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Abstract

A numerical solution procedure based on the method of lines for solving the Nwogu’s
one-dimensional extended Boussinesq equations is presented. The numerical scheme
is accurate up to fifth order in time and fourth-order accurate in space, thus reducing
all truncation errors to a level smaller than the dispersive terms retained by most
extended Boussinesq models. Exact solitary wave solutions and invariants of motions
recently derived by the authors are used to specify initial data for the incident
solitary waves in the numerical model of Nwogu and for the verification of the
associated computed solutions. The invariants of motions and several error measures
are monitored in order to assess the conservative properties and the accuracy of the
numerical scheme. The proposed method of lines solution procedure is general and
can be easily modified to solve a wide range of Boussinesq-like equations in coastal
engineering.
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1 Introduction

Boussinesg-type equations are derived by integrating the three-dimensional Fuler equa-
tions through the depth using a polynomial approximation of the vertical profile of the
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velocity field, thereby reducing the three-dimensional problem to an equivalent (within
the approximation made) two-dimensional problem and making them relatively efficient
to solve numerically. In this regard, the Boussinesq equations are good alternative to Eu-
ler equations and enable simulations in domains of much larger extents. The first such
system of equations for water of varying depth was derived by Peregrine (1967), which are
now often called the standard Boussinesq equations and which include the lowest order
effects of nonlinearity and frequency dispersion. The standard Boussinesq equations have
been used extensively to model accurately wave evolution in nearshore zone. They can be
used, for example, to describe the nonlinear transformation of surface waves in shallow
water due to the effects of shoaling, refraction, diffraction, and reflection.

A major limitation of the standard Boussinesq equations is their restricted range of ap-
plicability, which is confined to relatively shallow water depths such that the simplified
vertical velocity distribution in the mathematical model remains a valid approximation.
It was shown that the errors in the modeled linear dispersion relations in the commonly
used forms of the Boussinesq equations increase with increasing depth. In recent years,
efforts have been made by a number of researchers to extend the range of applicability of
the Boussinesq system to deeper water by improving the dispersion characteristics of the
equation (Madsen et al. [7,8]; Nwogu [9]; Beji et al. [1]; Lynett et al [6]).

Although most extended Boussinesq systems of equations have equivalent linearized dis-
persion characteristics, similar shoaling properties and formally comparable accuracy, the
extended Boussinesq equations proposed by Nwogu [9] have recently generated the most
interest. These equations are obtained through a consistent derivation from the continuity
and Euler equation of motion. Compared to similar models derived by Madsen [7] and
Beji [1], the Nwogu model is easier to solve numerically in the case of variable depth [16].

Several numerical schemes have been proposed to solve the Nwogu’s extended Boussi-
nesq equations. Wei and Kirby [17] developed a numerical code, that is fourth-order
accurate in time and space, for solving these equations. The numerical solutions of Wei
and Kirby [17] are more accurate than those obtained by Nwogu [9] since their solution
technique is based on a higher order finite difference discretization scheme coupled with a
high-order predictor-corrector time integration method. Their numerical scheme reduces
the truncation errors to a level smaller than the dispersive terms retained by Nwogu’s
Boussinesq equations. It was shown that in most Boussinesq systems the truncation er-
rors of a low-order approximation in space could contaminate the numerical accuracy
because they have the same mathematical form as the dispersive terms appearing in the
model [17].

Recently, Walkley and Berzins [16] implemented a high order accurate method of lines
(MOL) solution using a Galerkin finite element spatial discretization technique coupled
with the adaptive time integration package SPRINT [15]. Their spatial discretization
method cannot be applied directly to the extended Boussinesq system of equation due to
the presence of the third-order spatial derivatives U,,,. To overcome this difficulty, they
have rewritten the equations in a lower order form, suitable for a linear finite element
approximation, by introducing an auxiliary algebraic equation which increases the com-
putational effort and may reduce the efficiency of the numerical scheme.



