | 401(1.250000e+00) | 135.43890856| 0.04093648| 1.8 | 2520
800(6.250000e-03) | 801(6.250000e-01) | 135.45852423| 0.01961567| 2.1 | 5040
1600(3.125000e-03) | 1601(3.125000e-01) | 135.46796906| 0.00944483| 2.1 | 10080
3200(1.562500e-03) | 3201(1.562500e-01) | 135.46272850| 0.00524056| 1.8 | 20160
6400(7.812500e-04) | 6401(7.812500e-02) | 135.46009306| 0.00263544| 2.0 | 41629
12800(3.906250e-04)| 12801(3.906250e-02)| 135.46126500{ 0.00117194| 2.2 | 91929

Table 5.21 shows the numerical results for the simple Convertible Bond with coupon
payment; Table 5.22 shows the numerical results with an extra “put” feature; and Table
5.23 shows the numerical results for the full-featured Convertible Bond, with an extra
“call” feature compared to the previous one. For the purpose of comparison, we list
the average ratio, the standard deviation, and the number of iterations at timestep level
3.906250e-04 in Table 5.24.

From Table 5.24, we observe that the simple Convertible Bond with or without coupon
payment and/or puttability has first order convergence with respect to Ar; the full-
featured Convertible Bond has less than first order. The order corresponding to the

Convertible Bond with put and/or call features oscillates more than that without these
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Table 5.22: Results of penalty method for a simple CB with coupon and puttability

TimeSteps(AT) Nodes(AS) Price Diff Ratio| Iters
100(5.000000e-02) | 101(5.000000e+00) | 135.72285238 520
200(2.500000e-02) | 201(2.500000e+00) | 135.64745544| 0.07539693 1040
400(1.250000e-02) | 401(1.250000e+00) | 135.60427599| 0.04317946| 1.7 | 2080
800(6.250000e-03) | 801(6.250000e-01) | 135.61958572| 0.01530973| 2.8 | 4161
1600(3.125000e-03) | 1601(3.125000e-01) | 135.62672976| 0.00714404| 2.1 | 8321
3200(1.562500e-03) | 3201(1.562500e-01) | 135.62230840| 0.00442136| 1.6 | 16642
6400(7.812500e-04) | 6401(7.812500e-02) | 135.62006574| 0.00224266| 2.0 | 33284
12800(3.906250e-04)| 12801(3.906250e-02)| 135.62093688| 0.00087114| 2.6 | 66565

Table 5.23: Results of penalty method for a full-featured CB

TimeSteps(AT) Nodes(AS) Price Diff Ratio| Iters
100(5.000000e-02) | 101(5.000000e+00) | 124.10689260 752
200(2.500000e-02) | 201(2.500000e+00) | 124.04697190| 0.05992070 1577
400(1.250000e-02) | 401(1.250000e+00) | 124.01543469| 0.03153721| 1.9 | 3347
800(6.250000e-03) | 801(6.250000e-01) | 123.99811624| 0.01731845| 1.8 | 6500
1600(3.125000e-03) | 1601(3.125000e-01) | 123.98745588| 0.01066036| 1.6 | 12577
3200(1.562500e-03) | 3201(1.562500e-01) | 123.98002499| 0.00743089| 1.4 | 24974
6400(7.812500e-04) | 6401(7.812500e-02) | 123.97501252| 0.00501248| 1.5 | 49975
12800(3.906250e-04)| 12801(3.906250e-02)| 123.97143882| 0.00357370, 1.4 | 99913
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Table 5.24: Comparison of penalty method performance for different-featured CBs

Feature(s) Average Ratio| Standard Deviation| No. of Iterations
Simple 2.1 0.08 89600
Simple + Coupon 2.0 0.17 91929
Simple + Coupon +Put 2.1 0.48 66565
Simple + Coupon +Put +Call 1.6 0.21 99913

features. The full-featured Convertible Bond consumes more iterations than the others.

In order to compare the two iterative methods, we list the total number of iterations
required for the full-featured Convertible Bond by both the PSOR and penalty methods

in Table 5.25.

