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Abstract

We develop optimal quadratic and cubic spline collocation methods for solving linear second-

order two-point boundary value problems on non-uniform partitions. To develop optimal non-uniform

partition methods, we use a mapping function from uniform to non-uniform partitions and develop

expansions of the error at the non-uniform collocation points of some appropriately defined spline in-

terpolants. The existence and uniqueness of the spline collocation approximations are shown, under

some conditions. Optimal global and local orders of convergence of the spline collocation approxi-

mations and derivatives are derived, similar to those of the respective methods for uniform partitions.

Numerical results on a variety of problems, including a boundary layer problem, and a non-linear

problem, verify the optimal convergence of the methods, even under more relaxed conditions than

those assumed by theory.
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Key words: spline collocation, second-order two-point boundary value problem, error bounds,
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1 Introduction

Consider a linear two-point Boundary Value Problem (BVP) described by the operator equation

Lu ≡ ru′′ + pu′ + qu = g in Ω ≡ (0, 1), (1)

where r, p, q and g are given functions of x, and u is the unknown function of x, subject to boundary

conditions on the boundary ∂Ω of Ω, described by

Bu ≡ {α0u(0) + β0u
′(0) = γ0, α1u(1) + β1u

′(1) = γ1}, (2)
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where αi, βi and γi, i = 0, 1 are given scalars. We focus the discussion to the above BVP, but some of the

ideas and methods considered are useful for higher order and multi-dimensional BVPs.

Piecewise polynomial collocation is a commonly used method for the solution of (1)-(2). Let ∆ be a

partition for Ω. Based on ∆, a piecewise polynomial space P is defined. A set T of data points, called

collocation points, is prescribed in Ω ≡ Ω∪ ∂Ω. The number of collocation points depends on the choice

of the piecewise polynomial space. Let TB ≡ T ∩ ∂Ω be the set of boundary collocation points. Let TL

the set of points at which (1) is collocated. Usually TL ≡ T − TB, but in some cases TL ≡ T , that is, the

operator equation (1) is collocated on the boundary as well.

In its standard formulation, piecewise polynomial collocation seeks an approximation u∆ ∈ P to the

solution u of (1)-(2), such that

Lu∆ = g in TL and Bu∆ = γ on TB. (3)

The choice of collocation points is critical for the order of convergence of the arising method.

De Boor and Swartz [8] introduced and analyzed Gaussian collocation for one-dimensional mth order

non-linear ODEs with m linear side conditions. For the second order BVP described by (1)-(2), Gaussian

collocation determines a C1 piecewise (k+1)-degree polynomial approximation u∆ by collocating at the

k Gaussian points in each partition interval, and the two linear side conditions. Under some conditions, the

global error in u∆ is shown to be O(Hk+2), where H is the maximum partition length. Furthermore, at the

nodes, the approximation and the first derivative have error O(H2k), that is, they exhibit superconvergence

for k > 2 and k ≥ 2, respectively.

Splines are piecewise polynomials of degree k and continuity C
k−1, that is, they exhibit the maximum

possible smoothness. Spline collocation uses only one collocation point per subinterval and hence the

linear system arising from (3) is the smallest possible among all types of piecewise polynomial collocation

for the same number of partition points. Typical choices of spline collocation points are the nodes of the

partition, if the degree of the splines is odd, and the midpoints, if the degree of the splines is even. It

is worth noting that, when extending Gaussian collocation to two-dimensional domains through a tensor

product approach, the number of collocation points per subrectangle is k2, while for spline collocation it

remains one. Thus the efficiency advantage of spline over Gaussian collocation becomes more apparent

in two- and higher-dimensional problems.

However, the standard quadratic and cubic spline collocation methods applied to (1)-(2) produce

O(H2) approximations even on uniform partitions. In contrast, quadratic spline interpolation at the mid-

points gives an O(H3) global error bound, while, at the nodes of a uniform partition, it gives an O(H4)

error bound. Moreover, cubic spline interpolation at the nodes gives an O(H4) global error bound.

Several researchers were concerned with developing optimal spline collocation methods, that is, meth-

ods that exhibit the same orders of convergence as interpolation in the same spline space. Optimal spline

collocation methods on uniform partitions have been constructed based on acceleration techniques using

appropriate perturbations PL and PB of the operators L and B, respectively. The formulae that define

these perturbation operators are derived by Taylor expansions at the collocation points of the errors be-

tween the exact solution u and an appropriately defined spline interpolant of u.

Two types of methods were formulated. The first type of method, called one-step or extrapolated

method, involves determining a spline u∆ such that

Lu∆ + PLu∆ = g in TL and Bu∆ + PBu∆ = γ on TB. (4)
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In this method, collocation is applied to a perturbed differential equation.

The second type of method, called two-step or deferred-correction method, involves determining first

a spline u∆[1] that satisfies (3), and then a spline u∆, such that

Lu∆ = g − PLu∆[1] in TL and Bu∆ = γ − PBu∆[1] on TB. (5)

Both methods are optimal. When the methods are extended to multi-dimensional BVPs, the deferred-

correction method is more efficient in terms of time and memory requirements.

The first optimal spline collocation methods proposed to solve BVPs were based on cubic splines.

For one-dimensional second-order BVPs and uniform partitions, Fyfe [9] proposed a deferred-correction

cubic spline method, while [1] and [7] developed and analyzed an extrapolated cubic spline method. Ex-

trapolated and deferred-correction quadratic spline methods, using the midpoints of the uniform partition

intervals as collocation points, were proposed and analyzed in [10]. These optimal cubic and quadratic

spline collocation methods were extended to two-dimensional second-order elliptic BVPs for rectangu-

lar domains in [12] and [5], respectively. Optimal quintic and quartic spline collocation methods [13],

[17] were developed for one-dimensional fourth-order BVPs on uniform partitions. The orders of conver-

gence of some optimal spline collocation methods and some Gaussian piecewise polynomial collocation

methods are displayed in Tables 1 and 2.

d 2 3

m = 2 global mid nodal Gauss global mid nodal Gauss

u− u∆ 3 4 4 4

u′ − u′
∆ 2 3 3 4 4

u′′ − u′′
∆ 1 2 2 3

u(3) − u
(3)
∆ N/A N/A N/A N/A 1 2

d 4 5

m = 4 global mid nodal Gauss global mid nodal Gauss

u− u∆ 5 6 6 6

u′ − u′
∆ 4 5 6

u′′ − u′′
∆ 3 4 4 4

u(3) − u
(3)
∆ 2 3 3 4

u(4) − u
(4)
∆ 1 2 2

Table 1: Order of convergence of optimal spline collocation methods. Here, d is the degree of the spline

(d − 1 continuity), and m the order of the BVP. Blank entries denote that the global convergence results

hold (no local superconvergence result was found in the literature).

None of the above optimal spline collocation methods has been extended to non-uniform partitions.

The applicability of a discretization method to non-uniform partitions is essential for problems with rough

solution behaviour, layers, etc, which are usually solved by adaptive techniques, and for multi-dimensional

problems in non-rectangular domains. In the rest of the paper, we develop optimal non-uniform partition

quadratic spline collocation (QSC) and cubic spline collocation (CSC) methods for linear one-dimensional

second-order BVPs. In [6], we develop adaptive techniques for spline collocation.
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m = 2, k = 2, d = 3 m = 2, k = 4, d = 5 m = 4, k = 6, d = 9

global nodal global nodal global nodal

u− u∆ 4 6 8 10 12

u′ − u′
∆ 3 4 5 8 9 12

u′′ − u′′
∆ 2 4 8 12

u(3) − u
(3)
∆ 1 3 7 12

Table 2: Order of convergence of degree d = m + k − 1 piecewise polynomial collocation (m − 1

continuity) for a mth order BVP at k Gaussian points in each subinterval. Blank entries denote that the

global convergence results hold (no local superconvergence result was found in the literature).

The outline of this paper is as follows. In Section 2, we present a technique of deriving optimal

spline collocation methods for non-uniform partitions by mapping uniform to non-uniform partitions. We

apply the technique to derive two QSC methods on non-uniform partitions, the two-step and the one-

step methods. We emphasize that, at least numerically, this technique is not equivalent to applying a

transformation of variables to the problem and obtaining a problem which can be solved effectively on

a uniform grid. We prove the existence and uniqueness of the QSC approximation for a certain class

of problems, and derive optimal global and local error bounds. In Section 3, we derive and analyze an

optimal two-step CSC method on non-uniform partitions. The derivation and analysis of the method again

assumes that the non-uniform partition is the image of a uniform partition under an appropriate mapping.

However, the final formulation and implementation of the method is mapping-free, in the sense that, once

the location of the grid points is given, no mapping needs to be computed, in contrast to the QSC method.

In Section 4, we present numerical results that demonstrate the behaviour of the QSC and CSC methods

on a variety of problems, including a boundary layer problem, and a non-linear problem, and indicate

that the conditions assumed for the development and analysis of the methods are only sufficient and not

necessary. In the last section, we make some concluding remarks and briefly mention possible extensions

of this work.

2 Non-uniform Partition Quadratic Spline Collocation

Consider the two-point BVP (1)-(2). Let ∆ ≡ {x0 = 0 < x1 < . . . < xN = 1} be a uniform partition

of Ω with stepsize h ≡ 1/N and T ≡ {τ0 ≡ x0, τi ≡ (xi + xi−1)/2; i = 1, . . . , N, τN+1 ≡ xN} be a set

of data points. Furthermore, define the Gaussian points δij ≡ xi − λjh; j = 1, 2, i = 1, . . . , N , where

λ1 ≡ (3−
√
3)/6 and λ2 ≡ (3 +

√
3)/6.