Both, Wei and Kirby [17] and Walkley and Berzins [16] investigated solitary wave prop-
agation over a long and flat bottom in order to assess the accuracy, the stability and
the conservation properties of their numerical schemes. Wei and Kirby [17] applied this
important test problem for which they derived approximate analytical solitary wave so-
lutions following a procedure described in Schember [11]. These approximate analytical
solutions are used to specify initial data for the incident waves in their numerical models
and also to assess the accuracy of the associated computed solution.

The numerical results obtained by Wei and Kirby [17] for these test problems indicate that
a slightly higher amplitude solitary wave is formed together with a small dispersive tail
lagging behind, compared to the approximate analytical solution [11,17]. The wave profiles
also show that the amplitude of the tail and the initial deviation in solitary-wave height
both increase with increasing initial wave height. They also observed that the numerically
predicted phase speed is somewhat smaller than the analytically predicted one, and that
the difference increases with increasing wave height. Such discrepancies are explained by
the fact that the analytical solutions are only an approximation of the closed-form so-
lutions and does not correspond exactly to a solitary waveform as predicted by the model.

Walkley and Berzins [16] reported very similar results to those obtained by Wei and
Kirby [17] for the same solitary wave test problem. They have also observed that there is
an identical slight phase error in the numerical results and a small dispersive tail. They
concluded that the analytical solution [11,17] is only an approximation and therefore ex-
act agreement is unlikely.

In this paper we present a method of lines solution of the Nwogu’s one-dimensional ex-
tended Boussinesq equations using the time integrator DASSL [10], which is based on a
variable time step and variable order backward-differentiation formulae (BDF). The nu-
merical scheme is accurate up to the fifth order in time and fourth-order accurate in space,
thus reducing all truncation errors to a level smaller than the dispersive terms retained by
most extended Boussinesq models. Unlike the MOL proposed by Walkley and Berzins [16]
which requires the introduction of an auxiliary algebraic equation that may reduce the ef-
ficiency of the numerical scheme, our MOL solution of the extended Boussinesq equations
does not require any transformation or any manipulation of the model equations. Our
MOL implementation has the advantage of a close resemblance of the MOL programming
of the the PDE with the PDE itself and uses a simple grid point ordering for bandwidth
reduction of the Jacobian matrix of the integrator DASSL. This MOL implementation leads
to efficient solutions of the Boussinesq system. The nonlinear terms and dispersive terms
are accommodated easily using quality library routines [3,10,12-14].

Exact solitary wave solutions and invariants of motions recently derived by the authors [5]
are used to specify initial data for the incident solitary waves in the numerical model of
Nwogu and for the verification of the associated computed solution. These new exact
solitary wave solutions are used instead of the approximate solutions to overcome the
problems reported by Wei and Kirby [17] and Walkley and Berzins [16]. The invariants
of motions and several error measures are monitored in order to assess the conservative
properties and the accuracy of the numerical scheme.



2 The extended Boussinesq equations

In the case of wave propagation in the one-dimensional (1D) horizontal direction with
constant depth, the extended Boussinesq equations derived by Nwogu [9] and considered
by Wei et al. [17] in their numerical code, reduce to the following:

N+ hug + (nu)e + (@ + 1/3) R Uy, = 0 (1)
Us + gy + Uy + b gy = 0 (2)
with ) )
Zg Zo,
o=3(%) + % )

where 1 = surface elevation; h = local water depth; u = u(z,t) horizontal velocity at an
arbitrary depth z, ; and g = the gravitational acceleration. These equations are statements
of conservation of mass and momentum, respectively.

Two important length scales are the characteristic water depth hg in the vertical direction

and a typical wavelength [ in the horizontal direction. The following non-dimensional
independent variables can be defined:

T z gho

r = — Zz = — t =

t. 4
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The tildes are used to connote dimensional variables as in the set of equations (1) and (2).
For effects related to the motion of the free water surface, the typical wave amplitude ag
is also important. The following non-dimensional dependent variables can also be defined:

ho N n h
u= u, = —, h=—. )
aov/gho 7 Qo ho ( )

Using the transformation (4) and (5), the Nwogu’s set of equations (1) and (2) are rewrit-
ten in dimensionless form as follows