Table 5.25: Comparison of PSOR and penalty method (full-featured CB)

PSOR Method Penalty Method Percentage

TimeSteps(AT) Price Iters Price Iters Saved
200(2.500000e-02) | 124.07379824 | 1800 | 124.04697190 | 1577 12.4%
400(1.250000e-02) | 124.00140099 | 4440 | 124.01543469 | 3347 24.6%
800(6.250000e-03) | 123.98866460 | 10880 | 123.99811624 | 6500 40.3%
1600(3.125000e-03) | 123.97740160 | 27840 | 123.98745588 | 12577 54.8%
3200(1.562500e-03) | 123.96923912 | 72640 | 123.98002499 | 24974 65.6%
6400(7.812500e-04) | 123.96650281 | 191360 | 123.97501252 | 49975 73.9%
12800(3.906250e-04) | 123.96529799 | 504320 | 123.97143882 | 99913 80.2%

Table 5.25 reveals an increasing trend of percentage in number of iterations saved,
similar to that in Table 5.16 for an American option. While for coarse grids and large

timesteps the percentage saved is not as significant as the respective one for the American
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options, as the grid is refined and the timestep becomes smaller, the percentage saved is
almost as significant as the respective one for the American options. Compared to the
PSOR method, the penalty iteration is a better method for both the American option

and the Convertible Bond pricing problems in terms of the number of iterations.

In order to show the importance of Rannacher smoothing for Convertible Bond pric-
ing, we present, in Table 5.26, the results of pricing the full-featured Convertible Bond
with the same parameters and the same four-substep procedure as the results of Table

5.23, except that all four substeps are Crank-Nicolson steps. We notice that these results

Table 5.26: Results of penalty method for a full-featured CB without Rannacher smooth-

ing

TimeSteps(AT) Nodes(AS) Price Diff Ratio| Iters
100(5.000000e-02) | 101(5.000000e+-00)| 123.71747423 809
200(2.500000e-02) | 201(2.500000e+00)| 123.27755037| 0.43992386 1610
400(1.250000¢-02) | 401(1.250000e+00)| 123.14507781| 0.13247256| 3.3 | 3215
800(6.250000e-03) | 801(6.250000e-01) | 122.77961626| 0.36546154| 0.4 | 6427
1600(3.125000-03)| 1601(3.125000-01)| 123.03085648| 0.25124021| 1.5 | 12835
3200(1.562500e-03)| 3201(1.562500e-01)| 123.00333432| 0.02752216| 9.1 | 25656
6400(7.812500e-04)| 6401(7.812500e-02)| 122.98866071| 0.01467361| 1.9 | 51302

oscillate noticeably. While, in Table 5.23, the “correct” result (123.97) is obtained with
6400 timesteps, with the same number of timesteps in Table 5.26 convergence has not
been obtained, and the Convertible Bond price does not clearly converge to the correct

result. Thus, Rannacher smoothing is important in Convertible Bond pricing.
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5.4 Plots

Convertible bonds with different features have different prices. Figure 5.1 exhibits the
difference. The simple Convertible Bond has the lowest price among the four types
of Convertible Bonds plotted. Coupon payments increase the value of the Convertible
Bond. The put feature is in favor of the holder, and thus also increases the value of the
Convertible Bond. The call feature is against the holder and in favor of the issuer, and it
thereby reduces the value. It is also worth mentioning that, because of the convertibility,

the simple Convertible Bond has a lower price than the straight bond.

Figure 5.1: Price comparison for Convertible Bonds with different features
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In Figures 5.2 to 5.7, we present three-dimensional plots of the Convertible Bond
prices with different features versus the stock price and the time. For simplicity, we use

the results from the explicit method.
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Figure 5.2: Plots for zero-coupon bond (the simple Convertible Bond) with r = 5%
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Figure 5.3: Plots for a coupon payment only Convertible Bond with r = 5%

Explicit Method: CB Prices for Convertible Bond with Coupon Payment of 4 Semiannually——- r=5%
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Figure 5.4: Plots for a coupon payment and callable Convertible Bond with r = 5%

Explicit Method: CB Prices for Callable CB with Coupon Payment of 4 Semiannually——- r=5%
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Figure 5.5: Plots for a full-featured Convertible Bond with r = 5%
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The TF paper [16], unfortunately, does not give quantitative results. Hence, we only
check the similarities and differences between these plots and those in the TF paper. The
TF paper also has eight plots showing similar quantities.

Regarding the plots in Figures 5.2 to 5.5, those without the call feature are consistent
with the respective ones in the TF paper; however, those plots involving the call feature
are different from TF’s. Notice that the plots in Figures 5.4 and 5.5 have no ripples in
the region with high equity level after a certain time, while TF’s plots have ripples all
over. See, for example, the plot in page 5 and the top-left plot in page 7 in the TF paper.

The reason the plots in Figures 5.4 and 5.5 have no ripples in the region with high
equity level is that the Convertible Bond has no optionality in that region, as conversion
will have occurred. Hence the price of the Convertible Bond is proportional to that of
the stock price, and has nothing to do with the bond.