Let w(x) : Ω → Ω be a bijective function in C
3, with w′(x) > 0, ∀x ∈ Ω. Let ∆w ≡ {si ≡

w(xi), i = 0, . . . , N} be the partition of Ω with respect to which the splines will be defined, and Tw ≡
{wi ≡ w(τi), i = 0, . . . , N + 1} be the set of collocation points. That is, for the initial development of

the methods, we assume that the non-uniform grid points and collocation points are images of uniform

grid points and collocation points, respectively. Let also σij ≡ w(δij), j = 1, 2, i = 1, . . . , N . Adopt the

following notation: hi ≡ wi+1 − wi, i = 1, . . . , N − 1, ha
i ≡ si − wi, i = 1, . . . , N , hb

i ≡ wi+1 − si
i = 0, . . . , N−1, Hi ≡ si+1−si, i = 0, . . . , N−1, and H ≡ max{maxi=1,...,N{ha

i },maxi=0,...,N−1{hb
i}}.

Figure 1 shows the notation for the uniform grid and its non-uniform image for N + 1 grid points. For
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any given w(x), we denote by S∆w
the quadratic spline space with respect to the partition ∆w. Note that

the second derivative of a quadratic spline is not continuous on si, i = 0, . . . , N , but, whenever we need

its value, we define it by right (without loss of generality) continuity for si, i = 0, . . . , N − 1, and by left

continuity for sN .

× × × × × × ×
x0 x1 xi−1 xi xi+1 xN−1 xN

s s s s s s

τ0 τ1 τ2 τi τi+1 τN−1 τN τN+1

✛ ✲h

✛ ✲h

× × × × × × ×
s0 s1 si−1 si si+1 sN−1 sN

s s s s s s

w0 w1 w2 wi wi+1 wN−1 wN wN+1

✛ ✲H0
✛ ✲Hi

✛ ✲HN−1

✛ ✲h1
✛ ✲hi

✛ ✲hN−1

✛ ✲h
b
0

✛ ✲h
a
1

✛ ✲h
a
i

✛ ✲h
b
i

✛ ✲h
b
N−1

✛ ✲h
a
N

Figure 1: The uniform grid (above) and its non-uniform image (below, drawn as uniform for convenience).

Let S ∈ S∆w
be the quadratic spline interpolant of u such that

S ′′(w1) = u′′(w1)− 1
24
{4(ha

1 − hb
0)u

(3)(w1) + (ha
1 + hb

0)
2u(4)(w1)},

S(wi) = u(wi), i = 1, . . . , N,

S ′′(wN) = u′′(wN)− 1
24
{4(ha

N − hb
N−1)u

(3)(wN) + (ha
N + hb

N−1)
2u(4)(wN)}.

(6)

Note that the second set of relations in (6) is typical for a quadratic spline interpolant of u, while the first

and third relations are a set of end-conditions that make the quadratic spline interpolant unique.

For simplicity, adopt the following notation: Si ≡ S(wi), S
′
i ≡ S ′(wi) and S ′′

i ≡ S ′′(wi). Notice that,

when an integer subscript is attributed to the function w or its derivatives, it denotes values of the function

or its derivatives, respectively, at collocation points of a uniform partition, i.e. wi ≡ w(τi), w
′
i ≡ w′(τi)

and w′′
i ≡ w′′(τi), while, when it is attributed to other functions, it denotes values of the function at images

through w of collocation points of a uniform partition, i.e. ui ≡ u(wi) = u(w(τi)), etc. Furthermore, let

e(x) ≡ u(x)− S(x), thus ei ≡ e(wi). We will develop expansions of the errors of the derivatives of S at

the collocation points.

2.1 Expansions of the errors of a quadratic spline interpolant

We begin by considering the second derivative error at the midpoints. The symbols αki, βki, γki, k =

0, 1, 2, i = 2, . . . , N − 1, denote scalars defined within the subsection. By setting up the equations,

α2iS
′′
i−1 + β2iS

′′
i + γ2iS

′′
i+1 = α0iSi−1 + β0iSi + γ0iSi+1 (7)

for i = 2, . . . , N − 1, and solving for αki, βki, γki, k = 0, 2, with Maple we have

α0i = −2hi, α2i = −hi(h
a
i−1)

2,

β0i = 2(hi + hi−1), β2i = hi(h
a
i−1)

2 + hi−1(h
b
i)

2 − (hi + hi−1)hihi−1,

γ0i = −2hi−1, γ2i = −hi−1(h
b
i)

2.

(8)
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It is worth noting that relations (7) hold for any quadratic spline S ∈ S∆w
.

For later convenience, let ∧ui ≡ 1
−(hi+hi−1)hihi−1

(α2iui−1 + β2iui + γ2iui+1), i = 2, . . . , N − 1.

LEMMA 1 If w(x) ∈ C
3[Ω], then

hi = hw′
i +

h2

2
w′′

i +O(h3), hi−1 = hw′
i − h2

2
w′′

i +O(h3),

ha
i =

h
2
w′

i +
h2

8
w′′

i +O(h3), hb
i =

h
2
w′

i +
3h2

8
w′′

i +O(h3),

hb
i−1 =

h
2
w′

i − h2

8
w′′

i +O(h3), ha
i−1 =

h
2
w′

i − 3h2

8
w′′

i +O(h3),

(9)

where the index i takes all possible values consistent with the definition of the stepsizes.

PROOF

Using the definitions of hi, h
a
i and hb

i , and Taylor expansions, the proof of this lemma is trivial. ♦
In the following, the symbol ◦ denotes composition of functions.

THEOREM 1 If u ∈ C
6[Ω], w(x) : Ω → Ω is a bijective function in C

3, with w′(x) > 0, ∀x ∈ Ω,

v = − 1
24
{h2(w′′ ◦ w−1)u(3) + h2(w′ ◦ w−1)2u(4)} ∈ C

2[Ω], and S is defined by (6), then

S ′′
i = u′′

i −
1

24
{4(ha

i − hb
i−1)u

(3)
i + (ha

i + hb
i−1)

2u
(4)
i }+O(h4), (10)

for i = 1, . . . , N .

PROOF

Since Si = ui, i = 1, . . . , N , and u ∈ C
6, the right-hand side of (7) after applying Taylor expansion to

ui±1 is equivalent to

α0iui−1 + β0iui + γ0iui+1 = −hi−1hi(hi + hi−1)[u
′′
i +

1

3
(hi − hi−1)u

(3)
i +

1

12
(h2

i − hihi−1 + h2
i−1)u

(4)
i ]

+ O(H6), i = 2, . . . , N − 1. (11)

Moreover, using Taylor expansion of a function f ∈ C
4 we can show

α2ifi−1 + β2ifi + γ2ifi+1

= −hihi−1(hi + hi−1)[fi −
(ha

i−1 + hb
i)(h

a
i−1 − hb

i)

hi + hi−1

f ′
i +

hi(h
b
i)

2 + hi−1(h
a
i−1)

2

2(hi + hi−1)
f ′′
i ]

+ O(H6), i = 2, . . . , N − 1 (12)

By using Lemma 1 to expand hi, h
a
i and hb

i , relation (11) implies

∧S ′′
i = u′′

i +
1

3
h2w′′

i u
(3)
i +

1

12
h2(w′

i)
2u

(4)
i +O(h4), i = 2, . . . , N − 1 (13)

and (12) implies

∧fi = fi +
3

8
h2w′′

i f
′
i +

1

8
h2(w′

i)
2f ′′

i +O(h4), i = 2, . . . , N − 1. (14)
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Let v = − 1
24
{h2(w′′ ◦ w−1)u(3) + h2(w′ ◦ w−1)2u(4)} and f = u′′ + v. Then fi = u′′

i − 1
24
{h2w′′

i u
(3)
i +

h2(w′
i)
2u

(4)
i } = u′′

i − 1
24
{4(ha

i − hb
i−1)u

(3)
i + (ha

i + hb
i−1)

2u
(4)
i }+O(h4). As u ∈ C

6, we have

∧fi = u′′
i +

1

3
h2w′′

i u
(3)
i +

1

12
h2(w′

i)
2u

(4)
i +

3

8
h4w′′

i v
′
i+

1

8
h4(w′

i)
2v′′(ξi)+O(h4), i = 2, . . . , N−1, (15)

where ξi ∈ (wi−1, wi+1). As v ∈ C
2 and w ∈ C

3 we can regroup the h4 terms as just O(h4). Hence,

∧(S ′′
i − fi) = O(h4), i = 2, . . . , N − 1. (16)

Moreover, from the end-conditions in (6), we have

S ′′
1 − f1 = O(h4) (17)

and

S ′′
N − fN = O(h4). (18)

Relations (17), (16) and (18) (in that order) form a system of equations that is strictly diagonally dom-

inant. More specifically, using Lemma 1, and the fact that w′(x) > 0, ∀x ∈ Ω, we can show that
|β2i|−|α2i|−|γ2i|

|−(hi+hi−1)hihi−1|
= 1

2
+ O(h2), which, for sufficiently small h, is greater than 1

3
. Therefore, the infinity

norm of the inverse of the matrix of equations (17), (16) and (18) is bounded by 3. This implies that

S ′′
i − fi = O(h4), i = 1, . . . , N. ♦

REMARK 1 In the proof we assumed that v ∈ C
2[Ω] in order to bound the O(h4) terms in (15). We can

substitute this assumption with the assumptions that (w′′ ◦ w−1)v′ ∈ C[Ω] and (w′ ◦ w−1)2v′′ ∈ C[Ω],

which, sometimes, are less restrictive. (See also the numerical results on Problem 2.)

REMARK 2 The assumption that w′(x) > 0, ∀x ∈ Ω, together with Lemma 1 guarantee that the partition

generated by w satisfies H/min{mini=1,...,N{ha
i },mini=0,...,N−1{hb

i}} ≤ C, for some positive constant

C, independent of h.