N + g + 6(nu)y + (@ + 1/3)Upge = 0 (6)
Uy + N + Ouly + 120Uy = 0 (7)
The dimensionless parameters § = ag/hy and p = hg/l are measures of nonlinearity and

frequency dispersion, respectively, and are assumed to be small (0 << 1 and p << 1).
The parameter o reduces to

1 2
05:5(7504) +Z2a - (8)

2.1 FEzxact solitary wave solutions

The authors [5] recently derived exact solitary wave solution for the extended Boussinesq
equations of Nwogu using MAPLE software. The solitary wave solution for the free surface
elevation n(z,t) is in the form

n(x,t) = nosech® (k(x — zo — Ct)) . (9)



which corresponds to a single hump of amplitude 7 initially centered at xy. This solitary
wave has a wave number x and travels without change of shape at a steady speed C.

The solitary wave solution for the horizontal velocity u(x,t) is given by

u(z,t) = Anysech® (k(z — zg — C1)) | (10)
where
11
\/ \/ a— 1/3 (11)
The wave speed is given by,
O 2—A2 20m0+3 a+1/3 (12)
A ,/ 6770—|—3 \/ ala—1/3)
with the corresponding wave amplitude,
3(1 — A2 1 9a+1
=" = 1)
and wave number,
S o20-42) 1 20 V6 9a+1 (14
2\ p2(a+1/3)A2 0 2\ 3p2(a+1/3) 12\ (a+1/3) p2 (—a)

2.2 Influence of the dispersion parameter on solitary wave profiles

The profiles of the exact solitary wave solution, for different values of the parameter p,
are shown in figure (1) for the free surface elevation 7n(x,t) and the horizontal velocity
u(x,t) which is centered at zp = 0 and plotted at the initial time ¢ = 0. The parameter p
represents the importance of the frequency dispersion and has a direct effect on the pro-
files of the solitary waves. From (14) it is clear that smaller values of 1 will lead to larger
values of the wave number k and therefore to a reduced width of the solitary wave profile.
Such solitary waves with narrow profile and steep gradients are more difficult to resolve
numerically. Moreover, it is apparent from the scaled Boussinesq equations (6) and (7)
that reduced values of p lead to smaller dispersive terms p121,,, and p?u,,,. In this regard,
the Boussinesq equations become challenging to solve numerically particularly when the
size of the dispersive terms are reduced to the same order of magnitude as the leading
truncation error terms of the underlying numerical scheme.

An appraisal of the influence of the dispersion parameter p on the solitary wave pro-
file suggests making the following change of variables:

i% and f% (15)



4 . . . 4 14 . . . 14
=01 ] - =01
oL t=0_3 _— 5 12 E ............. ﬁ=0_3 E 12
: ————— n=05 ] 10 b ————— n=05 110
0F < s 0 8 18
no U sl 16
2r 12 af 14
: 2 | 42
-4 14 B ]
0F = - - 0
6 | | | ! -6 2 | | | 2
1 0.5 0 0.5 1 1 0.5 0 0.5 1
X X
Fig. 1. Influence of the dispersion parameter p on solitary wave profiles for 6 = 0.3 and
a = —0.39.
Using the new variables, (6) and (7) can be rewritten in the form,
M+ s + 8(nu)s + 02 (o + 1/3)uzss = 0 (16)
u; + 0z + duug + 0 qug,, = 0 (17)

where fi = p/3. From (14), we obtain the corresponding wave number of the solitary wave
solution,

V6 9a+1

2 J (@1 1/3) (57 (—a)

The exact solitary wave solution expressed in terms of variables (z,f) or (z,t) are then
given by,

k= 0k =

(18)

n(&,1) = ny sech? (/%(i' — Iy — Cf)) = g sech? (k(xz — zo — O1)) = n(z, 1) (19)
and
u(z,t) = Angsech? (/%(9?: — Ty — Cf)) = Angsech® (k(z — xg — Ct)) = An(z,t) (20)
It follows that thez scaling factor 8 controls the width of the solitary wave profile in the
new variables (2,1 ).