In Figures 5.6 and 5.7, we present three-dimensional plots of the full-featured Con-
vertible Bond price versus the stock price and the time, with interest rates 8% and 10%,
respectively. Note that Figure 5.5 plots of the full-featured Convertible Bond price versus
the stock price and the time, with interest rates 5%. Figures 5.5, 5.6 and 5.7 show jumps
at the end of the put exercise time (end of third year) and at the low asset price range.
This is expected, because (a) the put feature increases the value of the bond, but after
the end of the put exercise time, there is no more chance to exercise the put, therefore
this extra value disappears, and (b) the put feature is exercised only when the value of
the bond falls below B,. Notice that the third year is between ¢ = 2 and ¢ = 3.

Notice also that the jumps increase as the interest rate is increasing. The reason is
that, when the interest rate rises, bond prices tend to fall, and therefore, after the put
option is realized (and the extra value disappears), the bond price with a high r falls at

a lower level than the bond price with a low 7.
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Figure 5.6: Plots for a full-featured Convertible Bond with r = 8%

Explicit Method: CB Prices for Callable and Puttable CB with Coupon Payment of 4 Semiannually——- r=8%
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Figure 5.7: Plots for a full-featured Convertible Bond with r = 10%

Explicit Method: CB Prices for Callable and Puttable CB with Coupon Payment of 4 Semiannually——- r=10%
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Chapter 6

Conclusions and Future Work

The Convertible Bond is a hybrid security. It can be converted into equity; it may be
purchased back by the issuer in the future at a specified price; and it is also possible to
be sold back by the holder to the issuer in a certain time at a pre-determined price. The

call and put features increase the complexity of pricing the Convertible Bond.

The TF model decomposes the Convertible Bond into two parts: the cash-only part —
COCB, and the risk-free equity part. It couples the pricing of the COCB into the pricing
of the entire Convertible Bond. We implemented this model using the explicit method

and several variations of the implicit method coupled with two iterative approaches.

In order to study the convergence property, we always started from simple cases.
We studied a method on an American put option first, then applied it to the simple
Convertible Bond, and finally put it into the full-featured Convertible Bond that has

coupon payment, convertibility, puttability and callability.

The explicit finite difference method, which is a first order method with respect
to AT, requires strict relationships between A7 and AS or Ax for both stability and
convergence. For the American option, the experimentally observed convergence order of
the explicit method is consistent with the theoretical one. However, for the Convertible

Bond, the explicit method is inefficient and exhibits oscillatory convergence order. The

7
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convergence order of the Convertible Bond is lower than that of the American option

because the former is much more complicated than the latter.

We explored both the PSOR and penalty iteration associated with the Crank-Nicolson
and the fully implicit methods. The PSOR method achieved the second order conver-
gence for the American option, but it consumed many iterations. The PSOR method
is not efficient for complicated derivatives, e.g. the Convertible Bond. In order to re-
duce computational costs, we studied the penalty method which can considerably reduce
the number of iterations. For the American option, most of the timesteps used one it-
eration, and only few steps used more than one but at most two iterations. For the
Convertible Bond, almost all the timesteps used more than two iterations, but, still,
the penalty method saved many iterations and much computation time compared to the
PSOR method. As the timestep and the grid interval reduced, the percentage of the

saved iterations increased.

We also studied the effect of using variable timesteps. An adaptive timestep selector
technique helped reduce the computational cost dramatically, while the convergence ratio

did not degrade.

We plotted the Convertible Bond price. We found that our plots with call features
were different from those in the TF paper. Our plots have no ripples in the region at
high equity level, while those in the TF paper have ripples all over. We argue that at
high equity levels when the Convertible Bond trades at parity, there is no optionality as

conversion will have occurred, and therefore, there would be no ripples in this area.

We believe the method for pricing the Convertible Bond can be improved in the
following aspects. First, we may use different interpolation methods to improve the
accuracy of the results. Second, we can consider using another explicit scheme, the
second order scheme, to improve the convergence speed. We may also consider a coupled
Linear Complementarity Problem formula, in which both COCB and CB are coupled

together in one big matrix, and therefore can be solved together in one iteration.
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Apart from the features we considered in this thesis, some Convertible Bonds have
a “dividend protection” feature. Since a big dividend will cause a share price decrease,
when the company increases its dividend on the common stock, the bond should become
convertible to more shares. In the future, we may consider including the dividend rate

protection to the Convertible Bond pricing.
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