REMARK 3 Theorem 1 shows that, under the assumptions, S ′′
i − u′′

i has a smooth expansion, since S ′′
i −

u′′
i = − 1

24
{h2w′′

i u
(3)
i + h2(w′

i)
2u

(4)
i }.

We now prove the counterpart of Theorem 1 for the first derivative error at the midpoints. Using Maple

we can show the following relations for any S ∈ S∆w
:

α1iS
′
i−1 + β1iS

′
i + γ1iS

′
i+1 = α0iSi−1 + β0iSi + γ0iSi+1, i = 2, . . . , N − 1 (19)

S ′
i − S ′

i−1 = hb
i−1S

′′
i + ha

i−1S
′′
i−1, i = 2, . . . , N (20)

S ′
i+1 − S ′

i = hb
iS

′′
i+1 + ha

iS
′′
i , i = 1, . . . , N − 1, (21)

where
α0i = −2hih

a
i α1i = hih

a
i h

a
i−1

β0i = 2(hih
a
i − hi−1h

b
i−1) β1i = hihi−1(h

a
i + h2

i−1) + ha
i h

b
i−1(hi + hi−1)

γ0i = 2hi−1h
b
i−1 γ1i = hi−1h

b
i−1h

b
i .

Note that α0i, β0i, γ0i are different from those in (8).
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THEOREM 2 Under the assumptions of Theorem 1,

S ′
i = u′

i +
1

24
(ha

i + hb
i−1)

2u
(3)
i +O(h4), (22)

for i = 1, . . . , N .

PROOF

Computing α1i × (20)− γ1i × (21) + (19) we have

[α0iSi−1 + β0iSi + γ0iSi+1] + [α1i(h
b
i−1S

′′
i + ha

i−1S
′′
i−1)− γ1i(h

b
iS

′′
i+1 + ha

iS
′′
i )]

= (α1i + β1i + γ1i)S
′
i, i = 2, . . . , N − 1.

(23)

Now,

α0iSi−1 + β0iSi + γ0iSi+1 = α0iui−1 + β0iui + γ0iui+1

= hihi−1[2(h
a
i + hb

i−1)u
′
i + (hih

b
i−1 − hi−1h

a
i )u

′′
i +

1
3
(h2

ih
b
i−1 + h2

i−1h
a
i )u

(3)
i − 1

12
(h3

ih
b
i−1 + h3

i−1h
a
i )u

(4)
i ]

+ O(H7), i = 2, . . . , N − 1.
(24)

Using Lemma 1 we have

α1i + β1i + γ1i = 2hihi−1(h
a
i + hb

i−1) = 2(w′
i)
3h3 +O(h5). (25)

By using (24), (25) and Lemma 1 we have

1

α1i + β1i + γ1i
(α0iSi−1+β0iSi+γ0iSi+1) = u′

i+
1

8
h2w′′

i u
′′
i +

1

6
h2(w′

i)
2u

(3)
i +O(h4), i = 2, . . . , N−1.

(26)

Moreover, by Theorem 1, Lemma 1 and the use of Maple we can show that

1

α1i + β1i + γ1i
[α1i(h

b
i−1S

′′
i + ha

i−1S
′′
i−1)− γ1i(h

b
iS

′′
i+1 + ha

iS
′′
i )]

=
−1

4
h5(w′

i)
3w′′

i u
′′
i − 1

4
h5(w′

i)
5u

(3)
i +O(h7)

2(w′
i)
3h3 +O(h5)

(27)

= −1

8
h2w′′

i u
′′
i −

1

8
h2(w′

i)
2u

(3)
i +O(h4), i = 2, . . . , N − 1.

So combining (23), (26) and (27) we have

S ′
i = u′

i +
1

24
h2(w′

i)
2u

(3)
i +O(h4), i = 2, . . . , N − 1. (28)

Furthermore, we can use (20), (21), (28), Lemma 1 and Theorem 1, and simplify with Maple to get

S ′
1 = S ′

2 − hb
1S

′′
2 − ha

1S
′′
1 = u′

1 +
1
24
h2(w′

1)
2u

(3)
1 +O(h4)

S ′
N = S ′

N−1 + hb
N−1S

′′
N + ha

N−1S
′′
N−1 = u′

N + 1
24
h2(w′

N)
2u

(3)
N +O(h4).

But h2(w′
i)
2u

(3)
i = (ha

i + hb
i−1)

2u
(3)
i +O(h4). ♦

Next, we develop expansions of the error of S at the nodes.

8



THEOREM 3 Under the assumptions of Theorem 1,

S(si) = u(si)−
1

16
(ha

i − hb
i−1)(h

a
i + hb

i−1)
2u(3)(si)−

1

128
(ha

i + hb
i−1)

4u(4)(si) +O(h5), (29)

for i = 1, . . . , N , and

S(si) = u(si)−
1

16
(ha

i+1 − hb
i)(h

a
i+1 + hb

i)
2u(3)(si)−

1

128
(ha

i+1 + hb
i)

4u(4)(si) +O(h5) (30)

for i = 0, . . . , N − 1.

PROOF

By Taylor expansion

e(si) = ei + ha
i e

′
i +

1

2
(ha

i )
2e′′i +

1

6
(ha

i )
3u

(3)
i +

1

24
(ha

i )
4u

(4)
i +O((ha

i )
5), i = 1, . . . , N. (31)

By noting that ei = 0, and by using Theorems 2 and 1 for e′i and e′′i , respectively, and Lemma 1, (31)

becomes

e(si) = {h
2
w′

i +
h2

8
w′′

i +O(h3)}{−h2

24
(w′

i)
2u

(3)
i +O(h4)}

+
1

2
{h

2

4
(w′

i)
2 +O(h3)}{h

2

24
w′′

i u
(3)
i +

h2

24
(w′

i)
2u

(4)
i +O(h4)}

+
1

6
{h

3

8
(w′

i)
3 +

h4

32
(w′

i)
2w′′

i +
h4

16
(w′

i)
2w′′

i +O(h5)}u(3)
i +

1

24

h4

16
(w′

i)
4u

(4)
i +O(h5)

=
h4

64
(w′

i)
2w′′

i u
(3)
i +

h4

128
(w′

i)
4u

(4)
i +O(h5)

=
h4

64
(w′

i)
2w′′

i u
(3)(si) +

h4

128
(w′

i)
4u(4)(si) +O(h5)

=
1

16
(ha

i + hb
i−1)(h

a
i − hb

i−1)
2u(3)(si) +

1

128
(ha

i + hb
i−1)

4u(4)(si) +O(h5).

Similarly,

e(si) =
1

16
(ha

i+1 − hb
i)(h

a
i+1 + hb

i)
2u(3)(si) +

1

128
(ha

i+1 + hb
i)

4u(4)(si) +O(h5), i = 0, . . . , N − 1. ♦

Finally, we develop expansions of the error of the first derivative of S at the nodes.

THEOREM 4 Under the assumptions of Theorem 1,

S ′(si) = u′(si)−
1

12
{(ha

i + hb
i−1)

2 + 4(ha
i − hb

i−1)(h
a
i + hb

i−1)}u(3)(si) +O(h4) (32)

for i = 1, . . . , N , and

S ′(si) = u′(si)−
1

12
{(ha

i+1 + hb
i)

2 − 4(ha
i+1 − hb

i)(h
a
i+1 + hb

i)}u(3)(si) +O(h4) (33)

for i = 0, . . . , N − 1.

9



PROOF

By Taylor expansion

e′(si) = e′i + ha
i e

′′
i +

1

2
(ha

i )
2u

(3)
i +

1

6
(ha

i )
3u

(4)
i +O((ha

i )
4), i = 1, . . . , N. (34)

By using Theorems 2 and 1 for e′i and e′′i , respectively, Lemma 1, and the Taylor relations u
(3)
i = u(3)(si)−

ha
i u

(4)(si) +O((ha
i )

2) and u
(4)
i = u(4)(si) +O(ha

i ), (34) becomes

e′(si) = −h2

24
(w′

i)
2u

(3)
i +O(h4)

+ {h
2
w′

i +
h2

8
w′′

i +O(h3)}{h
2

24
w′′

i u
(3)
i +

h2

24
(w′

i)
2u

(4)
i +O(h4)}

+
1

2
{h
2
w′

i +
h2

8
w′′

i +O(h3)}2u(3)
i +

1

6
{h
2
w′

i +
h2

8
w′′

i +O(h3)}3u(4)
i +O(h4)

=
1

12
h2(w′

i)
2u

(3)
i +

1

12
h3w′

iw
′′
i u

(3)
i +

1

24
h3(w′

i)
3u

(4)
i +O(h4)

=
1

12
h2(w′

i)
2{u(3)(si)− ha

i u
(4)(si) +O((ha

i )
2)}

+
1

12
h3w′

iw
′′
i {u(3)(si)− ha

i u
(4)(si) +O((ha

i )
2)}+ 1

24
h3(w′

i)
3{u(4)(si) +O(ha

i )}+O(h4)

=
1

12
h2(w′

i)
2u(3)(si) +

1

12
h3w′

iw
′′
i u

(3)(si) +O(h4)

=
1

12
(ha

i + hb
i−1)

2u(3)(si) +
1

3
(ha

i − hb
i−1)(h

a
i + hb

i−1)u
(3)(si) +O(h4).