2.3 Invariants of motion of solitary wave solutions

The authors [5] recently derived exact expressions for four constants of motion corre-
sponding to the solitary wave solutions (9) and (10) using MAPLE software. In this section,
we present a brief review of the derivation of these analytical expressions.

The Nwogu system of equations seems to have at least two conservation laws.



The first invariant of motion corresponds to the conservation of mass,

L= /+oo77(x,t) dz . (21)

Using the analytical expression (9) for the exact solitary wave solution n(x,t), we obtain,

Mo
L =2—. 22
1 p (22)

Substituting (13) and (14) into (22), it follows that,

V6
]1=m\/—au2(a+1/3) 9a+1). (23)
Another invariant of motion is the integral,

n=[ T b dar (24)

— 00

Substituting the expression of the solitary wave solution (10) for the horizontal velocity
in the above integral we obtain,

ILh=Al = %A, (25)
and, in explicit form,
The impulse functional given by,
Iy =1(nu) = /_:O (77(3:, Hu(z,t) — a p? ne(z,t) uy(z, t)) dz , (27)

is also a constant of motion for the solitary wave solutions (9) and (10), which can be
expressed explicitly as

+oo
I3=A / <772 — au%i) dx
4 B AG — dapts?)
15 K
_, (39a+11) J 212 (1 +9a)3

—_— . 2
10 ad? 3 (1-9a?) (28)

Because dissipation is ignored in the derivation of the Nwogu-Boussinesq model,we can
define a Hamiltonian-like form for the system (6) and (7),

+oo
14:H(77,u):/ (uz(a+1/3)ui—n2—u2—5u2n) dz . (29)



This integral is not a Hamiltonian but it is a constant of motion for the solitary wave
solutions (9) and (10), which to say that the functional H satisfies,

H{n(z, 1), ulz. £)) = H(n(z,0), u(x,0)) . (30)
Substituting (9) and (10) for n(z,t) and u(x,t) respectively in (29), we obtain,

4 2 (12a p? A% K% + 4p® A%k2? — 125 A%y — 15A% — 15)

Iy = 1

4 45 K ’ (3 )
which can be written in explicit form,

C1(a+D)y/(~20)Bat1)(9a+ 1) 2 1

) (Ba—1)a2d? ' (32)

3 Method of lines solution of the Boussinesq system

3.1  Numerical solution procedure

A description of the method of lines (MOL) solution of the Boussinesq equations, is given
in this section. The method of lines consists in essence of numerically integrating this
system of partial differential equations (PDESs) forward in time to advance the solutions
n(z,t) and u(x,t) at every node of a spatial grid, with n(x,t) and u(x,t) specified at
each grid node at some initial time (e.g., t = 0) and boundary conditions applied at each
time step to specify n(z,t) and u(z,t) at the two edge nodes of the grid. The solution of
the Boussinesq equations on a uniform grid or nonuniform grid requires discretizations of
the spatial derivative terms 7;, U;, Uz, and Uz, , and these discretizations can lead to
a large set of stiff and implicit ordinary differential equations (ODEs). These ODEs are
integrated forward in time using an advanced ODE solver.

To help describe the solution procedure more concisely the Boussinesq equations are
written in functional notation as

f(nta U, Ny gy Uggz umxt) - 07 xL S x S Tu and 0 S t S tU (33)

in which u and 7 are the dependent variables, = and ¢ are the independent variables, and
xr, and xy correspond to the lower and upper limits or boundaries on x. As subscripts,
xr and t denote partial derivatives. Suitable boundary conditions at xp, and xy are gener-
ally required to determine the solution numerically. However, for most problems in which
wave propagation occurs well inside the boundaries, the solution is negligible at or out-
side the boundaries during the time span of interest. Consequently, Dirichlet boundary
conditions at the lower and upper ends of the interval [z, 2], given by u(xp,t) = ur and
u(zy,t) = uy, are used.