Similarly,

e′(si) =
1

12
(ha

i+1 + hb
i)

2u(3)(si)−
1

3
(ha

i+1 − hb
i)(h

a
i+1 + hb

i)u
(3)(si) +O(h4), i = 0, . . . , N − 1. ♦

THEOREM 5 Under the assumptions of Theorem 1,

|e(si)| = O(h4), (35)

|e′(σij)| = O(h3), (36)

|e′′(wi)| = O(h2), and (37)

‖e(k)‖∞ = O(h3−k), k = 0, 1, 2. (38)

PROOF

Equations (35) and (37) are direct results of Theorems 3 and 1, respectively. To prove (36), we first

consider some point σi ≡ w(τi + µh) = wi + µhw′
i + O(h2), for some constant µ. Then by Taylor

expansion

e′(wi + µhw′
i +O(h2)) = e′i + µhw′

ie
′′
i +

1

2
µ2h2(w′

i)
2u

(3)
i +O(h3). (39)

By using Theorems 2 and 1 for e′i and e′′i , respectively, (39) becomes

e′(σi) = − 1

24
h2(w′

i)
2u

(3)
i +

1

2
µ2h2(w′

i)
2u

(3)
i +O(h3)

= {− 1

24
+

1

2
µ2}h2(w′

i)
2u

(3)
i +O(h3).

10



With µ = ±
√
3/6, the h2 term vanishes. By noting that τi +µh = xi − λh when λ = (3±

√
3)/6, we are

done.

Now, e(x) = ei + cHi−1e
′
i +

1
2
(cHi−1)

2e′′i + O(H3
i−1) for x ∈ [si−1, si] with −1 < c < 1. Thus, by

using Lemma 1 and the bounds for the local errors we have

‖e(x)‖∞ = O(h4) +O(h)O(h2) +O(h2)O(h) +O(h3)

= O(h3).

The other global errors follow similarly. ♦

2.2 Approximations to the high derivatives

We now develop approximations to the high derivatives of u at the collocation points using values of S,

S ′ and S ′′ at the collocation points.

THEOREM 6 Under the assumptions of Theorem 1,

u
(k)
i =

2hiS
(k−2)
i−1 − 2(hi−1 + hi)S

(k−2)
i + 2hi−1S

(k−2)
i+1

hi−1(hi−1 + hi)hi

+O(h2), (40)

for k = 3, 4 and i = 2, . . . , N − 1.

PROOF

Equation (40) for k = 3 follows from the relation u
(3)
i =

2hiu
′

i−1−2(hi−1+hi)u
′

i
+2hi−1u

′

i+1

hi−1(hi−1+hi)hi

+ O(hi − hi−1),

(22), and the use of Lemma 1 for hi − hi−1 and ha
i + hb

i−1. Similarly, equation (40) for k = 4 follows

from the relation u
(4)
i =

2hiu
′′

i−1−2(hi−1+hi)u
′′

i
+2hi−1u

′′

i+1

hi−1(hi−1+hi)hi

+ O(hi − hi−1), (10), and the use of Lemma 1 for

hi − hi−1, h
a
i − hb

i−1 and ha
i + hb

i−1. ♦
For convenience, we adopt the notation ⊓ui ≡ 2hiui−1−2(hi−1+hi)ui+2hi−1ui+1

hi−1(hi−1+hi)hi

. From Theorem 6 we

have u
(4)
i = ⊓S ′′

i +O(h2) and u
(3)
i = ⊓S ′

i +O(h2) for i = 2, . . . , N − 1.

COROLLARY 1 Under the assumptions of Theorem 1, for k = 3, 4,

u
(k)
0 =

(hb
0 + h1)(h1 + h2)− hb

0h2

h1h2

⊓ S
(k−2)
2 − (hb

0 + h1)

h2

⊓ S
(k−2)
3 +O(h2), (41)

u
(k)
1 =

(h1 + h2) ⊓ S
(k−2)
2 − h1 ⊓ S

(k−2)
3

h2

+O(h2), (42)

u
(k)
N =

(hN−1 + hN−2) ⊓ S
(k−2)
N−1 − hN−1 ⊓ S

(k−2)
N−2

hN−2

+O(h2), (43)

u
(k)
N+1 =

(ha
N + hN−1)(hN−1 + hN−2)− ha

NhN−2

hN−1hN−2

⊓ S
(k−2)
N−1 − (ha

N + hN−1)

hN−2

⊓ S
(k−2)
N−2 +O(h2).(44)

PROOF

Equations (41) and (42) come from the relations u
(k)
0 =

(hb

0+h1)u
(k)
1 −hb

0u
(k)
2

h1
+O(h2), u

(k)
1 =

(h1+h2)u
(k)
2 −h1u

(k)
3

h2
+

O(h2) and Theorem 6. Equations (44) and (43) follow similarly. ♦
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2.3 The Method of Optimal QSC

Consider solving the BVP (1)-(2). Based on the relations from Theorems 1-4 we observe that the inter-

polant S of u satisfies the relations

LSi = gi−
ri
24

{4(ha
i −hb

i−1)u
(3)
i +(ha

i +hb
i−1)

2u
(4)
i }+ pi

24
(ha

i +hb
i−1)

2u
(3)
i +O(h4), i = 1, . . . , N (45)

and

BS0 = γ0 −
β0

12
{(ha

1 + hb
0)

2 − 4(ha
1 − hb

0)(h
a
1 + hb

0)}u
(3)
0 +O(h4),

BSN+1 = γN+1 −
βN+1

12
{(ha

N + hb
N−1)

2 + 4(ha
N − hb

N−1)(h
a
N + hb

N−1)}u
(3)
N+1 +O(h4). (46)

Notice that due to Lemma 1, Theorem 6 and Corollary 1, relations (45) and (46) can be written as

LSi = gi − PLSi +O(h4), i = 1, . . . , N (47)

and

BSi = γi − PBSi +O(h4), i = 0, N + 1, (48)

where

PLS1 =
r1
24

{4(ha
1 − hb

0)
(h1 + h2) ⊓ S ′

2 − h1 ⊓ S ′
3

h2

+H2
0

(h1 + h2) ⊓ S ′′
2 − h1 ⊓ S ′′

3

h2

}

− p1
24

H2
0

(h1 + h2) ⊓ S ′
2 − h1 ⊓ S ′

3

h2

, (49)

PLSi =
ri
24

{(hi − hi−1) ⊓ S ′
i +H2

i−1 ⊓ S ′′
i } −

pi
24

H2
i−1 ⊓ S ′

i, i = 2, . . . , N − 1 (50)

PLSN =
rN
24

{4(ha
N − hb

N−1)
(hN−1 + hN−2) ⊓ S ′

N−1 − hN−1 ⊓ S ′
N−2

hN−2

+H2
N−1

(hN−1 + hN−2) ⊓ S ′′
N−1 − hN−1 ⊓ S ′′

N−2

hN−2

}

− pN
24

H2
N−1

(hN−1 + hN−2) ⊓ S ′
N−1 − hN−1 ⊓ S ′

N−2

hN−2

, (51)

PBS0 =
β0

12
{H2

0 − 4(ha
1 − hb

0)H0}{
(hb

0 + h1)(h1 + h2)− hb
0h2

h1h2

⊓ S ′
2 −

(hb
0 + h1)

h2

⊓ S ′
3}, (52)

PBSN+1 =
βN+1

12
{H2

N−1 + 4(ha
N − hb

N−1)HN−1}

{(h
a
N + hN−1)(hN−1 + hN−2)− ha

NhN−2

hN−1hN−2

⊓ S ′
N−1 −

(ha
N + hN−1)

hN−2

⊓ S ′
N−2}. (53)

Let TwL ≡ {wi, i = 1, . . . , N} and TwB ≡ {s0, sN}. We now present an optimal two-step QSC method to

determine an approximation u∆ ∈ S∆w
of the solution of the BVP (1)-(2).

Step 1: Determine u∆[1] ∈ S∆w
by forcing it to satisfy

Lu∆[1] = g in TwL, (54)

Bu∆[1] = γ on TwB. (55)
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Step 2: Determine u∆ ∈ S∆w
by forcing it to satisfy

Lu∆ = g − PLu∆[1] in TwL, (56)

Bu∆ = γ − PBu∆[1] on TwB. (57)

We also present an optimal one-step QSC method which determines an approximation û∆ ∈ S∆w
of

the solution of the BVP (1)-(2) by the equations

L̃û∆ ≡ Lû∆ + PLû∆ = g in TwL, (58)

B̃û∆ ≡ Bû∆ + PBû∆ = γ on TwB. (59)

From relations (47)-(48), we get an intuition why u∆ and û∆ are optimal approximations to u. A

formal proof, though it is very similar to the one in [10], is given in the next section for completeness.

2.4 Convergence Analysis and Error Bounds

The convergence analysis of the QSC methods for non-uniform partitions is similar to that for uniform

partitions [10], but we present it here mainly for completeness. For this section we will assume that

r(x) = 1 in (1) and that, without loss of generality, we have homogeneous boundary conditions, that is

Bu = 0 in (2). In order to analyze the QSC methods, we adopt the approach used by many [16], [15],

[7], [10], [13] for proving existence, uniqueness and error bounds for piecewise polynomial collocation.

According to this approach, we introduce an integral representation of equations (54), (56), (58) and of

the differential equation (1). For this purpose, we assume that the BVP u′′ = 0,Bu = 0 has a unique

solution. This implies that there is a Green’s function G(x, t) for this problem. If we assume that u, u∆[1],

u∆ and û∆ satisfy homogeneous boundary conditions, then u, u∆[1] and u∆ can be obtained via the Green’s

function G(x, t) and the respective second derivatives. That is, we have

u(x) =
∫ 1

0
G(x, t)u′′(t)dt, u′(x) =

∫ 1

0
Gx(x, t)u

′′(t)dt,

u∆[1](x) =
∫ 1

0
G(x, t)u′′

∆[1](t)dt, u′
∆[1](x) =

∫ 1

0
Gx(x, t)u

′′
∆[1](t)dt,

u∆(x) =
∫ 1

0
G(x, t)u′′

∆(t)dt, u′
∆(x) =

∫ 1

0
Gx(x, t)u

′′
∆(t)dt,

û∆(x) =
∫ 1

0
G(x, t)û∆

′′(t)dt, û∆
′(x) =

∫ 1

0
Gx(x, t)û∆

′′(t)dt.

Let L be the set of bounded functions in Ω, that are continuous except possibly at the nodes {si}N0
of any partition, where their values are determined by right (without loss of generality) continuity for

si, i = 0, . . . , N − 1, and by left continuity for sN , and where we impose the additional condition that,

for each f ∈ L, the limits limx→si− f(x) exist for all i = 1, . . . , N − 1. Note that although limx→si− f(x)

exists, it may be different than f(si). Note also that L includes all continuous functions in Ω, and all

piecewise constant functions with respect to any partition. We assume that the coefficient functions p(x)

and q(x) in (1) are continuous, and introduce the compact operator K that maps L to C[Ω] by

Kf(x) = p(x)
∫ 1

0
Gx(x, t)f(t)dt+ q(x)

∫ 1

0
G(x, t)f(t)dt. (60)
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Equation (1) can now be written as

u′′ +Ku′′ = g (61)

and equations (54) and (56) as

(u′′
∆[1] +Ku′′

∆[1])i = gi, (62)

(u′′
∆ +Ku′′

∆)i = g̃i, (63)

respectively, where g̃ ≡ g − PLu∆[1].

Furthermore, we introduce the operator P∆ which maps functions in L to step functions via piecewise

constant interpolation at the midpoints {wi}N1 . That is, for f ∈ L, P∆f = f(wi) for x ∈ [si−1, si),

i = 1, . . . , N and P∆f(sN) = f(wN). Based on the notation introduced, and taking into account the

uniqueness of the piecewise constant interpolant for a given set of midpoint values, we can rewrite equa-

tions (62) and (63) in the form

u′′
∆[1] + P∆Ku′′

∆[1] = P∆g, (64)

u′′
∆ + P∆Ku′′

∆ = P∆g̃, (65)

respectively, since P∆u
′′
∆[1] = u′′

∆[1] and P∆u
′′
∆ = u′′

∆.

By the definition of P∆, ‖f−P∆f‖∞ → 0 as h → 0 for all f ∈ L, that is, the sequence of operators P∆

converges strongly to the identity operator I : L → L. Moreover, ‖P∆f‖∞ ≤ ‖f‖∞. The compactness of

K, and the strong convergence and uniform boundedness of P∆ imply that ‖K−P∆K‖∞ → 0 as h → 0.

THEOREM 7 If

(A1) the coefficients p and q, and the right-hand side g are in C[Ω],

(A2) the BVP Lu = g,Bu = 0 has a unique solution,

(A3) the BVP u′′ = 0,Bu = 0 has a unique solution,

(A4) the assumptions of Theorem 1 hold,

then u∆[1] ∈ S∆w
defined by (54)-(55) exists, is unique, and satisfies the global error estimates

‖u− u∆[1]‖∞ = O(h2), ‖u′ − u′
∆[1]‖∞ = O(h2), and ‖u′′ − u′′

∆[1]‖∞ = O(h), (66)

and the local error estimates

|(u− u∆[1])
(k)(wi)| = O(h2), k = 0, 1, 2, and i = 1, . . . , N. (67)

PROOF

Assumption (A2) and the equivalence of (1) and (61) imply that (I +K)−1 exists and is bounded. Since

‖K−P∆K‖∞ → 0 as h → 0, Neumann’s theorem [15] implies that (I+P∆K)−1 exists and is uniformly

bounded for sufficiently small h. The unique solvability of (64) follows from the existence and uniform

boundedness of (I + P∆K)−1. The existence and uniqueness of u′′
∆[1] and the use of the Green’s function

G(x, t) in association with (55) lead to the existence and uniqueness of u∆[1].

To establish the error bounds (66) and (67), simplify relations (47) and (48) to

LSi = gi +O(h2), i = 1, . . . , N and (68)

BSi = O(h2), i = 0, N + 1. (69)
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From (54), (55), (68) and (69), we obtain

L(S − u∆[1])i = O(h2), i = 1, . . . , N and (70)

B(S − u∆[1])i = O(h2), i = 0, N + 1. (71)

Notice that, because of assumption (A3), there is a linear function l such that B(S − u∆[1])j = Blj =

O(h2), j = 0, N + 1, with ‖l‖∞ = O(h2), ‖l′‖∞ = O(h2), and thus Lli = O(h2), i = 1, . . . , N . From

L(S − u∆[1] − l)i = O(h2) and B(S − u∆[1] − l)j = 0, we conclude that

(I + P∆K)(S ′′ − u′′
∆[1] − l′′) = O(h2).

The uniform boundedness of (I + P∆K)−1 yields

‖S ′′ − u′′
∆[1] − l′′‖∞ = O(h2). (72)

Since B(S − u∆[1] − l)j = 0, j = 0, N + 1, we have

(S − u∆[1] − l)(k)(x) =
∫ 1

0
G(k)

x (x, t)(S ′′ − u′′
∆[1] − l′′)(t)dt.

This implies that

‖S − u∆[1] − l‖∞ = O(h2), ‖S ′ − u′
∆[1] − l′‖∞ = O(h2). (73)

The error bounds (66) and (67) now follow from Theorem 5, the definition of l, the triangle inequality and

relations (72) and (73). ♦

REMARK 4 Assumption (A4) implies that u ∈ C
6[Ω]. However, we can relax this condition and assume

that u ∈ C
4[Ω], and still obtain the results of Theorem 7, since the simplified relations LSi = gi +O(h2)

and BSj = O(h2) arising from (45) and (46), respectively, can be proved under the relaxed assumption.

The next theorem gives the optimal error bounds that u∆ satisfies. To proceed with the proof, we make

the assumption that

(A5) S ′
i − (u′

∆[1])i and S ′′
i − (u′′

∆[1])i, i = 0, . . . , N + 1, have smooth expansions.

We do not provide a mathematical proof of this statement, however, extensive numerical experiments have

shown that the statement holds. Of course, we can equivalently assume that u′
i−(u′

∆[1])i and u′′
i −(u′′

∆[1])i,

have smooth expansions, since, by Theorems 1, 2, and 4, we know that S ′
i − u′

i and S ′′
i − u′′

i have smooth

expansions.

THEOREM 8 Under the assumptions of Theorem 7, and assumption (A5), u∆ ∈ S∆w
defined by (56)-(57)

exists, is unique, and satisfies the global error estimates

‖(u− u∆)
(k)‖∞ = O(h3−k), k = 0, 1, 2, (74)

and the local error estimates

|(u−u∆)(x)| = O(h4) for x = si and wi, |(u−u∆)
′(σij)| = O(h3), |(u−u∆)

′′(wi)| = O(h2). (75)
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PROOF

As in the proof of Theorem 7, the existence and uniform boundedness of (I + P∆K)−1 imply existence

and uniqueness of u′′
∆ in (65), which in turn implies existence and uniqueness of u∆.

We now establish the optimal error bounds (74) and (75). By (A5), we conclude that ⊓S(k)
i =

⊓(u(k)
∆[1])i +O(h2), k = 1, 2. Therefore relations (47) and (48) imply

LSi = g̃i +O(h4), i = 1, . . . , N and (76)

BSi = γ̃i +O(h4), i = 0, N + 1, (77)

where γ̃ ≡ γ − PBu∆[1]. From (56), (57), (76) and (77), we obtain

L(S − u∆)i = O(h4), i = 1, . . . , N and (78)

B(S − u∆)i = O(h4), i = 0, N + 1. (79)

Notice that there is a linear function l such that B(S − u∆)j = Blj = O(h4), j = 0, N + 1, with

‖l‖∞ = O(h4), ‖l′‖∞ = O(h4), and thus Lli = O(h4), i = 1, . . . , N . From L(S − u∆ − l)i = O(h4) and

B(S − u∆ − l)j = 0, we conclude that

(I + P∆K)(S ′′ − u′′
∆ − l′′) = O(h4).

Applying the arguments used in the proof of Theorem 7 and with σij = w(xi − λjh), we obtain the

optimal results (74) and (75). ♦
We now turn to the analysis of the one-step QSC method. In order to write (58) in integral form, we

introduce some more notations. Let D∆ : L → R
N be defined by (D∆f)i = f(τi) for i = 1, . . . , N ,

Ep = diag(p(τi)), Eq = diag(q(τi)) be N × N diagonal matrices and M∆ be the operator which maps

R
N to step functions via piecewise constant interpolation at the midpoints {wi}N1 .