The numerical discretizations of the spatial derivatives (7, Uy, Upps, Uzye) in the Boussi-
nesq equations are obtained using centered fourth order finite-difference approximations



for all terms. All spatial discretizations in this study were generated systematically with
the versatile algorithm called WEIGHTS from Fornberg [3] which can be used for both uni-
form and nonuniform grids.

The direct spatial discretization of the Boussinesq system of equations on a grid of n

nodes given by z = [x1,x9,- - ,x,] produces a set of 2n ODEs that can be expressed in
vector form as,
dy
=t = 4
() =0 34
and the initial conditions can be expressed likewise as
dy
i (g’toa E' 7t0> - Q7 (35)
to
where,
y= [77177727"' y M Uy, U,y v o - 7un] (36)
dy/dt = [dn/dt, dmp/dt, - - dny, /dt; duy /dE, dug/dtE, - - -, du, /dE] (37)
f:[flaf%"' 7fn;fn—|—1:fn+2a"' 7f2n] (38)

This semi-discretization of the Boussinesq equations on a spatial grid, which involves the
mixed space and time derivatives u,,;, results in an implicit set of ODEs because the
vector of derivatives du/dt is defined implicitly through the vector function f. In this
regard, the MOL solution of the Boussinesq equations is very similar to the MOL solution
of the equal width wave equation u; + uu, — pu,,; = 0. For a detailed discussion of a host
of issues surrounding nonlinear dispersive wave equations involving mixed space and time
derivatives u,,¢, we refer the reader to the study of Hamdi et al. [4] and the references
therein.

For problems involving solitary wave propagation, the boundary conditions are often alge-
braic in form and do not contain any derivative terms. Therefore some of the functions f;

in (38) are algebraic equations. In this case, (34) is a set of differential algebraic equations
(DAES).

The implicit DAE system given by equation (34) is integrated numerically in time in
this study using an advanced DAE solver, DASSL developed by Petzold [10]. This versatile
solver has special features for solving stiff DAEs. It can be used to integrate in time ei-
ther ODEs or DAESs, such that different problems governed by the Boussinesq equations
which involve differential or algebraic boundary conditions can be solved easily with minor
computer-code modifications. In previous numerical studies of the Boussinesq equations
the time integration has usually been performed with low order methods which can re-
sult in significant truncation errors that produce non-physical dispersion and therefore
contaminate the mathematical model (see Walkley and Berzins [16]). In this study high
accuracy is achieved by making use of the solver DASSL which is based on variable time
step and variable order backward-differentiation formulae (BDF).

The local errors in the solution y over each time step are controlled in DASSL by varying
both the order of the BDF method and the time step in order to achieve high accuracy
and stability in the integration. The local errors are controlled by the user by setting small



values for relative and absolute tolerances ATOL and RTOL. In this study, tight tolerances
(such as ATOL=RTOL = 107'°) are chosen to reduce the time integration errors so that only
spatial truncation errors dominate. The solver DASSL normally requires the initial deriva-
tives dyo/dt and a consistent set of initial conditions. In this study the initial derivatives
are computed automatically in DASSL using the initial solution y, and requiring that the

system f (@, d@/dt,to) = 0 be satisfied.

In DASSL an approximate Jacobian matrix of the DAEs is computed internally using
finite differences. In the case of the Boussinesq system of equations which are actually
a set of two simultaneous PDEs, the Jacobian matrix is not banded and has outlying
diagonals due to the coupling between the PDEs. The use of an implicit banded DAE
integrator like DASSL with full (dense) Jacobian matrix option is computationally ineffi-
cient because a large number of arithmetic operations would be required to produce the
numerical solution. In this study we implement a bandwidth reduction of the Jacobian
matrix by using a simple grid point ordering y = [, u1, 72, U2, - -+ , 7, Un| which clearly
changes the structure of the Jacobian and leads to substantial reductions in the compu-
tation for the DAE solution (see for example Schiesser [14] for implementation details of
grid point ordering and Jacobian bandwidth reduction in DASSL). Option 6 for banded
Jacobian matrix of the DAE system is then selected (INFO(6)=1). The upper and lower
half bandwidths, ML and MU, are each set to 10. The total bandwidth of ML+MU+1=21 is ad-
equate to accommodate all of the nonzero elements of the Jacobian matrix for the fourth
order approximations that we use for all the spatial derivatives in the Boussinesq system
of equations.