We note that from Theorem 6 and Lemma 1 we have

u
(k)
i =

S
(k−2)
i−1 − 2S

(k−2)
i + S

(k−2)
i+1

h2(w′
i)
2

+
O(h)S

(k−2)
i−1 +O(h2)S

(k−2)
i +O(h)S

(k−2)
i+1

h2(w′
i)
2

+O(h2),

for k = 3, 4 and i = 2, . . . , N − 1. Close to the boundary we have

u
(k)
1 =

2S
(k−2)
1 − 5S

(k−2)
2 + 4S

(k−2)
3 − S

(k−2)
4

h2(w′
1)

2

+
O(h)S

(k−2)
1 +O(h)S

(k−2)
2 +O(h)S

(k−2)
3 +O(h)S

(k−2)
4

h2(w′
1)

2
+O(h2),

u
(k)
N =

2S
(k−2)
N − 5S

(k−2)
N−1 + 4S

(k−2)
N−2 − S

(k−2)
N−3

h2(w′
N)

2

+
O(h)S

(k−2)
N +O(h)S

(k−2)
N−1 +O(h)S

(k−2)
N−2 +O(h)S

(k−2)
N−3

h2(w′
N)

2
+O(h2),

where each O(h) term involves the value of at least one of the first three derivatives of w. Hence, from

Theorems 1 and 2, we have

u′′
i =

1

24
(S ′′

i−1 + 22S ′′
i + S ′′

i+1) +O(h)S ′′
i−1 +O(h2)S ′′

i +O(h)S ′′
i+1 (80)
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+
w′′

i

24(w′
i)
2
(S ′

i−1 − 2S ′
i + S ′

i+1) +O(h)S ′
i−1 +O(h2)S ′

i +O(h)S ′
i+1 +O(h4) (81)

u′
i =

1

24
(−S ′

i−1 + 26S ′
i − S ′

i+1) +O(h)S ′
i−1 +O(h2)S ′

i +O(h)S ′
i+1 +O(h4), (82)

for i = 2, . . . , N −1. It is important to note that there is at most a constant number (actually two) of O(h)

terms in each of (80), (81) and (82).

We have similar results for u′′
i and u′

i for i = 1, N . Let Ψ and Φ be the almost tridiagonal N × N

matrices defined in [10], that is,

Ψi,i = 22/24, Ψi−1,i = Ψi+1,i = 1/24, i = 2, . . . , N − 1,

Ψ1,1 = ΨN,N = 26/24, Ψ1,2 = ΨN,N−1 = −5/24, Ψ1,3 = ΨN,N−2 = 4/24, Ψ1,4 = ΨN,N−3 = −1/24,

Φi,i = 26/24, Φi−1,i = Φi+1,i = −1/24, i = 2, . . . , N − 1,

Φ1,1 = ΦN,N = 22/24, Φ1,2 = ΦN,N−1 = 5/24, Φ1,3 = ΦN,N−2 = −4/24, Φ1,4 = ΦN,N−3 = 1/24,

with the rest of the entries of Ψ and Φ equal to 0. Let also Γ be a matrix which differs from Ψ only on

the diagonal, more specifically, Γi,i = −2/24, i = 2, . . . , N − 1, and Γ1,1 = ΓN,N = 2/24. Relations

(80) for i = 2, . . . , N − 1, and the respective boundary relations give rise to the matrix Ψ̃ = Ψ + hΣ,

where hΣ is an N × N matrix that represents the O(h) and O(h2) terms. Similarly, relations (81) for

i = 2, . . . , N − 1, and the respective boundary relations give rise to the matrix Γ̃ = ΘΓ + hZ, where

Θ = diag(
w′′

i

24(w′

i
)2
), and hZ is an N ×N matrix representing the O(h) and O(h2) terms. Finally, relations

(82) for i = 2, . . . , N − 1, and the respective boundary relations give rise to the matrix Φ̃ = Φ + hΥ,

where hΥ is an N × N matrix representing the O(h) and O(h2) terms. Note that the matrices Σ, Z and

Υ have at most 4 non-zero entries per row, and their entries involve values of the first 3 derivatives of w.

Thus, assuming w ∈ C
3, ||Σ||∞, ||Z||∞ and ||Υ||∞ are bounded. Since w′(x) > 0, ∀x ∈ Ω, ||Θ||∞ is

bounded as well. Also, from the boundedness of ||Ψ−1||∞ and the fact that Ψ̃ = Ψ(I+ hΨ−1Σ), we have

the boundedness of ||Ψ̃−1||∞, for sufficiently small h.

We now rewrite (58) equivalently as

û∆
′′ +R∆û∆

′′ = M∆Ψ̃
−1D∆g, (83)

where R∆ is the integral operator defined by

R∆f ≡ M∆Ψ̃
−1Γ̃D∆

∫ 1

0
Gx(x, t)f(t)dt+M∆Ψ̃

−1EpΦ̃D∆

∫ 1

0
Gx(x, t)f(t)dt

+ M∆Ψ̃
−1EqD∆

∫ 1

0
G(x, t)f(t)dt.

LEMMA 2 The sequence of operators R∆ converges strongly to the integral operator K in L.

PROOF

Consider the convergence of ‖R∆f − M∆D∆Kf‖∞ for f ∈ L. According to the definition of R∆ and

the use of the triangular inequality we obtain

‖R∆f −M∆D∆Kf‖∞ ≤ ‖M∆Ψ̃
−1Γ̃D∆

∫ 1
0 Gxfdt‖∞

+ ‖M∆Ψ̃
−1EpΦ̃D∆

∫ 1
0 Gxfdt−M∆Ψ̃

−1Ψ̃EpD∆

∫ 1
0 Gxfdt‖∞

+ ‖M∆Ψ̃
−1EqD∆

∫ 1
0 Gfdt−M∆Ψ̃

−1Ψ̃EqD∆

∫ 1
0 Gfdt‖∞.
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From the boundedness of ‖M∆‖∞, ‖Ψ̃−1‖∞, ‖Z‖∞, ‖Σ‖∞ and ‖Υ‖∞, and the definitions of Γ̃, Ψ̃ and Φ̃,

we have

‖R∆f −M∆D∆Kf‖∞ ≤ C {‖ΘΓD∆

∫ 1
0 Gxfdt‖∞

+‖EpΦD∆

∫ 1
0 Gxfdt−ΨEpD∆

∫ 1
0 Gxfdt‖∞

+‖EqD∆

∫ 1
0 Gfdt−ΨEqD∆

∫ 1
0 Gfdt‖∞}+O(h),

(84)

for some constant C > 0. Notice that ΓD∆

∫ 1
0 Gxfdt is bounded by the modulus of continuity over a 3h

interval. Hence, the first term of (84) is O(h). The treatment of the other two terms and the rest of the

proof of the lemma is identical to that in [10]. ♦
With techniques identical to those in [10], we can now show that, under the assumptions of Theorem

7, û∆ exists, is unique, and satisfies the same error bounds as u∆.

3 Non-uniform Partition Cubic Spline Collocation

In this section, we develop an optimal CSC method for second-order two-point BVPs on non-uniform

partitions. Our results reduce to those in [7], if the partition is uniform. For CSC, the partition points

(nodes) of ∆w will also be the collocation points.

For any given w(x), we denote by S3
∆w

the cubic spline space with respect to the partition ∆w, that

is the space of piecewise cubic polynomials which are globally in C
2. Let S ∈ S3

∆w
be the cubic spline

interpolant of u such that

S ′′(s0) = u′′(s0)− 1
24
H0(5H0 − 4H1 +H2)u

(4)(s0),

S(si) = u(si), i = 0, . . . , N,

S ′′(sN) = u′′(sN)− 1
24
HN−1(5HN−1 − 4HN−2 +HN−3)u

(4)(sN).

(85)

The symbols αki, βki, γki, k = 0, 2, i = 1, . . . , N − 1, denote scalars defined within the section and

different from those in Section 2.

We will develop expansions of the errors of the derivatives of S at the collocation points. We consider

the second derivative error at the grid points. By setting up the equations,

α2iS
′′(si−1) + β2iS

′′(si) + γ2iS
′′(si+1) = α0iS(si−1) + β0iS(si) + γ0iS(si+1) (86)

for i = 1, . . . , N − 1, and solving for α0i, β0i, γ0i, α2i, β2i and γ2i with Maple we have

α0i =
6

Hi−1
, α2i = Hi−1,

β0i = −6(Hi+Hi−1)
Hi−1Hi

, β2i = 2(Hi +Hi−1),

γ0i =
6
Hi

, γ2i = Hi.

(87)

The proof of the following lemma is trivial and is therefore omitted.

LEMMA 3 If w(x) ∈ C
3[Ω], then

Hi = hw′(xi) +
h2

2
w′′(xi) +O(h3), Hi−1 = hw′(xi)− h2

2
w′′(xi) +O(h3). (88)

where the index i takes all possible values consistent with the definition of the stepsizes.
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THEOREM 9 If u ∈ C
6[Ω], w(x) : Ω → Ω is a bijective function in C

3, with w′(x) > 0, ∀x ∈ Ω,

w−1 ∈ C
1[Ω], and S is defined by (85), then

S ′′(si) = u′′(si)−
1

12
HiHi−1u

(4)(si) +O(h4) (89)

for i = 1, . . . , N − 1.

PROOF

Since S(si) = u(si), i = 0, . . . , N and u ∈ C
6, the right-hand side of (86) after applying Taylor expansion

to u(si±1) is equivalent to

α0iu(si−1) + β0iu(si) + γ0iu(si+1) = 3(Hi +Hi−1)[u
′′(si) +

1

3
(Hi −Hi−1)u

(3)(si) (90)

+
1

12
HiHi−1u

(4)(si)] +O(H4), i = 1, . . . , N − 1.

Moreover, using Taylor expansion of a function f ∈ C
4 we can show

α2if(si−1) + β2if(si) + γ2if(si+1) = 3(Hi +Hi−1)[f(si) +
1

3
(Hi −Hi−1)f

′(si) (91)

+
1

6
HiHi−1f

′′(si)] +O(H4), i = 1, . . . , N − 1.

Let ∧u(si) ≡ 1
3(Hi+Hi−1)

(α2iu(si−1) + β2iu(si) + γ2iu(si+1)), i = 1, . . . , N − 1. Then by using Lemma

3 to expand the truncation errors of (90) and (91), we have

∧S ′′(si) = u′′(si) +
1

3
(Hi −Hi−1)u

(3)(si) +
1

12
HiHi−1u

(4)(si) +O(h4), i = 1, . . . , N − 1.

Using the definition of ∧, relation (91) becomes

∧f(si) = f(si) +
1

3
(Hi −Hi−1)f

′(si)

+
1

6
(H2

i −HiHi−1 +H2
i−1)f

′′(si) +O(h4), i = 1, . . . , N − 1.

Let v = h2w′ ◦ w−1. By using Lemma 3 and Taylor expansion, we have

v(si) = HiHi−1 +O(h4), i = 1, . . . , N − 1, (92)

v(si) = Hi(5Hi − 4Hi+1 +Hi+2)/2 +O(h4), i = 0, . . . , N − 3, (93)

v(si) = Hi−1(5Hi−1 − 4Hi−2 +Hi−3)/2 +O(h4), i = 3, . . . , N. (94)

Now, by taking f = u′′ − 1
12
vu(4) and using (92), we have

∧(S ′′(si)− f(si)) = O(h4), i = 1, . . . , N − 1. (95)

Moreover, from the end conditions in (85) and relations (93) and (94), we have

S ′′(s0)− f(s0) = O(h4) (96)

and

S ′′(sN)− f(sN) = O(h4). (97)
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Relations (96), (95) and (97) (in that order) form a system of equations that is strictly diagonally dominant.

More specifically,
|β2i|−|α2i|−|γ2i|
3(Hi+Hi−1)

= 1
3
. Therefore, the infinity norm of the inverse of the matrix of equations

(96), (95) and (97) is bounded by 3. This implies that

S ′′(si)− f(si) = O(h4), i = 0, . . . , N. ♦

The proof of the following theorem is similar to the proofs of Theorems 4 and 5, and is therefore omitted.

THEOREM 10 Under the assumptions of Theorem 9,

|e′(wi)| = O(h4), (98)

|e′(si)| = O(h4), (99)

|e′′(σij)| = O(h3), (100)

|e(3)(wi)| = O(h2), and (101)

‖e(k)‖∞ = O(h4−k), k = 0, . . . , 3. (102)

The following theorem is the cubic spline counterpart of Theorem 6 for quadratic splines and its proof

is similar to that proof.

THEOREM 11 Under the assumptions of Theorem 9,

u(4)(s0) =
(H0 +H1) ⊓ S ′′(s1)−H0 ⊓ S ′′(s2)

H1

+O(h2), (103)

u(4)(si) = ⊓S ′′(si) +O(h2), i = 1, . . . , N − 1, (104)

u(4)(sN) =
(HN−1 +HN−2) ⊓ S ′′(sN−1)−HN−1 ⊓ S ′′(sN−2)

HN−2

+O(h2), (105)

where ⊓u(si) ≡ 2Hiu(si−1)−2(Hi−1+Hi)u(si)+2Hi−1u(si+1)
Hi−1(Hi−1+Hi)Hi

.

Consider solving the BVP (1)-(2). Based on the relations from Theorems 9-10, we observe that the

interpolant S of u satisfies the relations

LS(s0) = g(s0)−
r(s0)

24
H0(5H0 − 4H1 +H2)u

(4)(s0) +O(h4),

LS(si) = g(si)−
r(si)

12
HiHi−1u

(4)(si) +O(h4), i = 1, . . . , N − 1, (106)

LS(sN) = g(sN)−
r(sN)

24
HN−1(5HN−1 − 4HN−2 +HN−3)u

(4)(sN) +O(h4),

and
BS(si) = γ(si) +O(h4), i = 0, N. (107)

Notice that due to Theorem 11, relations (106) can be written as

LS(si) = g(si)− PLS(si) +O(h4), i = 0, . . . , N, (108)

where
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PLS(s0) =
r(s0)

24
H0(5H0 − 4H1 +H2)

(H0 +H1) ⊓ S ′′(s1)−H0 ⊓ S ′′(s2)

H1

, (109)

PLS(si) =
r(si)

12
HiHi−1 ⊓ S ′′(si), i = 1, . . . , N − 1, (110)

PLS(sN) =
r(sN)

24
HN−1(5HN−1 − 4HN−2 +HN−3)

(HN−1 +HN−2) ⊓ S ′′(sN−1)−HN−1 ⊓ S ′′(sN−2)

HN−2

. (111)

We are now ready to present an optimal two-step CSC method to determine an approximation u3
∆ ∈ S3

∆w

of the solution of the BVP (1)-(2).

Step 1: Determine u3
∆[1] ∈ S3

∆w
by forcing it to satisfy

Lu3
∆[1] = g in ∆w, (112)

Bu3
∆[1] = γ on TwB. (113)

Step 2: Determine u3
∆ ∈ S3

∆w
by forcing it to satisfy

Lu3
∆ = g − PLu

3
∆[1] in ∆w, (114)

Bu3
∆ = γ on TwB. (115)

Similarly as for QSC, we can also define an optimal one-step CSC method. Notice that the implementation

of the CSC methods is essentially mapping-free, since, once the grid points are given, the collocation

equations can be set up, in contrast to the QSC methods, in which both the grid points and the “midpoints”

are needed.

Using techniques similar to those in Section 2, we can show the following theorems.

THEOREM 12 If

(A1) the coefficients p and q, and the right-hand side g are in C[Ω],

(A2) the BVP Lu = g,Bu = 0 has a unique solution,

(A3) the BVP u′′ = 0,Bu = 0 has a unique solution,

(A4) the assumptions of Theorem 9 hold,

then u3
∆[1] ∈ S3

∆w
defined by (112)-(113) exists, is unique, and satisfies the global error estimates

‖(u− u3
∆[1])

(k)‖∞ = O(h2), k = 0, 1, 2, and ‖(u− u3
∆[1])

(3)‖∞ = O(h), (116)

and the local error estimates

|(u− u3
∆[1])

(3)(wi)| = O(h2), i = 1, . . . , N. (117)

THEOREM 13 Under the assumptions of Theorem 12, and the assumption that u′′ − u3′′

∆[1] has a smooth

expansion at the collocation points, u3
∆ ∈ S3

∆w
defined by (114)-(115) exists, is unique, and satisfies the

global error estimates

‖(u− u3
∆)

(k)‖∞ = O(h4−k), k = 0, 1, 2, 3, (118)

and the local error estimates

|(u− u3
∆)

′(x)| = O(h4) for x = si and wi, |(u− u3
∆)

′′(σij)| = O(h3), |(u− u3
∆)

′′′(wi)| = O(h2).

(119)
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4 Numerical Results

In this section, we present numerical results to demonstrate the convergence of the two-step QSC and

two-step CSC methods for BVPs with non-uniform grids. All computations were carried out in double

precision. For the implementation of the QSC and CSC methods we used non-uniform B-spline basis

functions, the exact form of which is given in [6]. The linear systems arising from the QSC and CSC

methods were solved by Gauss elimination using the backslash operator or the lu function in MATLAB.

In all tables, the notation x.y± z means x.y×10±z. The observed errors are denoted by ǫ and ǫ3, for QSC

and CSC, respectively. The uniform norm ‖ · ‖∞ is approximated by the maximum absolute value on a

constant grid of 1001 evaluation points, independently of the discretization grid.

The first problem is used to test the convergence of the QSC and CSC methods with a predefined w.

The operator has variable coefficients and the boundary conditions are mixed.

PROBLEM 1 exp(x)u′′ + sin(x)u′ − 1
2+x

u = g in (0, 1),

u(0)− u′(0) = γ(0), u(1) + u′(1) = γ(1).

The function g is chosen so that u(x) = sin(x) is the solution. The mapping function is w(x) = exp(x)−1
exp(1)−1

,

and it is intentionally chosen so that it does not have any particular properties that fit this problem. Table

3 shows that the QSC and CSC methods have optimal convergence both globally and locally, for general

differential equations with general mixed boundary conditions, and an “arbitrary” w.

N error order error order error order error order

QSC ‖ǫ(x)‖∞ |ǫ(si)| |ǫ′(σij)| |ǫ′′(wi)|
32 6.80-7 1.65-7 5.67-7 4.63-5

64 7.48-8 3.2 9.91-9 4.1 7.41-8 2.9 1.21-5 1.9

128 8.72-9 3.1 6.04-10 4.0 9.60-9 2.9 3.11-6 2.0

256 1.06-9 3.0 3.73-11 4.0 1.22-9 3.0 7.86-7 2.0

CSC ‖ǫ3(x)‖∞ |ǫ3(si)| |ǫ3′(si)| |ǫ3′′(σij)|
32 3.57-8 3.57-8 3.57-8 2.82-6

64 2.06-9 4.1 2.06-9 4.1 2.06-9 4.1 3.39-7 3.1

128 1.23-10 4.1 1.23-10 4.1 1.23-10 4.1 4.15-8 3.0

256 7.48-12 4.0 7.48-12 4.0 7.35-12 4.1 5.13-9 3.0

Table 3: Observed errors and respective orders of convergence corresponding to Problem 1 solved by

QSC and CSC with mapping function w(x) = exp(x)−1
exp(1)−1

.

The next problem is designed to analyze the effect of the smoothness of w on the convergence of QSC.

PROBLEM 2 u′′ + u′ − u = g in (0, 1), u(0) = 0, u(1) = 1.

The function g is chosen so that u(x) = xq, q > 0, is the solution to the problem. We note that for

q ∈ I
+, q should be greater than 2, otherwise the approximate and the exact solution would be the same.

The mapping function is chosen to be of the form w(x) = xp, p > 0. In order to satisfy the condition

v ∈ C
2 of Theorem 1 we need q ≥ 4+ 2/p, while to satisfy the (looser) conditions of Remark 1, we need
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q ≥ 2 + 4/p, thus if q ≥ 3 then p ≥ 4. Table 4 shows that when q = 3, we have optimal convergence

even for p = 1.5. Moreover, it shows that, even for a non-smooth function u(x) = x1.5, there are mapping

functions, such as w(x) = x3, that map the uniform grid to non-uniform grids that produce optimal

results. One advantage of QSC over some other spline collocation methods is that it evaluates the second

derivatives at midpoints instead of grid points and thus avoids potential singularities at the end points.