3.2  Numerical results and discussion

The Boussinesq system of equations are solved in this section to predict the motion of a
single solitary wave in space and time. This problem is solved for the parameters ji = 0.2,
0 =0.2, a = —0.39 and § = 50 using the method of lines that we described previously.
The exact solitary wave solutions for this problem were derived in the previous sections
and given by (9) and (10). The proportionality coefficient A, the wave speed C', the wave
peak amplitude 7y and the wave number & are determined from (11), (12), (13) and (14),
respectively, which depend only on the three parameters /i, 6 and a of the non dimensional
Boussinesq equations. Several exact and numerical results are compared for this bench-
mark problem to assess various parts of the solution procedure. The initial conditions for
the numerical computations are determined from the exact solution at time t = 0 on the
interval [z, = —60,zy = 100]. The wave is centered at zq = 30 at ¢ = 0. The numeri-
cal solution is computed for times varying from ¢ = 0 to 200 with the number of nodes
varying from 500 to 4000. During the time interval 0 to 200 the solitary wave is always
far from the grid boundaries, so the Dirichlet boundary conditions u(xp,t) = uy = 0
and u(zy,t) = uy = 0 are applied, because they are sufficiently accurate for the current
problem.

Numerical results from the MOL solution of the Boussinesq equations are given first

in the form of a time-distance diagrams in figures (2) and (3) for the free surface eleva-
tion n and horizontal velocity u, respectively. A close observation shows that the single
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Fig. 2. Solitary wave solution 7(z,t).
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Fig. 3. Solitary wave solution u(z,t).

solitary wave travels with a constant speed, peak amplitude, and shape. The numerical
solutions 7(z;,t;) and w(x;,t;) are in close agreement with the exact solution, if the grid
nodes are sufficiently numerous, such that the exact and numerical solutions overlap and
are not readily distinguishable in figure (4).
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Fig. 4. Solitary wave profiles at ¢ = 0 and ¢ = 200.

However, the accuracy cannot be easily determined quantitatively from the results in
these figures, so other results and error measures are now introduced.

Error norms have been computed for the current problem because the exact solution
is known. We use the error norm Lo, which is defined by

) 1/2
L, — Z 5 1'1-}-1 ({yfxaCt y;‘um}g + {y?fiCt y;:l—nln}g)] ) (39)

and which can be used for both uniform or non uniform meshes. The variable y; denotes
the dependent variables n(z;,t;) or u(z;,t;) whereas y**°* and y™™ represent the exact
and numerical solutions for the variables n(z;,t;) and u(z;, ;) at the ith node z;. We also
use the norm Lo, = [[u®™* — ¢™™|| ., defined as

exact num

U, — U,

Ly = max ;

(40)

Results for these error norms for 500 nodes and varying times from ¢ = 0 to 100 are
summarized in Tables (1). Both errors increase slightly with time integration but remain
very small and bounded. Such tabulated results illustrate clearly the advantage of using
error measures to assess the accuracy of the numerical solutions compared to qualitative
plots of the solution profiles as shown in figures (2), (3) and (4).

We use the exact solitary wave solutions to demonstrate that the error from the spatial
discretization is of order Az*. This is accomplished by setting very small values for rela-
tive and absolute tolerances ATOL and RTOL in DASSL and varying the step size in space.
We took ATOL=RTOL = 102 and Az = 1.28/2™, for m = 1,2, 3,4, 5, and compared the
numerically generated approximation with the exact solution at ¢ = 1 for each value of m.
The max-norms for the errors in 7 and u, which are denoted by L7 and LY , respectively,
were computed. The outcome for different number of nodes (n = 500, 1000, 2000, 4000) is
shown in Table (2). The second column in Table (2) corresponds to the step size in space.
Increasing m by 1 halves the grid size, which results in the number of mesh points being

12



Table 1
Error norms Ly and L.