Table 5 shows that a non-smooth mapping function w(x) = x0.5 (w′(0) is unbounded) can still give rise

to a non-uniform grid with optimal convergence provided that the exact solution u has a sufficiently high

degree q. Also notice that the fact that, for p > 1, w′(0) = 0, did not affect the optimal convergence.

These results indicate that the conditions of the theorems are only sufficient and not necessary.

QSC q = 3, p = 1.5 q = 3, p = 4 q = 1.5, p = 1 q = 1.5, p = 2 q = 1.5, p = 3

N error order error order error order error order error order

32 1.49-7 1.55-5 1.28-4 4.71-6 1.42-6

64 9.37-9 4.0 1.02-6 4.0 4.60-5 1.4 6.32-7 2.9 9.07-8 4.0

128 5.87-10 4.0 6.53-8 4.0 1.63-5 1.5 8.27-8 2.9 5.75-9 4.0

Table 4: Observed midpoint errors and respective orders of convergence corresponding to Problem 2

solved by QSC.

Problem 3 was taken from [4]. Its solution has a boundary layer at the left endpoint. The parameter η

controls the sharpness of the boundary layer.

PROBLEM 3 {(1 + ηx)u′}′ = 0 in (0, 1), u(0) = 0, u(1) = 1.

The analytical solution to this problem is u(x) = log(1+ηx)
log(1+η)

. Figure 2 plots u for various values of η.

The QSC solutions for this BVP with different parameters η and mapping functions wI(x) = x and

wx3(x) = x3 are analyzed. The function wI maps the uniform grid to itself, while wx3 maps the uniform

grid to a grid with more points near x = 0 and fewer near x = 1. Table 6 shows that for η = 1, both grids

∆wI
and ∆wx3 resulting from wI and wx3, respectively, produce optimal results. However, the numerical

results worsen for the grid ∆wI
as η increases, but remain optimal for the grid ∆wx3 . Asymptotically, we

expect both the uniform and non-uniform grids to give optimal convergence, but, for this problem, the

uniform grid will require a very large N to reach the optimal asymptotic behaviour. Figure 3 shows that

the approximate solution arising from wx3 is visibly more accurate than that arising from wI , even for a

moderate η.

Finally, we present results from the application of CSC to a non-linear problem, taken from [16].

QSC q = 5 q = 6 q = 7

N error order error order error order

32 1.31-4 9.97-5 1.03-5

64 2.40-5 2.4 1.26-5 3.0 6.41-7 4.0

128 4.48-6 2.4 1.58-6 3.0 3.74-8 4.0

Table 5: Observed midpoint errors and respective orders of convergence corresponding to Problem 2

solved by QSC with p = 0.5.
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Figure 2: Exact solution u of Problem 3 with dif-

ferent η constants.
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Figure 3: Exact solution u of Problem 3 with η =

100 and approximate solutions computed by QSC

based on mapping functions wI and wx3 for N =

32 grid.

QSC wI wx3

‖ǫ(x)‖∞ |ǫ(wi)| ‖ǫ(x)‖∞ |ǫ(wi)|
N error order error order error order error order

η = 1

16 5.42-6 9.38-7 1.95-5 2.26-6

32 6.48-7 3.1 6.42-8 3.8 2.36-6 3.0 6.01-8 5.2

64 8.30-8 3.0 4.14-9 3.9 2.95-7 3.0 2.84-9 4.4

128 1.05-8 3.0 2.61-10 4.0 3.49-8 3.1 1.64-10 4.1

η = 100

16 6.99-2 6.57-2 4.38-3 4.19-3

32 2.40-2 1.5 2.26-2 1.5 2.47-4 4.1 2.36-4 4.1

64 5.29-3 2.0 5.29-3 2.0 1.73-5 3.8 1.43-5 4.0

128 9.85-4 2.4 9.82-4 2.4 1.08-6 4.0 8.91-7 4.0

η = 10, 000

16 5.64-1 5.57-1 1.52+1 1.37+1

32 6.89-1 -0.2 6.51-1 -0.2 3.49-1 5.4 3.39-1 5.4

64 7.79-1 -0.1 7.46-1 -0.1 7.93-3 5.4 7.87-3 5.4

128 7.82-1 -0.0 7.58-1 -0.0 3.94-4 4.2 4.02-4 4.3

256 6.51-1 0.2 6.40-1 0.2 2.42-5 4.0 2.40-5 4.0

Table 6: Observed errors and respective orders of convergence corresponding to Problem 3 solved by

QSC with different η constants and mapping functions wI and wx3.

24



PROBLEM 4 u′′ − exp(u) = 0 in (0, 1), u(0) = u(1) = 0.

The unique solution to this problem is u = 2 log(ζ sec(ζ(x−0.5)/2))−log 2, where ζ = 1.3360556949061.

(The value of ζ was calculated as the unique root of z −
√
2 cos(z/4) = 0 [8]). We solve this problem

using the two-step CSC method and each of the following two iteration schemes: the simple scheme

[16] u[k+1]′′ − u[k+1] = exp(u[k]) − u[k] and the scheme arising from Newton’s method [8], u[k+1]′′ −
exp(u[k])u[k+1] = exp(u[k])− exp(u[k])u[k]. We apply the non-linear iteration first to the first step of CSC

until convergence and then to the second step of CSC until convergence. The non-linear iteration of the

first step uses the zero vector as initial guess, while that of the second step uses the last solution of the

first step. The stopping criterion is the infinity norm of the difference of the degrees of freedom vectors

between two consecutive iterations, and the non-linear iteration tolerance (grid dependent) is 10−2h2 for

the first step and 10−2h4 for the second. Table 7 gives the errors of CSC for this problem. It is also worth

noting that, in several cases, Newton’s method requires fewer iterations, but also requires the CSC matrix

to be formed at each iteration. Moreover, Newton’s method is applicable to other non-linear problems,

while the particular simple iteration scheme is designed for this problem.

We also present the results from Hermite piecewise cubic collocation (which we refer to as HPCC)

in COLSYS (COLNEW) [2, 3], which uses Newton’s method. The relaxation factor for the damping of

Newton’s iteration in COLSYS was equal to 1, so no damping was used. Both methods used uniform

grids. Since COLSYS always doubles the grid size at least once, and because we did not want to make

changes to the COLSYS code, to obtain the results for grid size N , we set the tolerance to something

easily reached, and let the code run with starting grid size N/2. In all occasions, COLSYS did 2 iterations

at grid size N/2 and 1 at N . We present the total number of iterations, though we acknowledge that this

cannot be used to directly compare HPCC with CSC.

simple iteration Newton’s Newton’s

CSC Step 1 Step 2 Step 1 Step 2 HPCC-COLSYS

N itnl error order itnl error order itnl error order itnl error order itnl error order

16 3 3.19-5 3 1.45-8 3 3.20-5 2 1.47-8 3 4.63-8

32 3 7.95-6 2.01 3 9.81-10 3.88 3 7.99-6 2.00 2 9.86-10 3.90 3 2.95-9 3.97

64 4 2.00-6 1.99 3 6.13-11 4.00 3 2.00-6 2.00 2 6.28-11 3.97 3 1.86-10 3.99

128 4 4.99-7 2.00 3 3.57-12 4.10 3 4.99-7 2.00 2 3.94-12 4.00 3 1.17-11 3.99

Table 7: Observed number of non-linear iterations itnl, grid point errors and respective orders of conver-

gence for both steps of CSC and for HPPC on Problem 4.

5 Final Remarks and Future Work

One may consider that the technique of mapping uniform to non-uniform points and solving the problem

on the non-uniform partition is mathematically equivalent to applying a transformation of variables to

the problem and obtaining a problem which can be solved effectively on a uniform grid. We emphasize

that, at least numerically, this is not true. Our technique computes an approximation to w(x) and to the

location of the non-uniform grid points and collocation points, then applies collocation on the non-uniform
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partition. To implement the transformation of variables technique, we need to compute, an approximation

to w(x), w′(x) and w′′(x), then apply collocation to the transformed problem (which involves w, w′ and

w′′) on the uniform partition. When we attempted to do that, we found that our numerical results were

significantly affected. More specifically, the order of convergence was hardly above 2, and the actual

errors significantly larger. Therefore, we did not choose (and do not recommend) this approach.

The technique used in this paper to extend the optimal quadratic and cubic spline collocation methods

from uniform to non-uniform partitions can be used for other (smooth) spline collocation methods and

higher order BVPs (e.g. quartic or quintic splines and fourth-order BVPs). However, the development

of appropriate spline interpolants (i.e. the derivation of the boundary relations the spline interpolant has

to satisfy) and the derivation of the expansions of the derivative errors of the interpolant at the non-

uniform collocation points is quite cumbersome and not straightforward. The generalization of the spline

interpolant definition and derivative error expansions to higher degree splines is a challenging piece of

research.

The spline collocation methods described in this paper can be relatively easily extended to two-

dimensional (and higher-dimensional) rectangular domains, if the domain discretization is also rectan-

gular. However, a rectangular discretization is usually not the most effective one. Moreover, the analysis

of the methods for multi-dimensional domains is not straightforward. In [14], quadratic and cubic spline

collocation methods are developed for L- and T-shaped domains. More work is also needed to extend the

methods to general non-rectangular domains, for example, following the approach of [11], and to gen-

eral quadrilateral discretizations. The development of efficient linear solvers for the resulting system of

equations is another interesting extension of this work.
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