Time LY L, LY LY
20 0.04630 0.0013 0.0680 0.00025
40 0.04633 0.0013 0.0680 0.00063
60 0.04637 0.0014 0.0681 0.00105
80 0.04642 0.0014 0.0682 0.00149
100 0.04647 0.0017 0.0682 0.00193

a=-039,6=03 a=02 3=50, Az = 0.32, n = 500,

ATOL = RTOL = 1077, C = 0.106690591669, A = —1.46856461473

Table 2
Numerical validation of the fourth order accuracy (Az*) of the spatial discretization.

nom L [L3e(m — 1)] / [La(m)] L, [L5(m —1)] / [L5.(m)]
250 1 0.748 x 1072 0.131 x 1073
500 2 0.500 x 1073 14.96 0.863 x 10~° 15.17
1000 3 0.320 x 1074 15.63 0.544 x 1076 15.86
2000 4 0.200 x 107° 16.00 0.342 x 1077 15.91
4000 5 0.125 x 1076 16.00 0.214 x 1078 15.98

a=-039,6=03, =02 8=50,t=1 Az =128/2" for m =1,2,3,4,5,

ATOL = RTOL = 10712, C' = 0.106690591669, A = —1.46856461473

doubled. The third column shows the maximum absolute error L7 at the mesh points.
The ratio [L7 (m — 1)] / [L", (m)], corresponding to grid size Az = 1.28/2™! and grid
size Ax = 1.28/2™ respectively, is shown in the fourth column. It appears that halving
the step size in space results in the error being decreased by approximately 16 times,
thereby demonstrating that the discretization error is of order Axz*. Column 5 and 6 are
similar to column 3 and 4, respectively, but for the variable w.

The exact peak amplitude for the free surface elevation n5*** and for the velocity uf** =
Ang are determined using (11) and (13). The exact trajectory in space and time of the
motion of both solitary waves 7(x,t) and u(z,t) is given by 5" = 20 = 30 + C't in
which the wave speed is given by (12).

The corresponding numerical values of ng™™, 2™, ug™™, and 20" obtained from the MOL
solution at time level ¢; (see Table (3)), can be determined by searching through the dis-
crete data u(z;,t;) for the maximum values and recording their corresponding node loca-
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tions. Such simple results for the peak amplitude and location are generally not accurate
enough for this investigation. Instead, we first interpolate n(z;,t;) and u(z;,t;) between
grid nodes using the following quintic polynomial written in a convenient symmetrical
form,

y= yi(1 =031 +3C+6¢ + yip1(1—&)>(1+ 3¢ + 6£2)

Hali(1 = O*C(1+ 3O Az — yligs (1= )% (1 + 3)Aa (41)
* %ymh(l —Q)*¢CAz + %?Jm|z‘+1(1 — &)’ Ax,

where all the coefficients of the polynomial are expressed directly in terms of y and its
first and second space derivatives vy, and v,, which are readily available at adjacent nodes
x; and x;,1 from the MOL solution. In this equation the variable y denotes the dependent
variables n(z,t) or u(x,t) , the normalized distances ( = (z — x;)/Az; , £ =1 —(, and
Ar; = w1 — ;.

Table 3

Peak location and maximum wave amplitude.

num num num num

n m Ty 6 Tuo ug
500 1 40.6649873 —5.36268433 40.6689791 7.87627379
1000 2 40.6694223 —5.36325426 40.6689791 7.87627379
2000 3 40.6690155 —5.36324890 40.6690541 7.87627589
4000 4 40.6690763 —5.36324737 40.6690590 7.87627602

a=-039, §=03, =02 B=50, Az=064/2" t=100, C =0.1066905917,

A = —1.468564615, ¢t = 40.66905917, ng¥at = —5.363247863, ug**°t = 7.876276033

The maximum (peak) amplitudes 7™ and ug™ and their spatial locations are obtained
using a well-known iterative procedure due to Brent [2]. These numerical results are pre-
sented in Table (3) at time level ¢; = 100 for different numbers of nodes n equal to 500,
1000, 2000 and 4000.

The corresponding relative numerical errors in the peak amplitudes and their locations
are given in Table (4). These relative errors in peak amplitudes and phase are defined for
both n(x,t) and u(z,t) by

i) ) )
e =1- and e =1—-—
e max o (z, ) phse gt (1)’

in which the variable y denotes n(z,t) or u(z,t) .
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Table 4
Relative errors in phase and amplitude.

70 710 uo Uug

n m € hase €amp €phase €amp
500 1 0.100 x 1073 0.105 x 1073 0.314 x 1074 0.453 x 107°
1000 2 —0.893 x 107° —0.119 x 107° 0.197 x 107° 0.284 x 1076
2000 3 0.107 x 107° —0.194 x 1076 0.126 x 1076 0.181 x 1077
4000 4 —0.422 x 1076 0.921 x 1077 0.771 x 1078 0.109 x 1078

a=-039, §=03, 4=02 B=50, Az=0064/2", t=100, A= —1.468564615,

C = 0.1066905917, <t = 40.66905917, nS*t = —5.363247863, uf*t = 7.876276033

The constancy of the four invariants of motion derived in the previous section were moni-
tored during the MOL computations, and the results are presented in Table (5) to illustrate
the conservation properties of the numerical scheme.

The values of the invariants of motion were evaluated using accurate numerical integration
and monitored at equal time intervals of 20. The numerical results for the four invariants
e e I3 and |, I remained constant to five significant digits for only 500 grid
nodes. Such results are good indications that the numerical scheme has excellent conser-
vation properties.

Table 5

Conservation of the invariants of motion.

Time pum I um pm
0 —0.49309 x 10? 0.72413 x 10? —0.64119 x 103 —0.14868 x 103
20 —0.49309 x 10? 0.72413 x 10? —0.64118 x 103 —0.14868 x 103
40 —0.49309 x 102 0.72413 x 102 —0.64119 x 103 —0.14868 x 103
60 —0.49309 x 102 0.72413 x 102 —0.64119 x 103 —0.14868 x 103
80 —0.49309 x 102 0.72413 x 102 —0.64119 x 10? —0.14867 x 10?
100 —0.49309 x 102 0.72412 x 102 —0.64119 x 10? —0.14868 x 10°

a=-0.39,0=03, =02 8=>50, Az =0.32, n = 500, ATOL = RTOL = 10~

A = —1.468564615, , C = 0.106690592, 184t = —(.49309 x 102,

I$xat = (.72413 x 102, I§¥2°t = —0.64119 x 103, [§°* = —0.14868 x 10°
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CONCLUSION

New exact solitary wave solutions for the Nwogu’s one-dimensional extended Boussinesq
equations were presented. New analytical expressions of four invariants of motions were
also derived. A high order-accurate MOIL was developed to compute solutions of the
extended Boussinesq equations. The accuracy and conservative properties of the numerical
scheme were assessed using the new exact solutions and analytical expressions of the
constants of motion. Based on this experience and that of many previous studies (see
Hamdi et al. [4] and Schiesser [12 14]), we conclude that the MOL may, with confidence,
be used for the numerical integration of Boussinesq-Nwogu equations.

From a user stand point of view, our implementation of the MOL solution of the ex-
tended Boussinesq equations is simpler and straightforward compared to the numerical
solutions of Walkley and Berzins [16] and Wei and Kirby [17]. There is no transformation
or manipulation of the model equations. Our MOL implementation has the advantage of
a close resemblance of the MOL programming of the the PDE with the PDE itself and
uses a simple grid point ordering for bandwidth reduction of the Jacobian matrix of the
integrator DASSL. This MOL implementation leads to efficient solutions of the Boussinesq
system. The nonlinear terms and dispersive terms are accommodated easily using quality
library routines [3,10,12-14].

A complete, documented FORTRAN code for the solution of Boussinesq-Nwogu equa-
tions, including all of the examples discussed in this papers, is available on request from
the authors (email: samir.hamdi@utoronto.ca or wesl@lehigh.edu). This code can be eas-
ily modified to solve a wide range of Boussinesg-like equations with several applications
in coastal engineering.
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